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ABSTRACT 
 

In this study future flooding frequencies have been estimated for the Grand River catchment 
located in south-western Ontario, Canada. Historical and future climatic projections made by fifteen 
Coupled Model Inter-comparison Project-3 climate models are bias-corrected and downscaled 
before they are used to obtain mid- and end of 21st century streamflow projections. By comparing 
the future projected and historically observed precipitation and temperature records it is found that 
the mean and extreme temperature events will intensify in future across the catchment. The 
increase is more drastic in the case of extreme events than the mean events. The sign of change 
in future precipitation is uncertain. Further flow extremes are expected to increase in magnitude 
and frequency in future across the catchment. The confidence in the projection is more for low 
return period (<10 years) extreme events than higher return period (10-100 years) events. It can be 
expected that increases in temperature will play a dominant role in increasing the magnitude of low 
return period flooding events while precipitation seems to play an important role in shaping the high 
return period events. 
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1. INTRODUCTION  
 

Significant amount of changes in the climatic and 
flow patterns have been detected globally over 
the past few decades [1,2]. It is projected that the 
observed trends will continue and produce more 
drastic and unprecedented changes in the 
climatic and flow regimes in future. Many climate 
change impact assessment studies have been 
performed across Canada. Significant changes in 
key climatic variables [3,4,5,6] as well as flow 
magnitudes have been detected [7,8,9,10] in the 
past few decades.  
 

The importance of analyzing and projecting 
extremes has been highlighted in [11]. It is now 
widely accepted that the frequency and 
magnitude of climatic and flow extremes will 
change significantly in future however the 
confidence associated with the sign and 
magnitude of change projected for future flooding 
frequencies is very low. The complex physical 
processes involved behind the generation of flow 
extremes make their future projections highly 
uncertain. Several studies have been performed 
in the past at local, regional and global scales 
that aim at estimating extreme flood magnitudes 
in future. For instance [12] utilized three different 
downscaling methodologies to estimate peak 
discharges of Rhine river basin in 2050 and 
concluded that the magnitude of peak discharges 
of 10 to 1250 year return period events can 
increase by 8%-17% in future. They found the 
use of weather generators and other 
downscaling tools helpful in generating long time-
series of future rainfall and streamflow estimates. 
[13] performed a similar analysis on the river 
Meuse (France-Belgium) using projections from 
three Regional Climate Models (RCMs) and 
estimated end of 21st century flooding 
magnitudes. They identified the use of different 
Global Climate Models (GCMs) as a major 
source of uncertainty and recommended the 
usage of multiple GCMs while making future flow 
extreme estimates. [14] analyzed projections 
from three different climate models 
corresponding to emission scenario A2 and 
analysed climate change impact on flow regimes 
across Europe. They concluded that climate 
change may have region-specific impacts on flow 
patterns in the future and peak flow magnitudes 
will be altered mainly because of changing snow-
melt dynamics owing to higher spring and winter-
time temperatures. [15] analyzed projections 
from 11 GCMs and concluded that the global 
flow extremes are set to change in future though 
the extent of change varies spatially depending 

on the flow generation mechanisms operating in 
different regions. Other studies [16,17,18,19] 
warrant similar findings of changing flood hazard 
and its dependence on regional flow generation 
process dominant in different regions across the 
globe.  

 
A small number of climate change impact studies 
analyzing flow extremes have been performed in 
the southern Ontario region of Canada. [20] 
analyzed the impact of climate change on 10, 
100 and 250 year return period flooding event 
magnitudes in the Upper Thames River Basin 
and concluded significant increases in flooding 
magnitudes over the 21

st
 century. Up to 12% and 

33% increases in flooding magnitudes were 
obtained for 100-year and 250-year return period 
flooding events by the end of the 21st century. 
[21] analyzed climate change impacts on flow 
extremes in the Spencer Creek watershed 
located near Hamilton, Ontario under the A2 
scenario and concluded increases in their 
magnitudes in the 21st century. Overall a 
decreased annual runoff, increased winter and 
spring flows, lower summer and fall flows, and 
increased frequency of high flows is projected for 
the 21

st
 century in this region [22]. 

 
In Ontario, Canada the most common time of 
flooding events is during the spring freshet and 
the most common mechanism of flooding is rain 
on snowmelt. Historically the biggest floods in 
Ontario have occurred following this mechanism. 
The second most common mechanism of 
flooding in Ontario is through heavy rainstorms 
[23]. In this paper future flood magnitudes and 
underlying mechanisms are explored for the 
Grand River catchment located in south-west 
Ontario, Canada. For doing so, changes in the 
magnitude and frequency of 2-year, 5-year, 10-
year, 25-year and 100-year return period flow 
events are estimated for 2046-2065 (2050s) and 
2081-2100 (2090s). To study the underlying flood 
generating mechanisms for future, changes in 
flooding magnitudes are studied separately for 
low (<10 years) and high (10-100 year) return 
period flooding events. To the best of our 
knowledge no study looking into flow extremes 
has been performed on this catchment before. A 
description of datasets, models used, study area 
and methodology followed in this research is 
provided in section 2 followed by presentation 
and discussion of results in section 3. The paper 
ends with a summary of conclusions made from 
this study. 
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2. DATA, MODELS, STUDY AREA AND 
METHODOLOGY 

 
2.1 Datasets Used 
 
Historical observed daily precipitation and 
temperature (maximum, minimum and mean) 
data for the period 1961-2000 are obtained from 
the National Climate Data and Information 
Archive (NCDIA) at 52 gauging stations located 
within the Grand River catchment. Gridded 
Global Climate Model (GCM) data provided by 
the Coupled Model Inter-comparison Project- 
Phase3 (CMIP3) of the World Climate Research 
Programme (WCRP) [24] have been used in this 
study. Daily precipitation, maximum temperature, 
minimum temperature and mean temperature 
data projected for historical (1961-2000) and 
future timelines (2050s and 2090s) are used. In 
this study 15 CMIP3 GCMs (listed in Table 1) 
have been selected based on the availability of 
consistent datasets in historical and future 
timelines and across the three emission 
scenarios: A1B, A2 and B1.   
 

2.2 Hydrological Model Used 
 
A semi-distributed hydrologic model WATFLOOD 
[25,26] is used to generate streamflow in the 
catchment. This model is based on the concept 
of Grouped Response Units (GRUs), where units 

of similar hydrological response (or Hydrological 
Response Units) within the catchment are 
modelled together to calculate overland flow, 
interflow and base flow within the area of study. 
Overland flow or surface runoff in the 
WATFLOOD is generated by an infiltration 
excess which is defined using the Philip formula 
[27]. Overland flow is modelled using a simple 
storage-routing technique involving the Manning 
formulae. Interflow is calculated as a variable 
depth, shallow aquifer response defined as a 
linear relation with land surface and water 
content [28] while the base flow component is 
generated from a deep lower zone storage (LZS) 
reservoir which is fed by the upper zone storage 
(UZS) and generates outflow following a two 
parameter power law formulation. In this model 
GRUs are characterized based on surface land-
cover. The parameters optimized in WATFLOOD 
are land-cover specific and are related to soil 
permeability, overland flow roughness, channel 
roughness, depression storage, and an upper 
zone depletion factor [26]. For generating 
streamflow event files are prepared for each 
time-step (monthly or yearly). Important model 
controls are specified in these event files. The 
event files for the period of study are run together 
to generate outflow. Streamflow calculation is 
performed for each GRU, the flow aggregated 
across all GRUs within a grid and routed 
downstream to the catchment outlet. 

 
Table 1. Climate models considered in this study. Model outputs corresponding to the 

“Climate of the Twentieth Century” run and SRES scenarios A1B, A2 and B1 are included in 
the analysis 

 
S. no Model Atmospheric component resolution 

Horizontal (lat × lon) Vertical (levels) 
1 BCCR-BCM2.0, 2005 1.9º x 1.9º L31 
2 CGCM3.1(T47), 2005 2.8º x 2.8º L31 
3 CGCM3.1(T63), 2005 1.9º x 1.9º L31 
4 CNRM-CM3, 2004 1.9º x 1.9º L45 
5 CSIRO-MK3.0, 2001 1.9º x 1.9º L18 
6 CSIRO-MK3.5, 2005 1.9º x 1.9º L18 
7 GFDL-CM2.0, 2005 2.0ºx 2.5º L24 
8 GFDL-CM2.1, 2005 2.0º x 2.5º L24 
9 GISS-ER, 2004 4º x 5º L20 
10 IAP-FGOALS, 2004 2.8º x 2.8º L26 
11 INGV-ECHAM4, 2005 1.9º x 1.9º L18 
12 IPSL-CM4, 2005 2.5° x 3.75° L19 
13 MIROC3.2(medres), 2004 2.8º x 2.8º L20 
14 MPI-ECHAM5, 2005 1.9º x 1.9º L31 
15 MRI-CGCM2.3.2, 2003 2.8º x 2.8º L30 
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WATFLOOD has been used extensively for 
performing hydrological modelling across 
Canada [29,30,31] and is considered as a model 
capable of simulating important hydrological 
processes in large catchments [32]. In this study 
an extended version of the model: 
isoWATFLOOD model has been used. In the 
isoWATFLOOD model both the observed 
streamflow and river isotopes (δ180) levels are 
used as reference datasets to obtain more 
credible and physically representative model 
parameter sets. The benefit of this approach is 
that it reduces significantly the chances of 
equifinality in streamflow simulation and hence 
provides reliable estimates of surface, 
intermediate and baseflow components of the 
total flow. The model previously calibrated and 
validated on the Grand River has been used to 
estimate key hydrologic variables in the 
catchment. The details of hydrologic model 
calibration and validation process and related 
statistics are provided in [33,34,35]. In this study 
the calibrated isoWATFLOOD hydrologic model 
with 2x2 km2 GRU scale is used directly to 
simulate future flows and no attempt to 
recalibrate the model has been made. 
 

2.3 Study Area 
 
The catchment selected for this study is the 
Grand River at Brantford. Grand River originates 
in the Dundalk and Grand valley region and flows 
128 km southwards to drain into Lake Erie at 
Port Maitland. The Grand River catchment is the 
largest among south-western Ontario rivers 
encompassing around 6965 Km

2
 of area and is 

home for more than 787,000 people [36]. Large 
urban centers such as Kitchener, Waterloo, 
Cambridge and Guelph are present in the central 
regions of the catchment. Remaining sections of 
the catchment are primarily dominated by 
agricultural land-cover which account for around 
60-80% of the total area of the catchment [37]. 
 
Based on the geologic setting the Grand River 
watershed can be roughly classified into three 
sections of the upper, central and lower Grand 
watershed. Upper section is characterized by 
finer textured diamicton soils, less depression 
storage and large end-of-winter snowpacks 
which produces large amounts of overland runoff 
especially in the spring. The central region of the 
watershed has large areas of coarse-textured 
soils consisting of sand and gravel. This 
combined with hummocky moraine topography 
with closed depressions produces reduced 
overland runoff and high recharge to 

groundwater, leading to sustained baseflow in 
main-stem tributary streams. The lower low-lying 
regions of the watershed consist primarily of 
clayey soil which generates high surface runoff 
and allows for low groundwater recharge. 
Catchment of Grand River at Brantford (Fig. 1) 
with an area of 5,210 km2 roughly covers the 
upper and central Grand River watershed 
regions. 
 
Temporal variations in precipitation, temperature 
and flow patterns are observed throughout the 
year. March to September months are the most 
rain-fed months of the year. Precipitation 
occurring within these months is found to be 20% 
higher than the monthly average while remaining 
months receive precipitation that is 30% lower 
than the monthly average. Significant 
temperature variability is observed with high 
summer average temperatures close to 20ºC and 
low winter average temperatures around -7ºC. 
Flow is regulated at several locations along the 
Grand River using seven dams: Luther, 
Conestogo, Woolwich, Laurel, Shand, Guelph 
and Shade’s Mills Dam [38]. River discharge at 
Brantford varies across the year with high flows 
observed during the months of March and April 
and low flows are observed during the summer 
months. Further, relatively higher values of 
discharges are noted in all the winter months. 
 

2.4 Methodology 
 
2.4.1 Selection of climate model projections 
 
A total of 41 climate model-scenario 
combinations as projected by the selected 15 
GCMs corresponding to SRES scenarios: A1B, 
A2 and B1 are selected for analysis. The 
selection of these climate model-scenario 
combinations (out of a total of 45 scenarios) is 
made based on the availability of daily 
precipitation and temperature datasets required 
for the study. 
 
2.4.2 Bias-correction of GCM data 
 
Gridded climate model data are bias-corrected 
before it is used to generate future streamflow 
from the catchment. Statistical bias correction 
(SBC) approach outlined in [39] is used to 
perform bias correction of historical and future 
climate model data at 52 gauging stations across 
the catchment. In the SBC approach the raw 
climate model data are transformed so that the 
frequency histogram of corrected model baseline 
data (Xcor) matches with the intensity histogram 



of observed data (Xobs) using transfer functions. 
Transfer functions for a particular climate 
variable are estimated by first calculati
cumulative distribution function (CDF) of the 
climate model data and the observed historical 
data and then by fitting transfer function 
equations between the two CDFs so that 
CDFcor(Xcor) = CDFobs(Xobs). Three sets of 
transfer function equations: linear, exponential 
and logarithmic have been introduced in [39] that 
can be used to bias-correct precipitation data. In 
this study, a combination of linear (equation 1) 
and exponential (equation 2) transfer functions to 
correct precipitation data. Further a
recommended in [39] the bias correction of 
temperature data is performed on mean 
temperature, temperature range and skewness 
using linear transfer functions. Bias corrected 
estimates of temperature range and skewness 
are thereafter used to estimate maxim
minimum temperatures using equations 3 and 4. 
These sets of transfer functions have been 
recommended and used in many other climate 
change impact assessment studies [39

Fig. 1. Physiographic settings of the Grand River at Brantford. Major urban centres have been 
located within the catchment. The seven reservoirs located within the catchment: Shand, 
Conestogo, Shades, Luther, Laurel, Woolwich and Guelph are also denoted as R1 to R7 
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) using transfer functions. 
Transfer functions for a particular climate 
variable are estimated by first calculating the 
cumulative distribution function (CDF) of the 
climate model data and the observed historical 
data and then by fitting transfer function 
equations between the two CDFs so that 

. Three sets of 
near, exponential 

and logarithmic have been introduced in [39] that 
correct precipitation data. In 

this study, a combination of linear (equation 1) 
and exponential (equation 2) transfer functions to 
correct precipitation data. Further as 
recommended in [39] the bias correction of 
temperature data is performed on mean 
temperature, temperature range and skewness 
using linear transfer functions. Bias corrected 
estimates of temperature range and skewness 
are thereafter used to estimate maximum and 
minimum temperatures using equations 3 and 4. 
These sets of transfer functions have been 
recommended and used in many other climate 
change impact assessment studies [39,40]. 

Transfer functions obtained for historical timeline 
are thereafter used to bias-correct future 
precipitation and temperature data.
 

bcx a bx 
                                               

( ( 0)/ )( )(1 )x x
bcx a bx e           

min m ( )bc bc bc bc
ean sk rt t t t                              

max m (1 )bc bc bc bc
ean r skt t t t   

                      

In the above equations a is the additive 
correction factor, b is the multiplicative correction 
factor, τ is the rate of approach of attaining the 
asymptote, x0 is the dry day correction factor. 
Further tmean, tsk and tr represents mean 
temperature, temperature skewness and 
temperature range respectively. 
Subscript/superscript bc denotes bias corrected 
data. 

 

 
of the Grand River at Brantford. Major urban centres have been 

located within the catchment. The seven reservoirs located within the catchment: Shand, 
Conestogo, Shades, Luther, Laurel, Woolwich and Guelph are also denoted as R1 to R7 

respectively 

 
 
 
 

; Article no.BJECC.2015.003 
 
 

Transfer functions obtained for historical timeline 
correct future 

precipitation and temperature data. 

                                               
(1) 

 
( ( 0)/ )( )(1 )                     (2) 

 

                         (3) 

 

(1 )
                      

  (4)  

 
is the additive 

is the multiplicative correction 
is the rate of approach of attaining the 

is the dry day correction factor. 
represents mean 

temperature, temperature skewness and 
temperature range respectively. 

denotes bias corrected 

 

of the Grand River at Brantford. Major urban centres have been 
located within the catchment. The seven reservoirs located within the catchment: Shand, 
Conestogo, Shades, Luther, Laurel, Woolwich and Guelph are also denoted as R1 to R7 



2.4.3 Downscaling of GCM data 
 
Downscaling of bias-corrected climate data is 
performed using a weather generator approach. 
High resolution future climate data are produced 
by first producing scaled data from historical 
observed data using change factors. Distribution 
based change factors as outlined in [41] are 
calculated for each month using baseline (1961
2000) and future (2050s and 2090s) climate 
model data. A total of 100 bins are used to 
capture projected changes in the entire 
distribution of the climate data. Additive and 
multiplicative change factors are used for 
temperature and precipitation respectively. 
Generated future scaled data are used as input 
into a non-parametric, multisite multivariate 
weather generator model: MEBWG [42]
MEBWG first converts the climate data into 
independent components orthogonally, uses the 
Maximum Entropy Bootstrap procedure to 
generate synthetic replicates, and then 
transforms data back into original space by 
applying inverse orthogonal transformation
Twenty synthetic replicates of scaled data 

Fig. 2. Selection of representative precipitation
from simulated future realisations
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corrected climate data is 
performed using a weather generator approach. 
High resolution future climate data are produced 
by first producing scaled data from historical 

g change factors. Distribution 
based change factors as outlined in [41] are 
calculated for each month using baseline (1961-
2000) and future (2050s and 2090s) climate 
model data. A total of 100 bins are used to 
capture projected changes in the entire 

bution of the climate data. Additive and 
multiplicative change factors are used for 
temperature and precipitation respectively. 
Generated future scaled data are used as input 

parametric, multisite multivariate 
weather generator model: MEBWG [42]. 
MEBWG first converts the climate data into 
independent components orthogonally, uses the 
Maximum Entropy Bootstrap procedure to 
generate synthetic replicates, and then 
transforms data back into original space by 
applying inverse orthogonal transformation. 
Twenty synthetic replicates of scaled data 

corresponding to each GCM
combination are produced and representative 
sets of precipitation-temperature combinations 
selected to encompass the precipitation
temperature range projected from weather 
generator outputs.  
 
Scatter-plot based selection method as 
discussed in [43] is used to select representative 
precipitation-temperature combinations at each 
climate gauging station. In this study realizations 
projecting ‘minimum temperature
precipitation’, ‘maximum temperature
precipitation’ and ‘moderate temperature
moderate precipitation’ combinations in future 
are selected for analysis to encompass the range 
of climate variability imparted by the weather 
generator (as shown in Fig. 2). It ca
out that the selected realization results provide 
120 years (40 years x 3 runs) of climate data 
corresponding to each GCM
combination however it encompasses projected 
future climate uncertainty associated with 20 
future realizations (equivalent to 40 years x 20 
runs = 800 years) of data. 

 

 
Selection of representative precipitation-temperature combinations (within black boxes) 

from simulated future realisations at a gauging station: Appsmill 
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of climate variability imparted by the weather 
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2.4.4 Generation and analysis of future 
streamflow projections 

 

The isoWATFLOOD hydrologic model was used 
to streamflow in the catchment for future 
timelines. A streamflow series of 120 years is 
generated by combining flows obtained from the 
three representative precipitation-temperature 
combinations. For doing so the representative 
GCM outputs are first used to generate yearly 
event files for future timelines. The programs 
ragmet.exe and tmp.exe (part of the 
isoWATFLOOD model) are used to generate 
future gridded (2x2 km2) precipitation and 
temperature series across the catchment. The 
event files are chained together as continuous 
simulation and individual runs are performed for 
each individual representative scenario. Land-
cover and reservoir release is assumed to be 
fixed to historical values while doing so. 
Historical observed and generated future flow-
series are thereafter used to obtain flood 
magnitude and return period relationships. In this 
study, the Peak over Threshold (POT) method is 
employed to select flow peaks. Selection of 
independent peak flow values is made using the 
software WETSPRO [44]. The selection of 
independent flow peaks in WETSPRO is made 
using the following three criteria: 
 

 Time between the two peaks should be 
greater than the recession constant k.  

 Minimum discharge between the two 
peaks should be less than a fraction f of 
the peak discharge. 

 Peak discharge should be greater than the 
threshold discharge value qlim.  

 

Values of parameters ‘k’ and ‘f’ are taken as 10 
days and 0.37 respectively. These values of 
parameters have been recommended in [44] and 
have been used in previous studies [20]. Three 
peaks per year are selected (i.e. peak threshold 
is implicit) following the guidelines provided in 
[45,20]. Therefore 120 peaks flows were selected 
for the observed and each generated future flow 
series. The Generalised Pareto Distribution 
(GPD) has been recommended and used for 
fitting POT selected peaks in previous studies 
[20]. Selected flow peaks are therefore used to fit 
a GPD and associated parameters are estimated 
using the L-moments method. Flow quantiles 
corresponding to 2-year, 5-year, 10-year, 25-
year, and 100-year return period floods are 
calculated. Return-period and flow quantile 
relationships are also established to compare the 
flood frequency distributions between historical 
and future timelines. 

The return-period flow relationships obtained for 
each precipitation-temperature combination are 
related back to the GCM associated with it to 
explore the mechanism involved in their 
formation. Analysis is performed separately for 
low return period events (<10 years) and high 
return period events (10-100 years) to explore if 
the flood generating mechanisms will be different 
for small and large floods in future.  
 

2.5 Limitations of the Methodology 
 
It is worthwhile to point out that several 
improvements can be made in the current study 
to obtain more realistic future flooding 
projections. For instance in this study only the 
uncertainty associated with future climate 
projections has been encompassed while that 
associated with other steps i.e. use of different 
bias correction methodologies, downscaling 
methodologies and hydrologic models has been 
ignored. The array of future climate projections is 
expected to differ from that obtained in this study 
if other sources of uncertainty are included into 
the analysis process. Probable changes in future 
land-cover and reservoir operation rules can be 
also be incorporated to obtain more realistic 
future flow projections. Finally more recent 
climate model datasets provided in CMIP5 multi-
model ensemble [46] can be used to improve the 
future flow projections presented in this study. 
 

3. RESULTS AND DISCUSSION 
 
The statistical bias correction approach is found 
to be effective in correcting bias associated with 
all moments of the GCM data. The effectiveness 
of this methodology is conveyed in Fig. 3 where 
a comparison between frequency histograms of 
raw and bias-corrected GCM data is made at a 
gauging station location. It can be seen that the 
overlap between observed and GCM data 
increased on bias-correction of precipitation as 
well as temperature data. Similar results are 
obtained for other GCMs considered in this 
analysis at different gauging stations across the 
Grand River catchment. 
 
Significant changes in the precipitation and 
temperature regimes are projected across the 
catchment. In Table 3 the range of changes in 
precipitation and temperature means and 
extremes projected by all GCMs have been 
summarized. Data above 99th percentile are used 
to calculate extreme climate data statistics and 
changes are averaged over all 52 climate 
gauging stations located within the catchment. It 



can be noted that an increase in the magnitude 
of mean and extreme temperature events is 
projected across the catchment. The range of 
changes projected for precipitation is very large 
and the sign of change is uncertain.
 

Fig. 3. Comparison of bin frequency distributions of observed, raw GCM and bias
GCM (top) precipitation and (bottom) 

climate model (run1). Darker shade represents the overlap in bin frequencies 

Table 2. Changes in mean and extreme precipitation and temperature projected for future 
across the Grand River catchment

Climate variable Timeline
Precipitation 2050s 

2090s 
Temperature 2050s 

2090s 
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can be noted that an increase in the magnitude 
of mean and extreme temperature events is 
projected across the catchment. The range of 
changes projected for precipitation is very large 
and the sign of change is uncertain. It should 

also noticed that the changes projected for 
precipitation and temperature extremes are 
significantly larger than those projected for 
means. 

 
Comparison of bin frequency distributions of observed, raw GCM and bias

GCM (top) precipitation and (bottom) Tmean data at gauging station: Appsmill for GISS
climate model (run1). Darker shade represents the overlap in bin frequencies betwee

and observed data 
 

Changes in mean and extreme precipitation and temperature projected for future 
across the Grand River catchment 

 
Timeline Change in mean Change in extremes

-16.8% to +19.9% -25.2% to 
-12.8% to +26.8% -33.1% to +33.7%
+1.0ºC to +5.2ºC +0.5ºC to +6.6ºC
+1.4ºC to +8.1ºC   +1.9ºC to +10.4ºC
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also noticed that the changes projected for 
precipitation and temperature extremes are 
significantly larger than those projected for 

 

Comparison of bin frequency distributions of observed, raw GCM and bias-corrected 
data at gauging station: Appsmill for GISS-AOM 

between model 

Changes in mean and extreme precipitation and temperature projected for future 

Change in extremes 
 +30.6% 

33.1% to +33.7% 
+0.5ºC to +6.6ºC 
+1.9ºC to +10.4ºC 
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Subsequent changes in the extreme flow 
statistics are noticed at Brantford. The POT 
threshold values obtained with the implicit 
assumption were found to be significantly higher 
than those obtained for the historically observed 
data. The threshold values for all future 
scenarios are shown in Fig. 4. It should be noted 
that they are significantly higher for all the future 
GCM-scenario combinations considered for 
analysis than the historically observed value of 
190 m

3
/s. This suggests that overall higher flows 

can be expected in future across the catchment. 

Flow vs. cumulative probability and return period-
flow plots for 2050s and 2090s are presented in 
Fig. 5. It can be noted that significant uncertainty 
is associated with the projected future flows. The 
changes in flooding magnitudes as projected for 
2-year, 5-year, 10-year, 25-year and 100-year 
return period events are summarized in Table 3. 
It can be noted that the sign of change in flooding 
magnitudes is uncertain especially for floods with 
return periods between 10 and 100 years. 

 

 
 

Fig. 4. POT threshold values obtained for each GCM-scenario combination considering the 
implicit assumption 

 
Table 3. Percent change in flow quantiles of 2-year, 5-year, 10-year, 25-year and 100-year 

flooding magnitudes projected for 2050s and 2090s. The changes have been rounded off to the 
nearest whole numbers 

 
Timeline Degree of 

change 
2-year 5-year 10-year 25-year 100-year 

2050s Max 87 43 32 24 27 
Min 17 3 -5 -15 -18 

2090s Max 95 59 46 35 35 
Min 24 5 -3 -13 -17 



Fig. 5. Flow vs. cumulative probability (top) and return
projected future and historical observed flows at Brantford. Curves corresponding to specified 

future timelines are shown in grey shade while those corresponding to obs

 
The sign of change projected by different 
scenarios is further explored. For doing so 
scenarios projecting more than +5% of changes 
in flooding magnitudes are deemed as projecting 
an increase in the future flooding magnitudes. 
Scenarios projecting less than -5% of changes in 
future are deemed as projecting decreases in the 
flooding magnitudes in future while those 
projecting changes between -5% to +5% are 
deemed as projecting no change in the flooding 
magnitudes in future. With this classification 
scheme it is found that that for 2, 5 and 10 year 
return period flooding events an increase in 
future flooding magnitudes is projected by more 
than 50% of the scenarios. For 25 and 100 year 
return period events all three scenarios of 
change are equally possible because 50% 
concurrence is not achieved among analyzed 
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Flow vs. cumulative probability (top) and return-period vs. flow (bottom) curves for 

projected future and historical observed flows at Brantford. Curves corresponding to specified 
future timelines are shown in grey shade while those corresponding to observed flows are 

shown in black 

The sign of change projected by different 
scenarios is further explored. For doing so 
scenarios projecting more than +5% of changes 
in flooding magnitudes are deemed as projecting 

ooding magnitudes. 
5% of changes in 

future are deemed as projecting decreases in the 
flooding magnitudes in future while those 

5% to +5% are 
deemed as projecting no change in the flooding 

es in future. With this classification 
scheme it is found that that for 2, 5 and 10 year 
return period flooding events an increase in 
future flooding magnitudes is projected by more 
than 50% of the scenarios. For 25 and 100 year 

ree scenarios of 
change are equally possible because 50% 
concurrence is not achieved among analyzed 

scenarios over the sign of change. Most 
scenarios analyzed for these higher return period 
events project either no change or even 
decreases in the flooding magnitudes. The 
results are summarized in Table 4 and the sign 
of change projected by at least 50% of the 
scenarios considered has been highlighted. 
These results suggest that higher flood 
magnitudes can be expected for low return 
period floods while the sign of change is 
uncertain for high return period events. Similarly 
by analyzing return-period vs. flow magnitude 
responses it can be suggested that the return 
period of smaller magnitude flooding events will 
decrease in future while the changes in return 
periods of higher magnitude flooding events are 
highly uncertain in future for flooding events with 
return period between 10 and 100 years.

 
 
 
 

; Article no.BJECC.2015.003 
 
 

 

period vs. flow (bottom) curves for 
projected future and historical observed flows at Brantford. Curves corresponding to specified 

ved flows are 

scenarios over the sign of change. Most 
scenarios analyzed for these higher return period 
events project either no change or even 

magnitudes. The 
results are summarized in Table 4 and the sign 
of change projected by at least 50% of the 
scenarios considered has been highlighted. 
These results suggest that higher flood 
magnitudes can be expected for low return 

ign of change is 
uncertain for high return period events. Similarly 

period vs. flow magnitude 
responses it can be suggested that the return 
period of smaller magnitude flooding events will 
decrease in future while the changes in return 
periods of higher magnitude flooding events are 
highly uncertain in future for flooding events with 
return period between 10 and 100 years. 
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To explore the reason behind this contrast in 
behavior of low and high return period events the 
obtained flood magnitudes are linked back to the 
changes in precipitation and temperature as 
projected by each GCM-scenario combination. 
The results are presented in Figs. 6 and 7 for low 
(<10 year) and high (10-100 year) return period 
events respectively. In the figures the location of 
each triangle corresponds to the precipitation 
and temperature change projected by each GCM 
scenario, color denotes the GCM associated, the 
shape signifies the increasing or decreasing 
flood magnitude trend and the size represents 
the magnitude of change in flooding frequency as 
projected by the model. It can be noticed that the 
flooding magnitudes of low return period events 
are projected to increase by all models 
regardless of the sign or magnitude of changes 
in precipitation projected by them. This suggests 

that the increases in the magnitudes of low return 
period events are a result of higher catchment 
temperatures which leads to a higher snowmelt 
runoff and an increased flow in the catchment. 
On the other hand the magnitudes of high return 
period events are more uneven and are found to 
be largely controlled by increases in precipitation 
intensities as projected by the GCMs. This 
finding is robust as it is found that close to 90% 
(60%) of the GCM-scenario combinations which 
project an increase in the precipitation 
magnitudes by more than 10% (5%) project an 
increase in the magnitude of high return period 
flooding events. On the other hand, only 15% of 
the scenarios which project a decrease in future 
precipitation magnitudes, project an increase in 
the magnitude of high return period flooding 
events.  

 

 
 

Fig. 6. Changes in the magnitude of flooding frequencies of small floods as projected by each 
GCM-scenario combination considered in the analysis. In the figure the location of each 

triangle corresponds to the precipitation and temperature change projected by each GCM 
scenario, color denotes the GCM associated, the shape signifies the increasing or decreasing 
flood magnitude trend and the size represents the magnitude of change in flooding frequency 

as projected by the model 
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Fig. 7. Changes in the magnitude of flooding frequencies of large floods as projected by each 
GCM-scenario combination considered in the analysis. In the figure the location of each 

triangle corresponds to the precipitation and temperature change projected by each GCM 
scenario, color denotes the GCM associated, the shape signifies the increasing or decreasing 
flood magnitude trend and the size represents the magnitude of change in flooding frequency 

as projected by the model 
 
Table 4. Percentage of total scenarios concurring over an increase, decrease or no change in 

future flooding magnitudes. The direction of change as projected by at least 50% of the 
scenarios is also highlighted for each future timeline 

 
Timeline Sign of 

change 
2-year 5-year 10-year 25-year 100-year 

2050s Increase 100.0 97.5 72.5 22.5 17.5 
Decrease 0.0 0.0 2.5 32.5 47.5 
No change 0.0 2.5 25.0 45.0 35.0 

2090s Increase 100.0 100.0 73.8 35.7 31.0 
Decrease 0.0 0.0 0.0 28.6 33.3 
No change 0.0 0.0 26.2 35.7 35.7 

 
This suggests that the anomalous changes in 
flooding frequencies of low and high return 
period events are led by the differences in 
dynamics involved in forming them. Historically 
high return period floods in Ontario have typically 
been formed following rain on snowmelt or 

rainstorm mechanisms [23]. Figs. 6 and 7 
suggest that this mechanism will most likely 
continue to form high return period extreme 
events in the catchment in future. Since large 
uncertainty is associated with the future 
precipitation magnitudes flooding magnitudes of 
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high return period events is also large unlike low 
return period events which convey a unanimous 
increase in flow magnitudes in future.     
 

4. CONCLUSION 
 
In this study possible impacts of climate change 
on future flooding magnitude and frequencies 
have been explored for a Canadian catchment: 
Grand River at Brantford. Selected catchment is 
typical of many industrialized, snow-fed 
catchments located across the globe and is 
characterized with diverse land-cover sections 
and regulated river systems. Using climate model 
projections from 15 CMIP3 climate models it has 
been found that the intensities of mean and 
extreme temperature events will increase in 
future across the catchment. Temperature 
intensities can increase by 1ºC to 5ºC by 2050s 
and by 2ºC to 8ºC by 2090s. The direction of 
change in the case of precipitation is more 
uncertain. The changes projected for 
precipitation intensities range from -17% to +20% 
by 2050s and between -13% to +27% by 2090s. 
Increases in the intensities of extreme events 
have been found to be more than the mean 
increases in intensities. 
 
A wide range of changes in the flood magnitudes 
and frequencies are projected by climate models 
for future timelines at Brantford. From the 
analysis it seems highly probable that the 
magnitude of low (<10 year) return period 
flooding events will increase in future while the 
sign of change in the case of higher (10-100 
year) return period flooding events is uncertain. It 
is found that the flooding magnitudes of 2-year 
(5-year) return period events will increase by 
17% (3%) to 87% (43%) by 2050s and 24% (5%) 
to 95% (59%) by 2090s. It has been suggested 
here that a large uncertainty in high return period 
flooding events results from a high uncertainty in 
precipitation projections in the catchment. 
Precipitation plays an important role in forming 
high return period events in the catchment and 
therefore uncertainty in the precipitation 
magnitudes in turn imparts uncertainty in the 
magnitude of high return period flooding events. 
On the other hand low return period events are 
found to be dominated by effects of increases in 
temperatures projected across the catchment. 
The information about changes in flooding 
magnitudes of low and high return period events 
and their mechanisms of formation will be helpful 
to water resource managers in formulating 
appropriate flood mitigation measures within the 
Grand River basin.     
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