
Engineering, 2022, 14, 523-535 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2022.1412039  Dec. 12, 2022 523 Engineering 
 

 
 
 

Output Feedback Stabilization for a 1-D 
Conservative Wave Equation with General 
Corrupted Boundary Observation 

Shuangxi Huang 

School of Mathematics and Statistics, Shandong Normal University, Jinan, China 

 
 
 

Abstract 
In this paper, we consider the output feedback stabilization of a 1-D conserv-
ative wave equation, where the boundary velocity observation is subjected to 
a general disturbance. We first consider using only the output of the system 
to online estimate the disturbance by active disturbance rejection control 
(ADRC). The observer is designed in terms of the disturbance estimator. Then 
we present an observer-based output feedback law to achieve stabilization. 
The estimated disturbance is proved to be convergent to the unknown dis-
turbance and the velocity signal can be asymptotically recovered when time 
tends to infinity. At the same time, the asymptotic stability of the closed-loop 
system can be verified. Finally, some simulations are given to illustrate the 
theoretical conclusions. 
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1. Introduction 

The stabilization of strings and flexible beams is always an important research 
direction in recent decades, see [1] [2] [3] [4], to name just a few. When actua-
tors and sensors are collocated, system can be stabilized by utilizing passive 
principle [5] [6]. Compared with the collocated case, the non-collocated stabili-
zation problem is more difficult because the passivity principle can not be used. 
However, non-collocated case is more widely used than collocated case in engi-
neering (see, e.g., [7] [8]). With the proposal of the backstepping approach, this 
method has been extensively used in stabilization problem for parabolic equa-
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tions [9] [10] [11], first-order hyperbolic equations [12] [13] [14], wave equa-
tions [15] [16] [17] and other partial differential equations [18] [19] [20]. In [21], 
in order to stabilize an unstable wave equation, using the backstepping method, 
not only the collocated Dirichlet boundary control but also the non-collocated 
Neumann boundary control is considered. The strong stabilization of unstable 
wave equation by using non-collocated boundary displacement can be found in 
[22]. Then in [23], the stabilization of unstable wave equation with Neumann 
boundary control can be achieved by using only collocated boundary displace-
ment. Good progress has been made in [24], where the finite-time stabilization 
of 1-D wave equation by using only non-collocated boundary displacement is 
considered. 

When there exist external disturbances or unknown internal nonlinear uncer-
tainties, there are some methods to achieve stabilization. Sliding mode control is 
applied in [25] to stabilize a 1-D wave equation with nonlinear van der Pol type 
boundary condition that covers the anti-stable boundary, and subject to boun-
dary control matched disturbance on the other side. Adaptive method is used in 
[26] to study the stabilization problem of an unstable wave equation, in which 
the boundary observation is suffered with a harmonic disturbance. However, the 
above methods are not applicable when considering the stabilization of a 1-D 
wave equation with corrupted boundary observation by general disturbance. 
ADRC plays an important role in solving the stabilization problem with general 
corrupted boundary disturbance. In [27], ADRC is the first time adopted to set 
up an ordinary differential equation disturbance estimator to estimate the dis-
turbance, in which the designed disturbance estimator is only dependent on the 
output of the original system. 

In this paper, we consider the stabilization of the following 1-D conservative 
wave equation  
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           (1.1) 

where and henceforth y′  or sy  is the derivative of y with respect to s and y  
or ty  the derivative with respect to t. ( )U t  is the boundary input, ( )my t  is 
the boundary output, 0y  and 1y  are initial values and suppose that ( )d t  is a 
differentiable external disturbance. The major concern for this kind of output is 
that the velocity is relatively difficult to measure. If there is no disturbance in the 
velocity measurement, it is easy to see that system (1.1) can be exponentially sta-
bilized directly by an output feedback controller. 

The purpose of this paper is to use ADRC approach to stabilize (1.1) through 
the output of (1.1). Our method is more general than [28], where the stabiliza-
tion of (1.1) with an infinite dimensional exosystem periodic disturbance is stu-
died. Accurately speaking, in [28], the boundary velocity measurement with the 
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disturbance has the following form  

 ( ) ( )
1

2 1
cos ,

2i
i

i
d t a t

l

∞

=

−
=

π
∑                     (1.2) 

in which ( )1,2,ia i =   denote Fourier coefficients and period ( )4 0T l l= > . 
In [28], ( )d t  is an output of an exosystem, and then the stabilization of the 
system coupled by the original system and the exosystem is considered. However, 
this method can only be used to solve the periodic disturbance which can be 
written as an output of external system. It may not be suitable for more general  

periodic disturbance. In addition, when 
2 1 | ,

2
jl j i Z

i
+ = ∈ 

 
, the method is not 

applicable. 
The organization in this paper is as follows. In Section 2, a disturbance esti-

mator is designed to online estimate disturbance, then we verify the convergence 
of the error system. In Section 3, an observer-based law is designed and the 
closed-loop system is verified to be asymptotically stable. In Section 4, some 
numerical simulations are provided. 

2. Estimator and Observer Design 

In this section, we design a disturbance estimator to estimate the disturbance 
( )d t , then establish an observer in terms of the designed disturbance estimator. 

Suppose ( ) [ )1 0,locd t H∈ ∞  and  
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t
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                      (2.1) 

in which ( ) [ )1 0,p t C∈ ∞ , and for any 0t ≥  satisfies  
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Same as the disturbance estimator in [27], we design the disturbance estimator 
as  
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where ( )0 0 0
ˆ, ,q r d  is the initial value of estimator, ( )d̂ t  is an approximation of 

( )d t . Then, the observer of (1.1) is designed according to disturbance estimator 
(2.3) as follows  
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where 0k >  is a constant. We consider the observer (2.3) and (2.4) in the space 
( ) ( )3 3 1 20,1 0,1LH L× = × ×  , ( ) ( ) ( ){ }1 10,1 0,1 | 0 0LH f H f= ∈ = . Let  
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                  (2.5) 

It is easy to see that the error system is governed by  
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                (2.6) 

It can be known that the ODE-part of (2.6) is independent of its PDE-part and 
its well-posedness and convergence has been proved in [27]. Therefore, for brev-
ity, the proof of the well-posedness and convergence of the ODE-part is omitted 
in this paper, we only need to consider the well-posedness and convergence of 
the PDE-part. We consider the PDE-part of (2.6) in the space  

( ) ( )1 20,1 0,1LH L= ×  with the normal inner product. 
Define an operator ( )( ): D ⊂ →C C  as  
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C
         (2.7) 

As we all know, C  generates an exponentially stable 0C -semigroup teC  on 
 . The dual operator is  
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Take the inner product of ( ) ( ), Dφ ψ ∗∈ C  with the PDE-part of (2.6) to obtain  
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in which ( )δ ⋅  being Dirac distribution and  

 ( ) ( ).h t kd t= −                           (2.10) 

Hence, the PDE-part of (2.6) is equivalent to  
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or  
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where ( )( )0, 1sδ
Τ

= −D .  
Theorem 2.1. For arbitrary initial datum ( )0 1,ξ ξ ∈ , the PDE-part of (2.6) 

has a unique solution ( ) ( ), 0, ;t Cξ ξ ∈ ∞  , and for arbitrary 0T > , there is a 
0TD >  depending on T only such that  
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Proof. By [29], it only needs to verify that ∗D  is admissible for te
∗C , which 

is equal to say (a) 1∗ ∗−D C  is bounded from   to  , and (b) for arbitrary 
0T > , there is a 0TL >  only depends on T, which makes  
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satisfies  
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A simple calculation obtains  
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Thus, 1∗ ∗−D C  is bounded on  . Then, by differentiating ( )E t
ξ∗

 we get  
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integrating both sides yields ( ) ( )2
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11, d 0
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t t t E
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ξ ∗≤  ∫ .                   

Theorem 2.2. Suppose that ( ) [ )1 0,p t C∈ ∞  and ( ) [ )1 0,locd t H∈ ∞ . Then, the 
observers (2.3) and (2.4) are well-posed, i.e., for arbitrary initial date  

( ) ( )( ) 3
0 0 0

ˆˆ ˆ,0 , ,0 , , ,ty y q r d H⋅ ⋅ ∈ × , (2.3) and (2.4) have a unique solution  
( ) ( )3ˆˆ ˆ, , , , 0, ;ty y q r d C H∈ ∞ × . Furthermore, if we also suppose that ( )p t  and 
( )d t  satisfy (2.2) and (2.1), respectively, then the solution of (2.3) and (2.4) sa-

tisfy  

 ( )( ) 3
ˆˆ ˆlim , , 1, , , 0.t tt H

y y y y q y r d d
→∞ ×

− − − ⋅ − =


        (2.15) 

Proof. Based on Theorem 2.1, the solution of (2.12) depends on the initial 
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date and ( )2 0,locd L∈ ∞ . For arbitrary 0σ > , for some 1 0t > , we can assume 
that ( ) ( )h t kd t σ= ≤  for all 1t t> . Thus, we can write the solution of (2.12) 
as  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )
0

, , , , , , d .
t t lt

t tt t e t t e h l lξ ξ ξ ξ
Τ Τ −⋅ ⋅ = ⋅ ⋅ + ∫ CC D       (2.16) 
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Since teC  is exponential stable, there are two constants 0M >  and 0µ > , 
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Rewriting (2.16) as  
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according to (2.17) and (2.18), we obtain  
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Take t →∞  on both sides of (2.20) to get  

 ( ) ( )( )lim , , , .t Ht
t t Lξ ξ σ

→∞
⋅ ⋅ ≤                   (2.21) 

Because σ  is arbitrarily selected, we get  

 ( )lim , 0.t Ht
ξ ξ

→∞
=                       (2.22) 

Combining (2.5), we have  

 ( )ˆ ˆlim , 0.t t Ht
y y y y

→∞
− − =                    (2.23) 

(2.15) then can be obtained by (2.23) and [27].                             
Remark 2.1. If we only consider using displacement to stabilize (1.1), i.e., use 
( )1,y t  only. Inspired by [24], let  

 ( ) ( ), 1 , ,s t y s tν = −                     (2.24) 

thus, ( ),s tν  is determined by  
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The observer of (2.25) is constructed as  
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Let ( ) ( ) ( )ˆ, , ,s t s t s tν ν ν= −  be the error. Therefore, the error ( ),v s t  is de-
termined by  
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As we all know, system (2.27) is well-posed and can be finite-time stable:  
( ) ( )( ), , , 0ts t s tν ν ≡   as 3t ≥  ([24]), i.e.,  
( ) ( ) ( ) ( )( )ˆ ˆ, , , , , 0t ts t s t s t s tν ν ν ν− − ≡  as 3t ≥ . Therefore, if the controller is 

presented like ( ) ( )ˆ 0,tU t k tν= − , then when 3t ≥ , we have ( ) ( )ˆ 0, 0,t tt tν ν≡ , 
which will use the velocity measurement ( )0,t tν  of system (2.25). With (2.24), 
we will use the velocity measurement ( )1,ty t  of system (1.1). Thus, the stabili-
zation of (1.1) can’t use only the displacement measurement ( )1,y t . 

3. Well-Posedness and Stability of Closed-Loop System 

The closed-loop system consists of system (1.1), observer (2.3) and (2.4) in the 
state space 2 3× . Based on the observer we designed, we can apply the same 
controller as in [30]  

 ( ) ( ) ( )ˆtanh 1, ,tU t m y t= −                       (3.1) 

where m is a normal constant. Therefore, the closed-loop system is  
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Theorem 3.1. Assume that ( ) [ )1 0,p t C∈ ∞  and ( ) [ )1 0,locd t ∈ ∞  satisfy 

https://doi.org/10.4236/eng.2022.1412039


S. X. Huang 
 

 

DOI: 10.4236/eng.2022.1412039 530 Engineering 
 

(2.2) and (2.1), respectively. For arbitrary initial date  
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 2 3ˆˆ ˆ,0 , ,0 , ,0 , ,0 , 0 , 0 , 0t ty y y y q r d⋅ ⋅ ⋅ ⋅ ∈ × , system (3.2) has a 

unique solution ( ) ( )2 3ˆˆ ˆ, , , , , , 0, ;t ty y y y q r d C∈ ∞ ×  and (3.2) is asymptoti-
cally stable, i.e.,  
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ˆˆ ˆlim , , , , , , 0.t tt

y y y y q r d d
→∞ ×

− =


                 (3.3) 

Proof. By the invertible transformation  

 

1 0 0 0
0 1 0 0

,
ˆ1 0 1 0
ˆ0 1 0 1

t t

t t

y y
y y

y
y

ξ
ξ

    
    
    =
    −
    

−    

                    (3.4) 

then the PDE-part of (3.2) is equivalent to  

 

( ) ( )
( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )

, , ,
0, 0,
1, tanh 1, tanh 1, ,

, , ,
0, 0,

1, 1, ,

tt ss

s t t

tt ss

s t

y s t y s t
y t
y t m y t m t

s t s t
t

t k t kd t

ξ
ξ ξ
ξ

ξ ξ

=
 =
 = − +
 =
 =


= − −


             (3.5) 

then system (3.5) can be written as  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )d , , , , , , , , , , , , , , ,
d t t t ty t y t t t y t y t t t h t
t

ξ ξ ξ ξ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ +  (3.6) 

where  

 ( )( )0,0,0, 1 ,sδ= −                        (3.7) 

and the operator ( ) 2 2: D ⊂ →     is defined by  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){

( ) ( )}

2

, , , , , , , , , , ,

, , , | 1 tanh 1 tanh 1 ,

1 1 .

f g g f f g D

D f g f m g m

k

φ ψ ψ φ φ ψ

φ ψ ψ

φ ψ

 ′′ ′′= ∀ ∈
 ′= ∈ = − +


′ = −

 

    (3.8) 

As we all know,   generates an exponential stable 0C -semigroup te  on 2 . 
Along the same line for (2.7) to (2.23), we can obtain that   in (3.9) is admiss-
ible for te  and  

 ( ) ( ) ( ) ( )( ) 2lim , , , , , , , 0.t tt
y t y t t tξ ξ

→∞
⋅ ⋅ ⋅ ⋅ =


              (3.9) 

Combining (3.4), we have  

 ( ) 2ˆ ˆlim , , , 0.t tt
y y y y

→∞
=


                    (3.10) 

Then, the stability of the closed-loop system is obtained by Theorem 2.1, Theo-
rem 2.2 and (3.10).                                                  

4. Simulation Results 

In this section, some simulations are carried out for open-loop (1.1) and closed- 
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loop (3.2). In (1.1) and (3.2), the initial date is selected as follows  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( )

0 1

0 1

,0 2 sin 2 , ,0 2cos 3 ,
ˆ ˆ,0 2 sin 2 , ,0 2 3cos ,

ˆ0 1, 0 1, 0 2,
1 30 , 2, 5.

y s s s y s s s
y s s s y s s s

q r d
p t t k m

= − = +
 = − + = +


= − = = −
+

π


 = = =

         (4.1) 

For system (1.1) and system (3.2), we use the finite element method to calcu-
late their solutions. The system (1.1) is conservative, which is presented in Fig-
ure 1. If we give a (3.1) controller at the 1s =  endpoint, the system will be 
asymptotically stable, it can be seen in Figure 2. We can see from Figure 3 that 
the designed observer is convergent. In Figure 4, ( )d̂ t  can approximate con-
verge to ( )d t  well, and when time tends to infinity, both ( )q t  and ( )r t  
converge to 0, which indicates that the established disturbance estimator has sa-
tisfactory convergence.  

 

 
(a)                                                   (b) 

Figure 1. Displacement of open-loop system (1). (a) Displacement of ( ),y s t ; (b) Displacement of ( ),ty s t .  

 

 
(a)                                                   (b) 

Figure 2. The y-part displacement of closed-loop system (31). (a) Displacement of ( ),y s t ; (b) Displacement of ( ),ty s t .   
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(a)                                                   (b) 

Figure 3. The ŷ -part displacement of closed-loop system (31). (a) Displacement of ( )ˆ ,y s t ; (b) Displacement of ( )ˆ ,ty s t .  

 

 
Figure 4. Trajectory of the ODE-part of (31).  

5. Concluding Remarks 

In this paper, the problem of stabilization for a 1-D conservative wave equation 
is studied. The difficulty in this paper is that the boundary velocity observation is 
affected by a general disturbance. The merit of our method lies in that the 
boundary velocity observation is subjected to a general disturbance, including 
constant disturbance and periodic disturbance as its special cases. If there is no 
collocated boundary displacement measurement, it seems that only using the 
corrupted collocated boundary velocity measurement cannot estimate the dis-
turbance, which is a disadvantage of this paper. In future studies, we will extend 
this method to the Schrödinger equation and the Euler-Bernoulli equation. 
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