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Abstract

In this paper we are interested in showing the approxiaradytical solutions for systems of fractional
differential equations and nonlinear biochemical reaatiadel by using Sumudu transform method. The
fractional derivatives are described in the Caputo sefise applications related to Sumudu transfgrm
method have been developed for differential equationset@xhtent of access to approximate analytjcal
solutions of systems of fractional differential equadiohe solutions of our model equations are
calculated in the form of convergent series with easily mdable components. Some examples |are
solved as illustrations, using symbolic computation. The migaderesults show that the approach is easy
to implement and accurate when applied to systems ofidnat differential equations. The method
introduce a promising tool for solving many linear and madr fractional differential equations.
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1 Introduction

In this study, we consider the system of fractional difféa¢ equations:

D,'lel(t) = fl(t,,xl, POTRIE .,xn)
D.%x,(t) = fo(t,, X1, %2, en vy X))

DImx,(8) = fo(t,, X1, X, e, X) 1)(

Where D¢ is the derivative ofx;of order a;in the sense of Caputo and d)<1, subject to the initial
conditions

xl(O) =y, xz(o) = Cy, ""!xn(o) =Cn (2)

In the 19th century, in 1913, Michael and Manten gave a simpetaddescribe enzyme processes, and the
basic enzymatic model was given by the planner [1,2].

M+N=L->M+R &)

where M is the enzyme, N the substrate, L the enzyhstste intermediate complex and R the product,
from the law of mass action, which states that reactia@s rate proportional to the concentrations of the
reactants, the time evolution of the scheme Eq. (3) eadeltermined from the solution of the system of
coupled nonlinear ordinary differential equations [2,3].

dN

E = —k1MN + k_1L, (4)

dM

E = _klMN + (k—l + kz)L, (5)
dL
— =kyMN — (k_; + k)L, (6)
dt
PRl @)
dt = 7

With initial conditions
N(0) =No, M(0) =M, L(O)=0, R(O)=0 ®)
Where the parameteks, k_; andk, are positive rate constants for each reaction.SyskEmdrom (4) to

(7) can beshortened to only two equations for N and L andnirerdiionless form of concentrations of
substrate,u, and intermediate complex between enzyme astdasepv, are given by [2,3].

du_ 9
E_—u+([>’—a)v+uv, )
dv_1 10
a =~y w) (10)

subject to the initial conditions

u0 =1, v(0)=0 1D
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Wherea,p, andy are dimensionless parameters.

Several studies are of interested in differential eqnatad fractional order due to their frequent appearance
in various applications in fluid mechanics, viscoelastjcitiology, physics and engineering. Recently, a
large amount of literatures developed concerning the egtigh of fractional differential equations in
nonlinear dynamics [4-15]. Consequently, considerabénidin has been given to the solution of fractional
ordinary differential equations, integral equations andtifvaal partial differential equations of physical
interest. Since most fractional differential equatidosot have exact analytic solutions, approximation and
numerical techniques, therefore, they are used extensiveben®y, the Adomian decomposition method
and variational iteration method have been used for solviwgle range of problems [9,10,16-24]. The two
methods were used in a direct way without using linedoizaperturbation or restrictive assumptions.

There are numerous integral transforms such as the La@aosudu, Fourier, Mellin, and Hankel to solve
PDEs. Of these, the Laplace transformation and Summachsformation are the most widely used. The
Sumudu transformation method is one of the most impottansform methods introduced in the early
1990s by Gamage K. Watugala. It is a powerful tool fdvisg many kinds of PDEs in various fields of
science and engineering. And also various methods are combirethe/iSumudu transformation method
such as the homotopy Analysis Sumudu Transform Method (IWA$T1-15,25-30] which is a combination
of the homotopy analysis method and the Sumudu tranafmmmmethod. The objective of the present paper
is to extend the application of the homotopy perturbatiomuslu transform method to provides an
approximate solutions for initial value problems of linear aodlinear fractional differential equations and
to make comarison with that obtained by Adomian decompositiethad [4,31-34], where the fractional
derivative is considered in Caputo sense.

The paper is structured in six sections. In section 2, vginbsith an introduction to some necessary
definitions of fractional calculus theory. In section 3 describe the homotopy perturbation sumudu
transform method. In section 4, we present three exampl®to the efficiency of using HPSTM to solve

FDEs and also to compare our result with those obtained by exigting methods. Finally, relevant
conclusions are drawn in section 5.

2 Basic Definitions of Fractional Calculus

In this section, we present the basic definitions and ptiepeof the fractional calculus theory, which are
used further in this paper.

Definition 1 A real function f(t), t>0, is said to be in the spége a € R, if there exists a real number >
such thaff (¢t) = tPf; (t) wheref,(t) € C[0w), and it is said to be in the spagg if f™ € C,, meN.

Definition 2 The Riemann-Liouville fractional integral operatorooflera>0,for t>0 is defined as [8,35]:
1 t
GO = s [ €= OO 12)
Jef( @), Tf()dE (

I°£© = £©) 4
The Riemann-liouville derivative has certain disadvantalgenarying to model real-world phenomena with
fractional differential equations. Therefore, we shatiidduce a modified fractional differential operaigt
proposed by M. Caputo in his work on the theory of viscoelas{35].

Properties of the operatfpfcan be found in where>0, t>0 and’(a) is the gamma function.

Definition 3 The Caputo fractional derivative of f(t) of orderO with t>0 is defined as [8,36,37].
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1 t
DEFO) = "D (D) = s [ (6= M) (1)
0

(m—-a)
For m-1<u<m, meN, f(t)eC".

Definition 4 The Sumudu transform is defined over the set of function&-[#5131-34].
1 .
A= {f(t)| aM, 1,7, > 0,|f(t)] < Me¥if te(—1)) x [0,00)} (15)
by the following formula:
Faw) = SO = | fudete (16)
0

where & (7;, T,)

Some special properties of the Sumudu transform arelew$d38]

1. S[1]=1;
tm
2. S[F(m+1)] =u™;m>0

Definition 5 The Sumudu transform of Caputo fractional derivative fied as follows [38]:

m—1
S[DEF ()] = u*S[f(®)] — Z um ek fFl0), m—1<a<m, (17)
k=0
Theorem ([11],[32])
n-1
S[F™@®)] =u™ [f(u) - Z u"f("’(O)] forn=1
k=0

At very special case for n=1

SIFO®] = 2 If@ - FO.

This theorem is very important to calculate approxinsatation of the problems.
3 The Homotopy Perturbation Sumudu Transform Method

In order to elucidate the solution procedure of this methas,consider a general fractional nonlinear
differential equation of the form [11-15, 25-30]:

D&x(t) + Lx(t) + Nx(t) = q(t) (18)
with m-1<a<m, and subject to the initial condition
(0 =¢, j=01,...,m—1, (19)

WhereDZx(t)is the Caputo fractional derivative, q(t) is the souecent L is the linear operator and N is the
general nonlinear operator.
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Applying the Sumudu transform (denoted throughout this pap8j by both sides of Eq.(18), we have
S[DFx(©)] + S[Lx ()] + S[Nx(D)] = S[g(©)] (20)

Using the property of the Sumudu transform and the initial camditin Eq.(19), we have

m-—1

S[x(®)] = z u~ kK x0(0) + u*S[q ()] — u*S[Lx(t) + Nx(t)], 21)
k=0

Operating with the Sumudu inverse on both sides of Eq.(2Detve
x() = G(t) — ST uS[Lx(t) + Nx(D)]] (22)

Where G(t) represents the term arising from the source &md the prescribed initial conditions. Now,
applying the classical perturbation technique. And assuminghtaaolution of Eq.(22) is in the form

x(©) = ) P () 23)
m=0
where [£[0,1] is the homotopy parameter. The nonlinear term of22y¢an be decomposed as
Nx(®) = ) p™ An(®). (24)
m=0

forsome Adomian's polynomials,,, which can be calculated with the formula [39]

A = iﬂ N Zpix.(t) , m=012,.... (25)
™ mldp™m £ '
p=0

Substituting Eq.(23) and (25) in Eq.(22), we get

0

Z p™ () = G(t) — S luas [L <Z pm xm(t)> + z pm Am] . (26)
m=0 m=0

m=0
Equating the terms with identical powers of p, we can obtagrias of equations as the follows:

P2 xo(t) = G(t)

prixg(t) = =S u%S[Lxo(t) + Ao]]
p2ix,(t) = =S uS[Lx, () + A, ]]

p3ix3(t) = —S7HuS[Lxy(t) + 4,]]

(27)
Finally, we approximate the analytical solution x(§)ttuncated series as
M
x(®) = Jim z p™x, (£). (28)
. m=0
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4 Applications

To demonstrate the effectiveness of the proposed algorithmnspecial cases of the system of fractional
differential equations [1,2] and one case of Nonlinearh#otcal reaction model equations [9-11] will be
studied. All the results are calculated by using thebsjim calculus software Mathematica.

Example 1 Let us consider the following system of two linear fiawal differential equations [6]

DZx(t) = x(t) + y(t)
B _ (29)
Dly(®) = —x(©) + y(©)
where t>0, O, p<1, subject to the initial conditions
x(0) =0, y(0)=1 (30)
Taking the Sumudu transform on both sides of Eq.(29), thus tve ge
S[DIx(O] = S[x(®) +y(©],
B 31
S[DZy(®)] = S[=x(¢) + y(©)]
Using the property of the Sumudu transform and the initial camditi Eq.(30), we have
{ u=S[x(0)] = u=*x(0) + S[x () + y(©)] (32)
uwBS[y(®)] = uFy(0) + S[-x(t) + y(©)]
Operating with the Sumudu inverse on both sides of Eq.(32)etve
x() = S7HusS[x(®) + y(®)]],
- (33)
y(©) = 1+57 [ufS[-x(t) + y(0)]|
By applying the homotopy perturbation method, and substifq.(23) in Eq.(33) we have
=0 P X () = ST uS[Erco P X (D) + Timco P Y (D] (34)
and
oD V() = 14 7 [uPS[= B0 p™ % (6) + Tio D™ Y (D] (35)

Equating the terms with identical powers of p, we get

0_{x0(t) =0
(@) =1

{ B a
9 e e
. ¥

y (@) = m

2a ta+/?
" IxZ(t) “TRo+ D) T+p+D)

tzﬁ ta+ﬁ
lJ’Z ) =

Fr2p+1) TI(a+B+1)
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( t3a ta+2,8
t) = +
N %0 = FGe+ D T T+ 2p+ 1)
p: © 38 2pa+2p f2a+p
P TTEp+ D) T+2p+1D) T2a+p+1)
tia t2a+2,8 ta+3B t3a+,8
x,(t) = - + —
p*: F4o+1) TQRa+2+1) T(a+38+1) TQBa+p+1)
: ( ) t4[§ 3ta+3ﬂ t2a+2ﬁ t3a+ﬁ
t) = - - -
Ly‘* TAp+1) T@+3p+1) T(a+2p+1) T'GBatp+1l)
tSa 2t3a+2,8 2t2a+3,8 2t4a+[3 ta+4,8
t) = - - — +
5. *s(6) FGa+1) TBo+2p+1) TRa+3p8+1) TMa+p+1) T(a+4p+1)
p: 58 41 a+4B phatp

ys(t) = IGB+1) IL(a+4p+1) TL(4a+p+1)

If we a—1 in EQ.(36) or solve Eq.(29) and (30) with1,8=1, we obtain 30
t3 5
x(t) =t +t? tg gt
t3 ot b
@® = 1+t—§—g—%+---

Solve Eq.(29) and (30) witk=0.7$=0.9, we obtain

7 7 8 21 5 14 16 17 7 39 41 43
x(t) _ t10 5 45 10 sz ¢5  ¢5  t5 3 162 2410 2¢10 10
G r(¥) (%) ) 15rG) () 1) 1(%) © 1) i) (o) o)
9 9 8 27 5 23 18 17 16
t1o ts ts t1io 16tz t1o ts 3ts ts ¢3

®) =1+ oy T o sy e N o T rm ) rem et
O I IR OB O MO RIONION

] PR : T T T T T T T T 1
] 02 04 0.6 0.8 1
f

Fig. 1. The behavior of x(t) and y(t) at a =1, f=1.
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Fig. 2. The behavior of x(t) and y(t) at  =0.7,5= 0.9

It is evident that the efficiency of this approach can @rérally enhanced by computing further terms of
X(t), y(t) when the Homotopy Perturbation Sumudu Transformhibkbts used. The results in Fig. 1 and Fig.
2 are in full agreement with the results obtained in [6] uiegAdomain decomposition method.

Example 2 Lastly we consider the following system of three nonliriegctional differential equations:[6]

DEx(t) = 2y*(t)
{ Dfy(t) = tx() (37)
DIz(t) = y()z(t)
where t>0, 04, B, y<1, subject to the initial conditions
x(0)=0, y(0)=1, z(0)=1 (38)
Taking the Sumudu transform on both sides of Eq.(37), thus we get

S[DEx(8)] = S[2y*(1)]
S[DPy(®)] = S[tx(t)] (39)
S[pYz(®)] = Sly(®).z(®)]

Using the property of the Sumudu transform and the initial tiondin Eq.(38), we have

uPS[y(®)] = uPy(0) + S[tx(D)] (40)

{ u™%S[x(t)] = u=%x(0) + S[2y2(t)]
urS[z()] = u7z(0) + S[y(t). z(t)]

Operating with the Sumudu inverse on both sides of Eq.(4@)etve

x(t) = S~ uS[2y%(t)]]
y®)=1+8"1 [uBS[tx(t)]] (41)
z(t) = 1+ S7Hw'S[y(t). z(8)]]

By applying the homotopy perturbation method, and substit@m23) in Eq.(41) we have
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2__

P xy(t) =S [u“S 2 " Y (t)
TZO Il I rZo

Py (t) =1+ 8571 |ufs [t P™ X (t) (42)

00 0

mezm<t)=1+sllw5[ ipmyma) IDNLENO
m=0

m=0 m=0

Equating the terms with identical powers of p, we get

4,

%) =0
P’y =1
zo(t) =1
2t
[+ =G
ptiq y1(H) =0

kZ1 @®) =

tY
Fy+1)
2(a 4 1)ta+h+1
T(a+p+2)
t?
ry+1)

p2: y2(t) =

k z(t) =

8(a + 1)t2a+ﬁ+1 8(a + 1)2F(2(x+2[3+3)t3“+2ﬁ+2
IF2a+p+2) T 2o+ B +2)I(30+ 2B+ 3)

x3(t) =

3. y3(t)=0

t3v 2(a + 1)ta+Br+l 2(a + DI+ B +y + 2)tx+B+2r+1
F(3y+1)+ Tla+p+y+2) r'(y+ 1)F(a+[3+2)r(a+[3+2y+2)+
2(a + DT (a+ B + 2y + 2)t*+B+3v+1
Fry+Dl'(a+p+2)I'(a+p+3y+2)

z3(t) =

x,(t) =0
8(a + DI'(2o + B + 3)t29*26+2  8(a + 1)2T' (20 + 2P + 3)['(3a + 2P + 4)£3%+36+3
IF'Ca+p+2)I2a+ 2B+ 3) IF'Co+p+2)IBa+2p+3)'(3a+3p+4)
tYY  a(a41)t@HBH2YHL | 2(a+1) T(o+B4y+2)tatA+3v+1
Z4(t) = 1"(4«,4.1)= T(2a+2p+2) I'(y+1) I'(a+B+2)I (a+p+3y+2)
2(a+D[((TBy+1)M (a+B+2y+2)+( T(2y+1)T (a+p+3y+2)) [t FHB+HY+1 4(a+1)? M(a+p+y+2)t20+2h+2v+2
TQy+ DI Gy+ DI (a+B+2)I (a+B+4y+2) T(a+p+2)I(at+p+y+2)I (20+2p+2y+3) |
4(@+1)? T(o+B+y+2)T(2a+2p+2y+3) t20H2B43V+2 4(q+1)2 T(a+B+2y+2)0 (2a+2p+3y+3) 20 +2F+4y+2
T(y+1) T(a+B+2)2 T(a+p+2y+2)[(20+2Bp+3y+3) = [(2y+1) ['(a+B+2)2 [ (at+B+3y+2)[(20+2P+4y+3)

ya(t) =

(43)
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If we a—1 in EQ.(43) or solve Eq.(37) and (38) withf=y=1, we obtain

( (t)—2t+2t4+4t7

| = 3 21

{ (t)—1+2t3+t6+4t9+

= 3 "9 189
l(t)—1+t+tz+t3+5t4+t5+7t6+
A= 276 22 "6 90

Solve Eq.(37) and (38) witk=0.5,=0.4,y=0.3 we obtain

_Me, 12¢/s .

IR C)

=143

y(t) =1+ — +
r

x(t)

t2ho s % 3¢'s 15t s

zt)=1+

OO O MO RECY QRSO R

Fig. 3. The behavior of x(t), y(t) and z(t)at @ =0.5,= 0.4y = 0.3

It is evident that the efficiency of this approach can diégally enhanced by computing further terms of
X(t), y(t) and z(t)when the Homotopy Perturbation Sumudan3iorm Method is used the results in Fig.3 is
in full agreement with the results obtained in [7] usimg Adomain decomposition method.

Example3 Let us consider the following system of the nonlineachémical reaction model as [29,30].

du

— =—u+t(@-av+uy, (44)

% = 2(u—pv —uv) (45)

subject to the initial conditions

10
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u0 =1, v(0)=0 (46)

First by taken the sumudu transform to Eqgs (44) and Egs (45) as:

S[u] =M=S[—u+(ﬁ7 —a)v + uv] @)
S[¥] = M =S Ll/(u —Bv— uv)]
Second by taken the inverse of sumudu transform to th@Egwith the initial condition we have:
u(t) =1+ s uS[-u+ (B — a)v + uv]]
(48)

v(t) =s7t [uS [%(u - v — uv)”
Third by assuming that the solution as infinite seriasnghown functions:

Ji uy () = 14 571 [uS [— Z:zoun © + @ - a) ijovn ®) + An”

n=0 "
Ik Z:zovn ®)=s1 [uS Ll, <Z::0un ® -8 ijovn t) — An)”

Where A,are Adomian polynomials that refers to the nonlinear tench the first three components of the
Adomian polynomials are given as follows:

Ay = Ugvy, Ay = ugvituq vy, Ay = ugvy + UV + Uy
then we have
ug =1
u; = s‘l[uS[—u0 + (B —a)vy + AO]]

Uprr = s HuS[—u + (B — vy + A
and

vy =0
v, =s"1 [uS Ll/(u0 — By, — AO)”

Vgyr = 8" [US Ll,(uk =By — Ak)”

by using thata=0.375,8=1,y=0.1 we have
Ay =0

U = s‘l[uS[—l +(B—a)0+ 0]] =—t

v, =51 [uS [La-pxo- 0)” = 10t

A, =10t
u, = 2.375¢2
v, = —10t?

11
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Az = —11t2
u; = —17.25¢°
vy = 741.25¢°
By continue we get the solution as series:
u(t) =1—t+2375t% — 17.25t% + - 50)
v(t) = 10t — 105t% + 741.25¢3 + -+ 51)
104 _._'
ﬁ_
0.2+
5
o ]

uf
0.84

¢ b5 el ols | odo | 0ls 0 ebs olo | 015 020 | 025
t i

Fig. 4. The solutions of u(t) and v(t) at @ =0.375,=1y= 0.1
5 Conclusions

This present analysis exhibits the applicability of the dimpy perturbation Sumudu transform method to
solve systems of differential equations of fractionaleorand the nonlinear biochemical reaction mode. The
work emphasized our belief that the method is a reliadbriique to handle linear and nonlinear fractional
differential equations. It provides the solutions in termscofivergent series with easily computable
components in a direct way without using linearization, ietste assumptions. The results of this method
are in good agreement with those obtained by using the ivaghatiteration method and the Adomian
decomposition method. As an advantage of this method ogeAdbmian decomposition method, in this
method we do not need to do the difficult computation fodifig the Adomian polynomials, Generally
speaking, the proposed method is promising and applicable tad d&less of linear and nonlinear problems
in the theory of fractional calculus.
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