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Abstract 
 

A prominent reliability model is that of the partially-redundant (k-out-of-n) system. We use algebraic as 
well as signal-flow-graph methods to explore and expose the AR algorithm for computing k-out-of-n 
reliability. We demonstrate that the AR algorithm is, in fact, both a recursive and an iterative 
implementation of the strategy of Reduced Ordered Binary Decision Diagrams (ROBDDs). The 
underlying ROBDD for the AR recursive algorithm is represented by a compact Signal Flow Graph 
(SFG) that is used to deduce AR iterative algorithms of quadratic temporal complexity and linear spatial 
complexity. Extensions of the AR algorithm for (single or scalar) threshold, double-threshold, vector-
threshold, and k-to-l-out-of-n systems have similar ROBDD interpretations. 
 

 
Keywords: AR algorithm; k-out-of-n system; reduced ordered binary decision diagram; reliability; signal 

flow graph. 
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1 Introduction 
 
The k-out-of-n:G (F) system, is “a system of n components that functions (fails) if at least k out of its n 
components function (fail)”. Situations in which this system serves as a useful model are frequently encountered 
in practice [1-4]. The k-out-of-n system plays a central role for the general class of coherent systems, as it can be 
used to express or approximate the reliability of such systems with knowledge of the signatures or the 
destruction spectrum of such systems [4-5]. 
 
This paper deals with the evaluation of k-out-of-n system reliability via the Reduced-Ordered-Binary-
Decision-Diagram (ROBDD) strategy. The ROBDD strategy was proposed by Bryant [6] as an extension of 
the Binary-Decision-Diagram (BDD) methodology of Akers [7]. The ROBDD deals with general switching 
(two-valued Boolean) functions, and is now considered the state-of-the-art data structure for handling such 
functions. The ROBDD has many applications in reliability theory and engineering [1,8-14]. Most of the 
ROBDD applications in reliability concentrate on areas which have clear-cut Boolean interpretations, such 
as those of fault-tree analysis or event-tree analysis [9]. In the worst case, ROBDD applications have 
exponential (and hence, intractable) complexity. One of a few notable exceptions is the case of applying the 
ROBDD to k-out-of-n systems.  
 
The purpose of this paper is to demonstrate that simple application of the ROBDD strategy to k-out-of-n 
system reliability analysis produces an already existing algorithm, namely the recursive AR algorithm of 
Rushdi [3,15-17]. Careful implementations of the ROBDD strategy can be used to recover iterative versions 
of the AR algorithm. 
 
The organization of the remainder of this paper is as follows. Section 2 reviews the AR algorithm both in the 
Boolean and probability domains and illustrates it via a signal-flow-graph representation. Section 3 explains 
why the AR algorithm is a special case of the ROBDD strategy, while Sec. 4 demonstrates the findings of 
Sec. 3 visually from the perspective of k-out-of-5:G systems, where k ranges from 1 to 5. Section 5 
concludes the paper. 
 

2 The AR Algorithm 
 
The success S(Xn) of a certain system in terms of the successes Xn = [X1 X 2…X j-1 X j X j+1… X n]

T of its 
components can be expanded via the Boole-Shannon expansion w.r.t. the success Xj of component j [17] 
 

S(Xn) = Xj (S(Xn) / Xj) ˅ Xj (S(Xn) / Xj),      1  j  n.                                                                         (1) 
 
This expansion expresses S(Xn) in terms of two Boolean quotients (also called ratios,  subfunctions or 
restrictions) [18-19] 
 

S(Xn) / Xj  = S(Xn) ] Xj = 0,                                                                                                                   (2) 
 

S(Xn) / Xj  = S(Xn) ] Xj = 1.                                                                                                                   (3) 
 
Rushdi [15,17] proved that for the success of a k-out-of-n:G system, denoted herein as S(k, n, Xn), the above 
quotients (for 1 ≤  j  ≤  n)  are  
 

S(k, n, Xn) / Xj = S(k, n – 1, Xn/Xj),                                                                                                   (4) 
 

S(k, n, Xn) / Xj = S(k – 1, n – 1, Xn/Xj),                                                                                            (5) 
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where Xn/Xj = [X1 X2 … Xj– 1 Xj+1 … Xn]
T. Note that the slash ( / ) in (1) – (5) has the meaning of restriction 

(or with a little abuse of notation, that of division), while in (Xn/Xj) its meaning resembles that of a set 
difference, and hence it is used to exclude an element Xj from an   n-element vector  Xn to produce an (n – 1) 
element vector (Xn/Xj). When equations (1) – (5) are combined (with n set to j), one obtains  
 

S(k, j, Xj) =  Xj S(k, j–1, Xj–1) ˅  Xj S (k–1, j–1, Xj–1),   1  k  j  n.                                                (6) 
 
The above recursive relation should be used in conjunction with the boundary conditions 
 

S(0, j, Xj) = 1,    j ≥ 0.                                                                                                                               (7a) 
 
S(j+1, j, Xj) = 0,    j ≥ 0.                                                                                                                           (7b) 

 
Since Equations (6) and (7) are probability-ready expressions (PREs) [19], they are converted immediately to the 
probability domain by replacing Boolean variables by their expectations and substituting the arithmetic 
operations of multiplication and addition for their logical counterparts of ANDing and ORing, namely  
 

R(k, j, pj) =  qj R(k, j–1, pj–1) + pj R(k–1, j–1, pj–1),  1≤ k ≤ j ≤ n,                                                    (8) 
 

R (0, j, pj) = 1.0,    j ≥ 0,                                                                                                                   (9a) 
 

R (j+1, j, pj) = 0.0,    j ≥ 0.                                                                                                               (9b) 
 
Equations (6) and (7) are the basis of the AR algorithm in the Boolean domain, while equations (8) and (9) 
constitute its essence in the probability domain. This algorithm is a quadratic-time iterative algorithm that 
has the beautiful characteristic of having a common complexity of O(k(n – k + 1)) for computing both the 
unreliability and reliability of either the k-out-of-n:F system or the k-out-of-n:G system [3,19]. Figs. 1 and 2 
are signal flow graphs (SFGs) that represent the underlying relations (6) and (7) for the AR algorithm in the 
Boolean domain, and the transformed relations (8) and (9) for that algorithm in the probability domain. The 
figures are drawn on a rectangular grid of a vertical coordinate k1 = k (k1 ≥ 0) and a horizontal coordinate k2 
= j – k (k2 ≥ –1). Shaded circles represent nodes expressed recursively, while squares represent boundary 
conditions of specific values 0 and 1 for white and black nodes, respectively. Figs. 1 and 2 are useful for 
visualizing both the recursive and iterative versions of the AR algorithm [17]. At least three iterative 
versions are possible via the recursion removal attained when one traverses or sweeps the rows, columns, or 
secondary diagonals in Figs. 1 and 2. The arrows in Figs. 1 and 2 indicate signal-flow-graph relations, and as 
such, are opposite to what would be used conventionally in an expansion graph. 
 

3 Comparison of the AR Algorithm with the ROBDD Strategy 
 
The AR algorithm is, in fact, an implementation of the Reduced-Ordered-Binary-Decision-Diagram 
(ROBDD) strategy when this strategy is adapted for computing the k-out-n-reliability. The ROBDD deals 
with general switching (two-valued Boolean) functions. The AR algorithm, however, handles a class of 
switching functions that are both monotonically non-decreasing and totally symmetric. Apart from this 
restriction in applicability, the recursive version of AR algorithm has exactly the same features as the 
ROBDD algorithm, namely: 
 

1. Both the AR and ROBDD algorithms are based on the Boole-Shannon expansion in the Boolean 
domain (1), and both use boundary conditions such as those in (7) to terminate this expansion. 

2. Both algorithms visit the variables in a certain order, typically monotonically ascending or 
monotonically descending.  

3. Both algorithms reduce the resulting expansion tree (which is exponential in size) to a rooted 
acyclic graph that is both canonical and hopefully compact or sub-exponential. The reduction rules 
[4] require (a) merging isomorphic subtrees, and (b) deletion of any useless intermediate node 
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whose two “outgoing” edges point both to the same child node. For the AR algorithm, the resulting 
graph is not only ‘hopefully’ compact, but is guaranteed to correspond to quadratic temporal 
complexity and linear spatial complexity. Moreover, in the AR algorithm, reduction rule (b) is 
never needed, as these are no useless intermediate nodes. In signal-flow-graph notation, two 
‘outgoing’ edges are, in fact, two ‘incoming’ transmittances. Every circled node in Figs. 1 and 2 
receives transmittances from exactly two distinct nodes that do not share the same value.     

 

Fig. 1. The signal flow graph representing the underlying relations of the AR algorithm in the Boolean 
domain (operators of Boolean ANDing and ORing are assumed) 

 
Therefore, the AR algorithm can be seen to be a subclass of ROBDD algorithms that is tailored specifically 
for the following equivalent purposes: 
 

(a) Handling monotone symmetric switching functions, 
(b) Computing k-out-of-n reliability; and 
(c) Computing the Complementary Cumulative Distribution Function (CCDF) of the generalized 

Binomial Distribution. 
 
Contrary to claims made in the literature (see, e.g., [20]), the AR algorithm is not only recursive but it has 
several iterative versions as well, that first appeared in [15] and reproduced in expository detail in [3,17]. 
There are ROBDD-like extensions of the AR algorithm, which handle (single or scalar) threshold                    
systems [16,21], double-threshold systems [22], vector-threshold systems [23], and k-to-l-out-of-n systems 
[24].  
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4 Demonstration via the k-out-of-5: G System 
 
To demonstrate that the AR algorithm is the ROBDD algorithm for computing the k-out-of-n reliability, we 
use Fig. 3 to depict the various ROBDDs used in the evaluation of R(k, 5, p), 1 ≤ k ≤ 5, which are each 
analogous to the related subgraphs in either Figs. 1 or 2. In an ROBDD, a node does not depict a physical 
entity such as a reliability value but represents a decision point and hence is labeled by the pertinent decision 
variable. The two emanating edges of each node are labeled by 0 and 1 values representing the two states of 

the decision variable. These 0 and 1 values are analogous to the Xi and Xi transmittances on the SFG of            
Fig. 1, and also to the qi and pi transmittances on the SFG of Fig. 2. 
 

Fig. 2. The Signal Flow Graph representing the underlying relations of the AR algorithm in the 
probability domain (operators of arithmetic addition and multiplication are assumed) 
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(e) 
 

Fig. 3. The individual ROBDDs used in the computation of R(k, 5, p), 1  k  5. For simplicity, split 
(rather than combined) leaf nodes of 0 and 1 are used 

 

5 Conclusions 
 
We demonstrate algebraically and visually that the AR algorithm for the computing of k-out-of-n reliability 
is simply the particular ROBDD algorithm for such a computation. While ROBDD algorithms are generally 
intractable (of exponential complexity), this particular ROBDD algorithm is of quadratic temporal 
complexity. The results obtained herein are immediately extendible to systems generalizing the k-out-of-n 
system such as the (single-) threshold systems (also called weighted k-out-of-n systems), the double-
threshold systems, the vector-threshold systems and k-to-l-out-of-n systems. 
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