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Abstract

The analysis of thermr-diffusion (Soret) and diffusic-thermo (Dufour) effects on variable thern
conductivity and viscosity in a dissipative heat and maasster of an inclined magnetic field in|a
permeable medium past a continuously stretching surfageofeer-law difference in the concentratipn
and temperature are examined. The flow is incompressible tvé thermal conductivity and fluid
viscosity are assumed to be temperature dependent. Thailodality variables for various values of the
parameters are considered for the momentum, heat and matsresjuehe dimensionless equations are
solved numerically using fourth order Runge-Kutta scheropled with shooting method. It was noticed
that an increase in the values If enhances the temperature profiles as heat moves from tlee| plat

surface to the ambient medium whm> O, otherwise it flows away from the medium to the stretghi

sheet. Finally, the influences of Skin friction, Nussatid Sherwood numbers are also presented| and
discussed.
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1 Introduction

The study of the consequence of variable viscosittheffluid and thermal conductivity with an inclined
magnetic field in an incompressible flow stimulated by thstantaneous actions of buoyancy forces
consequential from non-Darcy porous medium on heat and mastetrégs important from the practical and
theoretical point of view due to it applications in planetattyosphere research and others. During many
mechanical forming processes, heat generation is essentihe aspect of chemical reaction. Presently,
improvement has been significantly achieved in the analy$wHi heat and mass transfer flow as a result
of it usefulness in several devices, such as Hall aatele power engineering, MHD power generator and
underground spreading of chemical wastes are the fevs avkare the combined diffusion-thermo and
thermal-diffusion influences are observed.

There are numerous engineering cases where joint heat andrareder take place concurrently such as
desert coolers, chemical reactors, humidifiers, dehuraidifetc. In few of these, [1-3] carried out analysis
on radiative mixed convection MHD flow in a permeable medivith heat and mass transfer near a vertical
surface while Singh & Makinde [4] analyzed computational dyina of Newtonian heating
magnetohydrodynamic flow of volumetric heat generatiort pasinclined surface. [5-6] studied flow of
heat and mass transfer for hydrodynamic radiative fluid thraugbdrous moving plate. It was reported that
the interface of the magnetic field is counter prolificimproving the concentration and velocity profiles
favorable in achieving superior temperature inside the fllow field. 1-Chung [7] reported on heat and
mass transfer over a stretching sheet in magnetohydrodgtyflam. It was observed that the temperature at
unchanging position raised with an increase in the magingticand heat generation terms but reduced with
an increase in the Prandtl number. The magnetic field aéfients the velocity profile and as well accelerates
the temperature profile indirectly.

Due to its several applications, an analytical study wasied out involving permeable plates with an
inclined magnetic poiseuille fluid flow by Manyonge et E]. Inclined magnetic field with chemical
reaction effects on semi infinite porous surface tghoa permeable media was examined by Sugunamma et
al. [9]. It was noticed that the velocity decreased as thenedtlimagnetic field and Hartmann number
increases.

The above cited authors studied with the assumption thaihtyrsical characteristics of the ambient fluid
were constants. However, the physical characteristitteedlow fluid can vary considerably in the presence
of temperature, particularly for fluid viscosity. In otherforecast the flow and the rate of heat transfer, it is
important to consider the temperature dependent viscofitthe fluid. [10-11] studied the effects of
magnetohydrodynamic fluid, variable thermal conductivityd aviscosity in a convective boundary
conditions past a permeable sheet. [12-15] carried out simaby the influences of variable thermal
conductivity and viscosity on hydromagnetic flow over aving permeable surface with heat source. It was

reported that an increase in parameter valuQrotﬁaused the velocity profiles to increase. Devi and Giirur

[16] examined the flow of heat transfer of power-lawoedly and nonlinear radiation along with variable
viscosity on magnetohydrodynamic past a moving surface.

The above studies continued their discussion by assumingageetic field to be at right angle to the flow,
Soret and Dufour effects were also taken to be insamifi Nevertheless, it was believed that these bodily
characteristics changes considerably whenever the effeetriable thermal conductivity and viscosity are
regarded. An incompressible flow fluid possessions ppregiably varied contrast to constant physical
properties. The present study focused on the fluid chattetshvelne temperature dependent. Consequently,
the main objective of the study is to examine the eff@ftsSoret and Dufour on variable thermal
conductivity and viscosity with viscous dissipation andiired magnetic field in a permeable medium.
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2 Problem Formulation

Consider an incompressible, laminar flow fluid with vargabthermal conductivity and viscosity through
permeable sheet. The flow is driven by of buoyancy fopaet a porous medium. The flow fluid is ¥+
direction with y -axis normal to it. The fluid viscosity is assumed toyvas a reciprocal of a linear function

T
of temperature. An inclined magnetic fiel, is applied at angler lying in the ranged < a < E in the

flow direction. The sheet is maintained at the temperaangk species concentratiohy,, C,, and free

stream temperature and species concentraijpnC,_, respectively. Applying Darcy-forchhemier model,
the geometry and the equations governing the problem are:

“ }
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Fig. 1. The geometry of the model
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whereu andV are the Darcian velocity component¥nand y direction, T and C are the temperature
and species concentration of the fluid), is the fluid velocity at the wall. The physical quaesto , vV,

U, P, K, Cp, F.k,D, Aand Qo are the fluid electric conductivity, kinematics vis¢psdynamic

viscosity, free stream density, permeability of thediom, specific heat at constant pressure, Forchheimer
inertia coefficient, thermal conductivity, mass diffusionfioent, reaction rate coefficient and internal heat

generation respectivelyg is the gravitational acceleratio;zﬁr and ,BC are the coefficients of thermal and

concentration expansiorA, B, m, n, b are prescribed constants, is the forchheimer parameter of
the medium.K, is the ratio of thermal diffusionC, is the susceptibility concentratior,, is the

temperature of mean fluid ang, is the suction velocity across the sheet.

The viscosity is taken to be differ as a reciprocal &maure function Lai and Kulacki [17].

1_1
z:’u—[l"'V(T -T.)
L ©®)
or _:S(T_Tr)
7,
whereT, =T 1 ands=-2
H.

Both Tr and S are constants which as to do with fluid thermal prgparid the reference state, where
$=<0 and s> 0 are for gases and liquids.

The thermal conductivitk (T) is linear, taken to vary as a function of temperatur@@Hi8].
k(T) =k, (1+6) )
(ky —k,)
k

00

whered = , is the thermal conductivity term.

Using stream functio/ (X, y) with similarity transforms

1

W = (ov)2xt (). = (3} y ®

where the velocity components, temperature and concentraipactively become

oY . oy 2 T-T. c-C
=—==bxf (7),v=—-—"=~(bv)2 f(7),6(7) = —andgy) = —— -
u o xf (17),v o (bv)? £(17),6(7) T T, and¢(n7) c.-C. ©)

Using equations (6)-(9) in the governing equations, the contieqifgtion is satisfied while equations (2) to
(4) become
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g7 970 g L gy 076 (1+¢)f'2—Daf'+9_5' Hjsinzm'—g"gr (G,6+G.9) =0 (10)
HI' 9_9( HI' 9{ el'

0 . . : 0, .o :

——[(1+6)8]1+PR {6 -F (mf -Q)¢-RE,——(f )"+RD,p =0 (11)

on H_Hr

@ +S fp+SSH -S.(nf +A)p=0 (12)

The corresponding boundary conditions becomes

f=1,f=f,0=1¢p=1atn=0

: 13
f =0,=0,¢=0 asn - ¢

2

oB, v
where A = is the heat source ternlr,la2 =—2C s the Hartmann numbeDa =—— is the
p.Chb p.b Kb
V,
Darcy number, f, =—"= is suction parameterg = FX is the Forchheimer inertia number,
vbv
- DK (T, -T.
X _ DKT(C, =C.) is the Dufour number, § = DK (T, ~T.)) is the Soret number,
WCC,(T,-T.) vT..(C, -C.)
- T, -T
G, :% is the solutant Grashof numbe@, =W is the thermal Grashof
X X
v _ uz _ _MHC,
number,SC = — is the Schmidt numberl,:_C = ———  is the Eckert numberl,:’r = is the
b C,(T,-T.) k.,
T -T 1
Prandtl numberf, = ——= = - is the viscosity term and1l =s(T —T,) takes the form
T,-T. y1,-T.) H
— /'100
ST

The principal variation in the free stream viscosity vajg , takes place at the plate surface when
_Ha
(1-67)
H — M., that is the boundary layer viscosity variation is irrefevavhile as—¢9r — 0 the variation
viscosity increases considerably.

Whereﬁr is positive for gases and negative for liquids. Fromettgansion, ay@r — 00,

U=

The substantial parameters of attention for this flog the skin frictionCf , the NusseItNu as well as

sherwood number§Shwhich are respectively defined as:

Ci=—  Nu=— I gh=— < (14)
P2 K. (T, -T.) D(C, -C.)

with 7,,, g, and(,, are respectively taking to be
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_ {du _[oT _[ac
=M —| .G =K—=| ,d, =D — (15)
0y )y 0 ) 0y )0

Thus, the skin friction, Nusselt and Sherwood numbers becomes

e 1
2% 1(0), NuRg? = (1+ )6 (0), ShRe” = ¢/(0) )

'

1
ReC, =

u,X .
where Rg = —*— is the Reynolds number.
2

3 Results and Discussion

The coupled non-linear equations along with the boundary comslitave solved numerically. The
computational analysis are examined for different valuetetdrms. The following parameter values are

adopted for the computaton:S =G, =m=D,=¢=n=1, §=-02 , 56=0.1,
A=G =D,=Q=0.5P =071, E, =0.2, S, =0.62 H, =4 anda = 30°.

Table 1 represents the computational results, this shoimfthence of some parameters on the heat transfer
rate at the wall in an existing studied comparing withgresent study.

Table 2 shows the numerical results, this depict the infleeof some bodily parameters on flow. It is
observed that a rise in the value of the paramdteys & and D, reduces the skin friction and causes a

rise in the energy and mass gradient at the wall whitgedn the values of, and <9r causes an increase in
the skin friction and the temperature gradient at thébua decreases the concentration gradient at the wall
Also, as the values ODa and M increases there is reduction in the skin friction ande@®e in the

concentration gradient while a rise in the valueldf enhances the temperature gradient at the wall and
variational rise in the values ¢fi decreases the heat gradient.

Fig. 2 depicts the influence of magnetic field tekd, on the fluid flow. An increase in the values ldf,

retarded the flow velocity and cause it to be heater m®ves beside the sheet which bring about decrease
in the velocity profile due to the present of Lorentz fdiw drag the flow rate .

Fig. 3 shows the effect of the inclined magnetic field ko telocity. It is observed that an increase in the
inclination of the magnetic field influence the buoyanagéowhich accordingly decreases the driving force
to the flow fluid and thereby decreases the flow vejocit
Table 1. Comparison of & (0) for K,=0,4=0,A4=0,H,=0,f,=0,5=0,S.=0, n=0,
6 - -0, E =0,G =0,G,=0,D,=0,¢ =0 for variousvaluesof m, Q and P

Q m P Salawu and dada[19] Ahmed [20] Present results
r
0 0.7 -0.45605 -0.45605 -0.45616
0 1.0 -0.58222¢ -0.58223 -0.5822:
0 10.0 -2.30797 -2.30800 -2.30795
-1.0 2 5.0 -4.02823 -4.02823 -4.0282:
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Table2. Effectof H,, @, D,, E,, mand § on f (0), &(0) and ¢(0) (P-Parameters)

[5) values  £(0)  4(0) #(0) P values f'(0) 6(0) @(0)

2.0 -4.19815 -0.50168 -0.51189E¢ 0.2 -7.10682  -0.35571 -0.29979
a
3.0 -5.61624 -0.39348 -0.43453 0.5 -7.09543  -0.1308643890
4.0 -7.10252 -0.27127 -0.35203 1.0 -7.06130 0.56510.86958
5.0 -8.53985 -0.14963 -0.27433 15 -7.02918  1.25193.29459
a 0° -2.71619 -0.60204 -0.58968 mM 0.5 -7.07087 0.01752 -0.5349°
30° -7.10252 -0.27127 -0.35203 1.0 -7.10252  -0.27127 -0.35203
45° -9.44808 -0.07307 -0.22819 15 -7.13096 -0.51738 -0.19622
60° -11.14212 0.06663  -0.15172 2.0 -7.15610 -0.73217 -0.06032
D 0.1 -7.05163 -0.27725 -0.35677g9 -0.1 -11.01313 -0.27145  -0.32819
a r
5.0 -7.63773 -0.21184 -0.30692 -0.3 -5.70285  -0.2704836914
10.0 -8.16791 -0.15730 -0.26834 -0.7 -3.95945 -0.2665¢ -0.4092(
20.0 -9.08756 -0.06927 -0.21124 2.0 -1.63282  -0.2346%9150

55

0.8

0.6

Fig. 2. Velocity profilesfor different valuesof H,

Fig. 4 illustrates the effect of variation in the massisfer boundary layers with Soret number. It is skan t
the mass transfer boundary layers thickness increasbe &oret number rises thereby causes a rise in the
concentration fields since mass is unable to traresfery from the system due to thickness in the mass
boundary layer.

The influence of viscosity on the flow, energy and masstearare represented in Figs. 5, 6 and 7. Arise in
the values oer retarded the fluid velocity near the plate surfacg &1 but it increases as it moves away

from the plate while an increase ﬂ enhances the energy and mass field, due to the thickness in the
thermal and mass boundary layer that reduces the arobbeat and mass transfer.

Fig. 8 represents the effect of thermal boundary layétts the Dufour numbeD,,. It is noticed that the

thermal boundary layers thickness increases with a rigeeiDtifour number and thereby enhance the heat
within the system that turn to increase the temperatuafie.
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Fig. 4. Concentration profilesfor different values of Sr
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Fig. 5. Velocity profilesfor different values of Hr
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Fig. 8. Temperature profilesfor different valuesof D,
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The influence of thermal conductivi®9) on the heat transfer is presented in Fig. 9. It is lyleticed from
the profile that a rise in the thermal conductivity paramatiected the boundary layer to generate heat and
enhances temperature profiles.

Fig. 10 represents the effect oi on the temperature. It is noticed that an increase irvahees ofm

increases the temperature field. Heat moves from the plaface to the ambient medium whah>- 0,
otherwise it moves away from the ambient medium to tieéciing sheet.

¥4
0.8+

0.6

0T
SRy
——&02

— &=0.0

0.4

15

0.8+

0.6

m=2.0
== m=15
i = 1LAL
m=0.3

Fig. 10. Temperature profilesfor different valuesof m
4 Conclusion

The influences of variable thermal conductivity and viggadissipative heat and mass transfer on inclined
magnetic field in a Darcy-forrcheimer media are investidaFrom the numerical results, it can be deduced

that, an increase in the values bl‘a, a, Hr and Da retarded the movement of the flow by causes
decrease in the flow velocity while a rise in the Sgatameter values manifested as a rise in the flow
velocity and concentration distributions., 0 and D, enhances the temperature boundary layer thickness

10
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by causing a rise in the temperature profile Wlﬂeand m decrease the temperature distribution. Also, it is

seen thatﬁ, reduces the mass boundary layer thereby decreases the caimeptofile.
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