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Abstract

We identified eight additional stars as members of the Helmi stream (HStr) in the combined GALAH+ DR3 and
Gaia EDR3 catalog. By consistently reevaluating claimed members from the literature, we consolidate a sample of
22 HStr stars with parameters determined from high-resolution spectroscopy and spanning a considerably wider
(by ~0.5 dex) metallicity interval (— 2.5 < [Fe/H] < — 1.0) than previously reported. Our study focuses on o (Mg
and Ca) and neutron-capture (Ba and Eu) elements. We find that the chemistry of HStr is typical of dwarf
spheroidal (dSph) galaxies, in good agreement with previous N-body simulations of this merging event. Stars of
HStr constitute a clear declining sequence in [«/Fe] for increasing metallicity up to [Fe/H] ~ —1.0. Moreover,
stars of HStr show a median value of +0.5 dex for [Eu/Fe] with a small dispersion (£0.1 dex). Every star analyzed
with [Fe/H] < —1.2 belongs to the r-process enhanced ([Eu/Fe] > 40.3 and [Ba/Eu] < 0.0) metal-poor category,
providing remarkable evidence that, at such a low-metallicity regime, stars of HStr experienced enrichment in
neutron-capture elements predominantly via r-process nucleosynthesis. Finally, the extended metallicity range also
suggests an increase in [Ba/Eu] for higher [Fe/H], in conformity with other surviving dwarf satellite galaxies of

the Milky Way.

Unified Astronomy Thesaurus concepts: Dwarf galaxies (416); Milky Way stellar halo (1060); Milky Way
dynamics (1051); Milky Way evolution (1052); Milky Way formation (1053); Population II stars (1284); Stellar
populations (1622); Chemical abundances (224); R-process (1324)

1. Introduction

Within the hierarchical assembly paradigm, the Galactic
stellar halo (or simply “halo”) is expected to retain the
chemodynamical signatures of merging events between the
Milky Way and dwarf galaxies of various masses in the past
(Helmi 2008, 2020). Therefore, studies of surviving satellite
galaxies provide insights about the formation of the Milky Way
itself. Unfortunately, measurements of elemental abundances in
the atmospheres of individual stars from these distant systems
are extremely difficult (e.g., Tolstoy et al. 2009), hindering our
ability to directly investigate their star-forming environments
and chemical-evolution histories.

An alternative approach is to pinpoint which stars in the halo
were accreted and, out of these, which ones share a common
origin. A widely utilized strategy to find the stellar remnants of
these ancient building blocks is to search for their clumping in
phase space. The first identification of a kinematically cohesive
group of stars with this method was presented in a seminal
work by Helmi et al. (1999). Throughout the years, this
substructure has been known as the Helmi stream (hereafter
HStr; see Helmi 2020 for a recent review).

In order to investigate the chemical profile of HStr, Roederer
et al. (2010) observed 12 likely members of this substructure.
More recently, Aguado et al. (2021b) acquired spectra for
seven more candidates. Interestingly, both efforts reported that
stars of HStr were enriched in neutron-capture elements
predominantly via the rapid process (r-process) in comparison
to the slow one (s-process; see Sneden et al. 2008 and

Frebel 2018 for reviews). In recent studies, Limberg et al.
(2021a) and Gudin et al. (2021) demonstrated that, indeed,
several r-process-enhanced (RPE; [Eu/Fe] > +0.3 and
[Ba/Eu] < 0.0) metal-poor ([Fe/H] < —1.0; Beers & Christlieb
2005) stars are dynamically associated with HStr. It appears
that chemical-abundance information for larger samples of
genuine members of HStr might allow us to investigate the site
(s) for the occurrence of the r-process in its (now) destroyed
progenitor system. In addition, stars of HStr have the enormous
advantage of being much closer (and hence brighter) than any
surviving dwarf spheroidal (dSph) or ultra-faint dwarf (UFD)
satellite galaxy.

In this Letter, we identified additional stars of HStr in the
third data release (DR3) of the Galactic Archaeology with
HERMES (GALAH+ DR3; Buder et al. 2021) survey
combined with Gaia Early Data Release 3 (EDR3; Gaia
Collaboration et al. 2021). We also searched the literature to
consolidate a sample covering an [Fe/H] interval considerably
wider than previously reported. The extended metallicity range
reveals a declining trend in [a/Fe] within —2.0 < [Fe/H]
< —1.0, providing clear evidence that HStr is the debris of a
long-vanished dwarf galaxy. This sample further allowed us to
investigate neutron-capture elements. We demonstrate that the
[Ba/Eu] pattern is consistent with the dwarf-galaxy progenitor
hypothesis. We also confirm that every star of HStr with
[Fe/H] < —1.2 belongs to the aforementioned RPE class. The
employed data is described in Section 2. Section 3 contains our
dynamical and chemical analyses. The summary of our results
and a brief discussion are presented in Section 4.
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Figure 1. Examples of GALAH+ DR3 spectra in the wavelength region of the Eu II line (6645 A; orange-shaded area). For the convenience of the reader, we also

identify the strong absorption feature as Ni I (blue stripe). Both panels show stars selected as confident members of HStr (see Section 3.1). The black solid lines are the
normalized spectra, while the gray-shaded regions represent their respective 1o uncertainties. The red dashed line shows the position of the pseudocontinuum to guide

the eye.

2. Data
2.1. Stream Candidates

We considered the complete GALAH-+ DR3 high-resolution
(R ~28,000) spectroscopic catalog. First, we removed stars
with flagged’ stellar parameters (flag_sp =0) and metalli-
cities (flag_fe_h = 0). Since we are interested in finding stars
associated with a substructure of low metallicity, we further
constrain our sample to [Fe/H]< —0.7 (keeping ~18,000
stars). Moreover, all abundances analyzed (Sections 3.2 and
3.3) are true measurements (flag_X_fe =0, where X is any
given chemical species). We put particular attention to the
estimated [Eu [ Fe], since it relies on a single line in GALAH,
Eu I at 6645 A, which is difficult to detect in warm metal-poor
stars (Sneden et al. 2008). Hence, all stars with reliable [Eu/Fe]
in the sample are in the upper-giant-branch phase (Z.¢ < 4800
K and logg < 2.0). At this wavelength, the typical signal-to-
noise ratio is 60 < snr_c3_iraf < 80 for these objects. We
also visually inspected the spectra of stars found to be
associated with HStr (Section 3.1) to ensure the presence of
this absorption feature (see Figure 1).

To achieve a more complete view of the chemical patterns of
HStr, over a large metallicity range, we also compiled stars that
had been previously suggested to be associated with the
substructure. We require that these stars have atmospheric
parameters and abundances estimated from analyses of high-

7 Whenever a quality flag is set to zero in the GALAH+ DR3 catalog, it

represents a reliable and/or real estimate of the given parameter. For details on
the quality assessment, we refer the reader to Buder et al. (2021).

resolution spectra, in conformity with GALAH. The funda-
mental source is Aguado et al. (2021b), because these authors
had already performed a search in the literature for HStr
candidates. This sample includes stars observed mostly by the
authors themselves and by Roederer et al. (2010). It also
contains stars, attributed to HStr by Yuan et al. (2020),
observed over the course of the Apache Point Observatory
Galactic Evolution Experiment (APOGEE; Majewski et al.
2017) survey. We have further included stars indicated by
Limberg et al. (2021a) and Gudin et al. (2021) in our literature
compilation. Stellar parameters and abundances for these
references were obtained during the main effort of the R-
Process Alliance (Hansen et al. 2018; Ezzeddine et al. 2020).

2.2. Dynamical Properties

We cross-matched (1”5 search radius) all samples with Gaia
EDR3 to acquire accurate parallaxes (recalibrated following
Lindegren et al. 2021a) and absolute proper motions. These
astrometric information, the high-resolution spectroscopic data
(Section 2.1), as well as mid- and near-infrared photometry
from the Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010) and the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006), respectively, were used to estimate
heliocentric distances via isochrone fitting in a Bayesian
framework with the StarHorse code (Queiroz et al. 2018).
For this exercise, we did not consider targets classified as
spurious astrometric solutions (fidelity_v1 < 0.5; Rybizki
et al. 2021). The medians of the resulting posterior probability
distribution functions were taken as nominal values (see the
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Figure 2. Left: velocity distribution. The dashed line marks the ||v — ve|| > 220 km s~ boundary between the disk and the halo (see the text). Middle: (L., L, ). The
dashed lines delineate the selection boxes (A and B; see Section 3.1) from Koppelman et al. (2019). Right: inclination vs. eccentricity. The dashed ellipse marks
the selection from Aguado et al. (2021b). Green ellipses delimit 30 ranges for the distributions of HStr stars presented by Limberg et al. (2021a). In all of the panels,
the regions dominated by disk-like orbits are also indicated. Stream members are shown as red symbols with black (confident) or red (likely) edges. Open symbols are
discarded candidates. Star symbols are members selected from the GALAH sample and circles are from the literature compilation. Gray dots represent low-metallicity

([Fe/H] < —0.7) stars from GALAH.

Appendix). We refer to Queiroz et al. (2020) for a complete
description of the assumptions regarding the stellar-evolution
models and priors. We also discarded stars with renormalized
unit weight errors of the reduced astrometric x> outside the
recommended interval (RUWE > 1.4; Lindegren et al. 2021b)
and those with relative uncertainties >15% in their derived
distances.

Given the high quality of the spectra at hand, we considered
radial velocities (RVs) from the various sources mentioned in
Section 2.1. For the targets observed by Aguado et al. (2021b),
neither improved RVs were determined by the authors nor
these are provided by Gaia’s data releases. Hence, we adopted
RVs from the low-resolution spectroscopy of Sloan Digital Sky
Survey (SDSS)/SEGUE (York et al. 2000; Yanny et al. 2009)
and Large Sky Area Multi-Object Fiber Spectroscopic Tele-
scope (LAMOST; Cui et al. 2012), with errors no worse than
5kms".

We calculated the orbits of all stars for 5 Gyr forward, with
the publicly available library AGAMA (Vasiliev 2019), under the
axisymmetric Galactic potential model of McMillan (2017).
The Galactic parameters are, for consistency, from McMillan
(2017) as well. Specifically, the distance from the Sun to the
Galactic center is R., = 8.2kpc, the circular velocity at this
position is Vg = 232.8 kms™ ', and the peculiar motion of the
Sun is (U, V, W), = (11.10, 12.24, 7.25) kms~" (Schonrich
et al. 2010). We accounted for the uncertainties in distances,
proper motions, and RVs, assuming Gaussian profiles for those,
by performing 1000 realizations of each star’s orbit with a
Monte Carlo procedure. The medians of the resulting
distributions were taken as our characteristical values in the
derived dynamical quantities.

3. Analysis
3.1. Stream Membership

In order to accomplish a consistent analysis of abundance
information (Sections 3.2 and 3.3), it is necessary to delineate a
clear stream membership criteria. Then, we need to implement
such selection consistently for all samples described in
Section 2. Conveniently, previous studies carried out similar
exercises for HStr.

First, we removed stars with disk-like kinematics utilizing

the plane defined by (v, \/v,% + vzz), where (vg, vy, V) is the
velocity vector in the cylindrical coordinate system. Stars with
v > 0 are in prograde motion, rotating in the same orientation
as the disk. For this purpose, we applied the cut ||y — v || >
220 km s~ ' (dashed line in the left panel of Figure 2), where v
is the complete velocity vector of a given star.

Second, we employed the criteria suggested by Koppelman
et al. (2019), who carried out an in-depth chemodynamical
characterization of HStr. These authors’ selection boxes are
drawn in the middle panel of Figure 2 within the space defined
by the in-plane (L, ) and vertical (L,) components of the total

angular momentum (L = /L? + Lzz). For prograde motion,
L,> 0. Although L, is not fully conserved in an axisymmetric
potential, it is commonly used for the identification of
substructures since it preserves a reasonable amount of
clumping over time (e.g., Helmi 2008, 2020). Stars that respect
the more restrictive box (A) are considered confident members
of the stream (symbols with black edges), while objects
occupying the more permissive one (B) are taken to be likely
associated (red edges).

The third criterion used in this work is equivalent to the one
described by Aguado et al. (2021b), characterized by orbital
inclination (i = arccos(L,/L); from this definition, i < 90° for
prograde motion) and eccentricity. These authors vetted their
stream candidates with a 40 range around the center of the
distribution of HStr members originally found by Myeong et al.
(2018) in this parameter space. In the right panel of Figure 2,
the dashed ellipse reproduces these authors’ selection.

A comparison between these criteria and the 3o distributions
of HStr stars from Limberg et al. (2021a) is also provided in all
of the panels of Figure 2 (green ellipses). The application of
this three-step selection to the low-metallicity sample from
GALAH yields a total of eight HStr candidates (red star
symbols). Out of these, three stars are classified as confident
and five are classified as probable members. We also evaluated
the literature compilation with the same approach, resulting in a
total of 14 additional stars to be considered for the analysis of
chemical-abundance data (red circles). Among these stars,
four are originally from Roederer et al. (2010), three are from
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low-metallicity ([Fe/H] < —0.7) stars from GALAH.

Yuan et al. (2020), and five were observed by Aguado et al.
(2021b). The single star selected from Limberg et al. (2021a)
has been confirmed to be associated with the stream, while only
one from Gudin et al. (2021) can be considered a member. The
final list of 22 vetted HStr stars, alongside relevant information
about them, is provided in the Appendix.

As a sanity check, we have examined the newly identified
stream members in orbital energy (E) and actions (Jg, J4 = L.,
and J,). For consistency, these are also compared to the
distributions independently found by Limberg et al. (2021a). In
Figure 3, we show the 30 ranges for HStr found by these
authors in (L,, E) and in the action-space map (left and middle
panels, respectively). All confident members overlap with the
delineated regions, while a couple of the probable ones fall
outside of them, but are located near the boundaries. This
qualitative inspection helps consolidate our set of criteria as
truly representative of HStr.

Despite carrying out a selection exclusively with a
kinematic/dynamical approach, stars of HStr are cohesively
distributed in configuration space (right panel of Figure 3).
These objects are piercing through the Galactic plane,
streaming downwards in the Cartesian Galactic position plane
(X, Z)Gar- Such behavior is commonly interpreted as the partial
phase mixing of the debris of a shredded dwarf galaxy
(Helmi 2008; Myeong et al. 2018; Koppelman et al. 2019).

3.2. o Elements

With our collection of 22 stream members (15 confident and
7 likely), we investigate abundance trends of « elements (Mg
and Ca) derived exclusively from high-resolution spectroscopy.
In this context, we can compare our [«/Fel-[Fe/H] distribu-
tions with those presented by Aguado et al. (2021b), who
analyzed a mixture between low- and high-resolution data. We
can also compare these chemical-abundance patterns with those
from surviving dwarf satellite galaxies of the Milky Way and
speculate about the nature of HStr’s parent system.

We present the a-element profiles in the top row of Figure 4.
The most prominent, immediately perceptible feature is the
clear decrease in [«/Fe] (both Mg and Ca) with increasing
metallicity, but plateauing at ~0.35 for [Fe/H]< —2.0,
characterizing a “knee” (e.g., Matteucci & Greggio 1986).

This point delimits the transition between core-collapse and
SNe Ia dominated epochs in chemical evolution and was first
conjectured for external galaxies by Matteucci & Brocato
(1990), later observed by Shetrone et al. (2003). A similar -
pattern signature was presented by Aguado et al. (2021b).
However, their results were limited to lower metallicities ([Fe/
H] < —1.5). Hence, the inclusion of the GALAH sample
confirms the continuity of this a-element trend of HStr stars up
to [Fe/H] ~ —1.0 with an excellent agreement. We stress that
considering exclusively the newly found members from
GALAH, this pattern is still noticeable. Consequently, even if
small biases between sources might exist, these qualitative
conclusions are robust against them.

The comparison to dwarf satellite galaxies of the Milky Way
is presented in Figure 4 as well. Abundances have been
compiled from the Stellar Abundances for Galactic Archae-
ology (SAGA) database (Suda et al. 2008, 2017), favoring
references with neutron-capture elements available. The
Sculptor dSph (Hill et al. 2019) follows a similar sequence in
[a/Fe] for the same metallicity range (—2.5 < [Fe/H] < — 1.0)
to that of HStr stars, but with a steeper decline. With the aid of
chemical-evolution models, such a feature has been interpreted
by Aguado et al. (2021b) as a dSph-galaxy progenitor with a
slower star formation rate, but accompanied by a smaller wind
efficiency, when compared to Sculptor. This apparent dSph-
like origin is in keeping with previous N-body simulations of
this merging event by Koppelman et al. (2019).

3.3. Neutron-capture Elements

In this work, we are also interested in evaluating the
hypothesis that the progenitor of HStr was enriched in neutron-
capture elements (Ba and Eu) predominantly via the r-process,
as suggested by Roederer et al. (2010; and followed-up by
Aguado et al. 2021b) and reinforced with a dynamical
counterpart to the argument by Limberg et al. (2021a; also
Gudin et al. 2021). Here, we consider the abundances of Ba and
Eu, since these chemical species serve as diagnostics for the -
process enhancement in metal-poor stars as first noted by Spite
(1992), although the existence of this kind of object was
established much earlier by Spite & Spite (1978). Roederer
et al. (2010) were capable of determining abundances of these
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these with data from the r-process alliance (Gudin et al. 2021).

elements for some of their stream candidates. Out of four stars
observed by these authors and vetted as confident members
(Section 3.1), three of them have [Ba/Fe] and [Eu/Fe]
measured. All stream stars from the GALAH sample have
nonflagged (flag_Ba_fe = 0) [Ba/Fe], but only three of them
have usable (flag_Eu_fe =0) Eu abundances. In total, eight
HStr stars can be employed for our investigation of neutron-
capture nucleosynthesis in this substructure.

The [Eu/Fe] as a function of metallicity is displayed in the
bottom left panel of Figure 4. Every analyzed member of HStr
has [Eu/Fe] > +0.3, with a median value of +0.5 and median
absolute deviation of £0.1. This is, indeed, consistent with the

other dSph galaxies in the SAGA database within the same
metallicity range. However, field metal-poor stars are known
for having ([Eu/Fe]) ~ + 0.4 (Shetrone 1996; Fulbright 2000;
Sneden et al. 2008), which is unsurprising given the under-
standing that the Galactic halo was formed from the accretion
of many small dwarf galaxies. Therefore, the elevated Eu
abundance alone is not necessarily indicative of the same
progenitor, unlike the peculiar [«/Fel-[Fe/H] tendency
discussed in Section 3.2. The most metal-poor star in the
sample, despite showing higher levels of Eu enrichment
([Eu/Fe] = +1.1), has [Eu/H] similar to other low-metallicity
([Fe/H] < —1.2) stars of HStr. Nevertheless, more observations
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of very metal-poor ([Fe/H] < —2.0) stars from this substructure
and, of course, detection of Eu will certainly help constrain the
conditions that existed in the early chemical-enrichment site(s)
of its parent system.

We can investigate the predominance between the s- and the
r-processes in the neutron-capture nucleosynthesis through
[Ba/Eu]. Stars with [Ba/Eu] > 0.0 were enriched mostly via
the s-process, while the birth environments of those with [Ba/
Eu] < 0.0 were polluted primarily by the r-process (Spite 1992;
see Sneden et al. 2008 and Frebel 2018 for reviews). In the
bottom right panel of Figure 4, we present the [Ba/Eu]-[Fe/H]
plane. All stars of HStr with [Fe/H] < —1.2 occupy the
subsolar region of this parameter space. Therefore, these are
moderately RPE (40.3 < [Eu/Fe] < +1.0) metal-poor stars,
attributed to the so-called r-I regime (Beers & Christlieb 2005).
The only exception is the lowest-metallicity one that belongs to
the highly RPE category (r-II; [Eu/Fe] > + 1.0).

Another important discovery is that stars of HStr follow a
similar sequence in [Ba/Eu] as a function of [Fe/H] to that of
Sculptor (also perceptible from Figure 4), increasing toward
higher metallicities. The single star with [Ba/Eu] > 0.0 is the
most metal-rich in the sample, but is also consistent with
Sculptor for this [Fe/H]. Accounting for possible systematic
effects could shift the [Ba/Eu] down by up to ~0.4 dex by, for
instance, considering nonlocal thermodynamic equilibrium in
the abundance calculations (Mashonkina & Christlieb 2014).
Despite that, the result that most stars from HStr experienced
strong chemical enrichment via the r-process would not be
altered. Furthermore, the [Ba/Eu] of HStr members would still
be in good agreement with stars from Sculptor. This finding
corroborates the hypothesis that this surviving satellite of the
Milky Way experienced an evolution similar to the progenitor
of the stream. If Sculptor is a textbook dSph galaxy (Hill et al.
2019), HStr might be the remnant of an ancient system of a
similar kind. Hence, spectroscopic studies of its member stars
provide a way to refine our understanding about dSph galaxies
in general. Most importantly, it represents a marvelous
opportunity to study the emergence of r-process elements in
these environments, especially at the lowest metallicities, but
with stars bright enough to have high-resolution spectra readily
acquired from ground-based facilities. In the context of the
recent observations of gravitational waves (Abbott et al.
2017a), alongside an electromagnetic counterpart (Abbott
et al. 2017b), of a neutron star merger (GW170817),
comparison to r-process nucleosynthesis frequencies and yields
should help elucidate whether or not this source is responsible,
and to what degree, for the production of heavy atomic nuclei.

Likewise, we can compare the [Ba/Fe] and [Eu/Fe] ratios in
the stream with those from other prominent kinematic/
dynamical halo substructures, also suggested to be of accreted
origin. In the bottom row of Figure 4, we display the [Eu/Fe]
and [Ba/Eu] for metal-poor stars from Gaia-Sausage/Encela-
dus (Belokurov et al. 2018; Helmi et al. 2018) and Sequoia
(Myeong et al. 2019) with neutron-capture abundances recently
published by Aguado et al. (2021a). These targets cover a
narrow metallicity range, within —2.2 < [Fe/H] < —1.5, but
comparable to the interval for most HStr stars with such
elements available. Overall, these stars from both Gaia-
Sausage/Enceladus and Sequoia are, apparently, more r-
process rich (medians of +0.6 and —0.7 for [Eu/Fe] and
[Ba/Eu], respectively) than those of HStr (+0.5 and —0.4) for
similar [Fe/H] values. However, given the small numbers
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considered, it is difficult to achieve meaningful conclusions at
this time.

During the preparation of this manuscript, Gull et al. (2021)
made available Eu abundances for stars claimed to be
associated with HStr. However, their target-selection function
was based on pre-Gaia data and they did not employ a
dynamical selection approach, relying solely on kinematics.
After reevaluating their stars, only 2 out of their 12 candidates
would be classified as members according to our criteria, both
of which were already being considered in our study since they
were previously recognized by either Roederer et al. (2010;
CD-36 1052) or Limberg et al. (2021a; HE 0324-0122). As a
consequence, the authors were unable to identify an a knee for
a similar metallicity range. Also, many of their stars clearly
deviate in both [Eu/Fe] and [Ba/Eu], showing no cohesive
sequence as a function of [Fe/H] and a large spread.

Other recent works have utilized orbital and/or phase-space
criteria to select members of halo substructures and/or stellar
streams for high-resolution spectroscopy (e.g., Monty et al.
2020). However, such efforts are still incipient. This work
sheds light on the possibility of taking advantage of dynamical
information to, for instance, accelerate the discovery of RPE
stars (see the discussion by Limberg et al. 2021b). Moreover,
since these objects likely share a common origin, this approach
should be more useful than randomly drawing from extensive
lists of cool low-metallicity stars (Limberg et al. 2021b).

4. Summary

In this Letter, we employed astrometric and spectroscopic
data from Gaia EDR3 and GALAH+ DR3, respectively,
to identify eight new members of HStr, which allows us to
cover a considerably wider (by ~0.5 dex) metallicity interval
(—2.5 S [Fe/H] < —1.0) than previously reported by Aguado
et al. (2021b). We also reevaluated candidates from the
literature to consolidate a sample of 22 stars of this
substructure. Thanks to the now-extended metallicity range,
our study clearly shows a declining trend in [a/Fe] (Mg and
Ca) with increasing [Fe/H]. Considering exclusively the newly
found members from GALAH, this pattern is still noticeable.
Consequently, our qualitative conclusions are valid even in the
presence of small biases between abundances extracted from
different sources. We were also able to confirm that stars of
HStr constitute an a-element pattern similar to the Sculptor
dSph galaxy up to [Fe/H] ~ —1.0. This apparent dSph origin is
in good agreement with N-body simulations (Koppelman et al.
2019) of this merging event.

We confirm that, at low metallicities ([Fe/H] < —1.2), the
progenitor system of HStr experienced enrichment in neutron-
capture elements predominantly via the r-process, as first
conjectured by Roederer et al. (2010). All analyzed stars in this
metallicity regime are RPE ones, with median values for [Eu/
Fe] and [Ba/Eu] of +0.5 and —0.4, respectively. The behavior
of HStr in [Ba/Eu]-[Fe/H] is also coherent with stars from
Sculptor. In particular, the extended metallicity range suggests
an increase in [Ba/Eu] for higher [Fe/H], reinforcing the
hypothesis that the stream originated from the disruption of a
dwarf galaxy of a similar kind. Finally, stars from Gaia-
Sausage/Enceladus and Sequoia are, apparently, more r-
process rich than HStr ones. In the upcoming years, stars from
these accreted halo substructures will serve as important
laboratories to understand the early nucleosynthesis of heavy
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elements in their long-vanished dwarf-galaxy progenitor
systems.
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Appendix
Final List of Members

Table 1 contains relevant information about our compilation
of stars of HStr from both GALAH and the literature, including
uncertainties. The universal identifier for these objects is their
Gaia EDR3 IDs. In the second column, we provide the
classification of the stars either as confident (1) or likely (2)
members (Section 3.1). Positions (a, 8), proper motions
(t, cos 6, ts), and parallaxes (w; recalibrated following
Lindegren et al. 2021a) are included as well. The adopted
RV values are also listed. Heliocentric distances (dsgy)
estimated with StarHorse are in the ninth column. Lower
and upper limits for these quantities represent the 16th and 84th
percentiles of their distributions. The stellar atmospheric
parameters and elemental abundances determined from the
analyses of the high-resolution spectra (Section 2.1) of the
studied stars are provided by the end of the table.
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