Archives of Current Research International

9(3): 1-12, 2017; Article no.ACRI.36267

ISSN: 2454-7077

Riccati Differential Equations: A Computational

Approach

J. Sunday”

1Depan‘ment of Mathematics, Adamawa State University, Mubi, Nigeria.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ACRI/2017/36267
Editor(s):

(1) Tatyana A. Komleva, Department of Mathematics, Department of Mathematics of Odessa State Academy of Civil

Engineering and Architecture, Ukraine.
. Reviewers:
(1) Suleyman Ogrekgi, Amasya University, Turkey.

(2) Anonymous, Universidad Aut’'onoma Metropolitana-Cuajimalpa, México.
Complete Peer review History: http://www.sciencedomain.org/review-history/21029

Original Research Article

Received 21°' August 2017
Accepted 12" September 2017
Published 16" September 2017

ABSTRACT

One of the most important classes of nonlinear differential equations that have a great deal of
applications is the Riccati Differential Equations (RDEs). In this paper, a quarter-step method is
derived for the solution of RDEs by collocating and interpolating the Laguerre polynomial basis
function. To establish the reliability and applicability of the method on RDEs, some model problems
have been solved. The results obtained in terms of the point wise absolute errors show that the
method developed approximates the exact solution closely. The research further investigated the
basic properties of the method developed and found it to be zero-stable, consistent and
convergent.

Keywords: Computational; nonlinear; quarter-step; RDEs.
2010 AMS subject classification: 65L05, 65L06, 65D30.
1. INTRODUCTION

The RDE named after the Italian nobleman
Count Jacopo Francesco Riccati (1676-1754)
find applications in random processes, optimal
control and diffusion problem, [1]. Besides its

applications in engineering and science that
today are considered classical, the RDE is also
applied in financial mathematics [2], robust
stabilization, stochastic realization theory,
network synthesis and optimal control [3]. Also,
according to [4], the RDE is an essential tool for
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modeling many physical situations such as
spring mass systems, resistor-capacitor-
induction circuits, bending of beams, chemical
reactions, pendulum, and the motion of rotating
mass around body. The RDE are also found to
be applicable in oscillations, [5].

In view of these applications, we are motivated to
derive a computational method for the solution of
RDEs of the form;

V(&) =a(t) +bO)y(t) +c(t)y* (1), 0<t<T (1)

with initial conditions,
y(to) =Yo (2)

where a(t), b(t), c(t) are continuous with
c(t)#0 and t,, y, are arbitrary constants for
y(t) which is an unknown function.

The RDE in (1) can also be denoted by the
equation below;

y'®O=1ty) )

The general solution of a class of RDE shall be
presented below in the form of a theorem.

Theorem 1 [6]

Consider the RDE

y'()+ p(O)y()—y* (1) =q(t)
(4)

with the initial condition y(#,)=y, for some

initial value f,. Assume that ¢(,) = ¢, >0 and

t
that the integral Ip(r)dr exists. Assume
)
further that the function ¢(f) satisfies the
relation

—ij(r)dr

qoe " (5)
' j—p(r)dr
1+K g, [e  da

)

q(t)=
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for some constant K . Then, the general solution
of (5) is given by,

y(0) = f()q(@) (6)

where the function f(¢) is given by,

K a(1+e”‘gl(”)

2+W, if K*>4

f(= —§+§tan(@], if K*<4
K 1 o
2 o0 roe

and the functions @, (¢); n=1,2,3 are given by

0()=c, +j q(t)dr

ly

where

_lln(2yo+\/%(K—a)}

Cl_
a |\ 2y, +q, (K +a)

2y, +K
¢ = 2 tanl[ Yo %J

B Ba,
2Jq,

C=—————
’ 2y, +K\q,

and

a=vK>—4

B=4-K

See [6] for proof

The RDE has been studied by some
researchers. They adopted different methods in
solving the RDEs. These methods include the

Adomian  Decomposition =~ Method  (ADM)
[7,8,9,10], Variational Iteration Method (VIM)
[11,12,13,14,15,16,17], Chebyshev wavelets



[18], classical fourth order Runge-Kutta method
[19], hybrid function and Tau method [20],
Differential  Transformation Method (DTM)
[21,22], Non-Standard Finite Difference Method
(NSFDM) [3], Homotopy Analysis Method (HAM)
[23,24], Homotopy Perturbation Method (HPM)
[8,25,26], among others.

It is important to state that the above mentioned
methods have some setbacks in their
performance on the RDEs. For instance, in
applying the ADM, very complicated and tough
Adomian polynomials have to be constructed
which make the work cumbersome. In the VIM,
identification of Lagrange multipliers yields an
underlying accuracy. The HPM needs a linear
functional equation in each iteration to solve
nonlinear equations, forming these functional
equations could be very difficult. The
performance of HAM is very much dependent on
the choice of the auxiliary parameter 4 of the
zero-order deformation equation. Moreover, the
convergence region and implementation of these
results are very small.

In  view of
computational

the foregoing, an alternative
method shall be constructed
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in this research for the solution of RDEs of the
form (1).
2. FORMULATION OF THE METHOD

A computational method of the form,
AVY, = Ey, +hdf(y,)+hbF(Y,) (7)

will be developed for the solution of RDEs of the
form (1), where A, E,d and b are rxr
matrices (7 is the number of collocation points).
Y .,v,FX,)) and f(y,) are vector matrices
with » entries.

In doing this, the Laguerre polynomial shall be

adopted as a basis function. The Laguerre
polynomial is generally given by,

(t"e'[) (8)

where 7 and s are the numbers of collocation
and interpolation points respectively.

r+s—1 t n

n=0 n!dt"

()=

Let the approximate solution to (1) be given by Laguerre polynomial of degree 5, by allowing

r+s—1=5 in equation (8), that is,

5 t n
(1) = Z{e d—(t”e*’ )} =720-18007 +1200¢* —300¢* +30¢* —¢° 9)

| dt”

with the first derivative given by,

y'(¢) = —1800+ 2400¢ — 900> +120¢° - 5¢*

Substituting (10) into (3) gives,

£(t,y) =—1800+2400¢ —900¢> + 120’

Now, interpolating (9) at point ¢, ,
system of nonlinear equation of the form,
TA=U

where

Az[ao a, a, a, a, aS]T

-5

U= yn f;’l f;HL
16

(11)

1)1
s =0 and collocating (11) at points? , ,7 = O(EJZ leads to a

(12)
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(720 —1800¢, 12002  —300£  30¢* -]
0 —1800  2400¢, -900z; 1206 =5t

0 —1800 2400+ , -900¢ , 120£ , -5t

n+ﬁ ’HE rHE n+ﬁ

T=| 0 -1800 2400t , -900¢, 1206, —5t*,
n+§ n+§ n+§ n+§

0 —1800 2400t , -900¢ , 1206 , ~—5¢*,

n+g n+g n+E ’H—E

0 —1800 2400t , -900¢, 1206, —5t*,
L n+Z n+Z n+Z n+Z ]

Solving (12) by Gauss elimination method for the aj's,j:O(l)S and substituting back into the
Laguerre polynomial basis function gives a linear multistep method of the form,

% 1)1
y(t)zao(t)yn+hZﬁj(t)f;1+j’ ]ZO(EJZ (13)

where the coefficients of y, and f;1+j are given as,
a, =1
1
B, = E(24576x5 —19200x" +5600x° —750x” +45x)
32 5 4 3 2
B = E(—3072x +2160x" —520x" +45x7)
16

B = —%(—614438 +3840x" —760x> +45x?) "
8

By = %(—3072;8 +1680x* —280x" +15x?)
16

B, = —%(—12288)& +5760x" —880x" +45x%)

4

and X is given by

15
P (15)

—, gives a discrete computational method of the form (7) given by,

(1
Evaluating (13) at 7 = _(_J 1

16\ 16
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-4 1o 0 0o = |, -
Yl Y o5 11520 |/ s
1000 . 0001] "6 29 16
L y 00 0 —— |y
351 e HSH TN
Vol Yo 0o 0 0 —_ /o
0001l | looo1| " 1280 T
y
L n+% ] _yn _ 0 0 0 L _-f;’l
i 360 |
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5760 480 5760 11520 | 7wl
st 1r 1 -l /o
Lp360 60 360 1440 ;
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640 160 640 1280 16
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145 30 45 360 |- -

(16)
3. ANALYSIS OF THE METHOD

Some basic properties of the computational method derived shall be discussed in this section.

3.1 Order of Accuracy of the Method

The linear operator of the computational method derived in equation (16) is expressed as,

ynﬁ _y,,_i_
1000 00017 "6
0100yn+§ 00017
L{y(x);h} = - 8
0010y | 0001,
n+— 1
0001 ™| ]0001| "
o v,
[ 251 323 -11 53 -19 | / 0]
11520 5760 480 5760 11520 ||””
29 311 1 -1 || |,
- - - —_— —_— 16
_p[1440 360 60 360 1440 || o |
27 st % 21 3 "y 0
1280 640 160 640 1280 | 7 |
T4 1 4 1 "5
(360 45 30 45 360 S, | LOJ
L "] (17)




Expanding (17) in Taylor series about x,, we have
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_ N -
i(mh) ;251 - hf” 323( Jf' 11 (1} L33 (3}’_ 19 (1jf o]
= J! In = 11520 5760\ 16 4801\ 8 5760\ 16 11520\ 4
J
(lh) j+1 J J J
-\ 8 V) < b 31(1] 1(1] 1(3) 1 (1] 0
STy -, r (] e 2] -
= J! 1440 ‘= J! |360\16 60\ 8 360\ 16 1440\ 4
J -
(ih) j+1 J J J J
=16 ; Y 1 9 (1 21 (3 3 (1 0
2 yn—yn—i 2|t 7 el 7
= J! 1280 = J! 64016 1601\ 8 640\ 16 1280\ 4
1 J
N (Zh) j 7 &R 4(1}“’ 1[1)/ 4[3)/ 7 (1}-/' 0]
e T ) e (22 ) T (L
= J! 360 ‘w J! 45116 3018 45\16 360\ 4
(18)
Hence,
w=a=c=c=a=es=0, co=[11176x107 6.6227x10" 1.1176x10” -3.1537x10™ ]
Therefore, the computational method (16) is of 2 0 0 =1
uniform order p=35 and the error constant is 0 2 0 -
[1.1176 107 6.6227x107° 1.1176 x10™° =lo 0 ., _1|7FED
—3.1537x107"7"
] 0 0 0 z-1
3.2 Consistency of the Method
Thus, solving for z in
The computational method (16) is consistent \
since it has uniform order p =5>1. z(z-D=0 (19)
3.3 Zero Stability of the Method gives z, =z, =2z,=0 and z,=1. Hence, the

Definition 3.1 [27]: A block method is said to be
zero-stable, if the roots zs,s=1,2,...,k of the

first characteristic polynomial p(z) defined by

p(z) =det(zA” — E) satisfies

every root satisfying |ZS| =1 have multiplicity not
exceeding the order of the differential equation.

For the computational method (16),
characteristic polynomial is given by,

the first

10001 [0001
0100/ [0001
PE=1 0010 o001
0001/ (0001

computational method (16) is zero-stable.
3.4 Convergence of the Method

The method (16) is convergent since it is
consistent and zero-stable.

Theorem 3.1 [5]

A method is convergent if and only if it is zero
stable and consistent.

3.5 Region of Absolute Stability of the
Method

Applying the boundary locus method, the stability
polynomial of the computational method (16) is
given by,



1,1

h(w) = —h“(

—h(lw“+lw3j+w4—w3
8 8

5

W+ wh|-K’ w
327680 327680 24576
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i 5 3 2 7 3 7 4
—W |-k ——W ——W
24576 1024 1024

4

The region of absolute stability of the method is therefore shown in Fig. 1.

2500

2000

1500

Im(z)

1000

500

1 0 1 2 3

Rt-a(z) -0

Fig. 1. Stability Region for the computational method

The RAS obtained in Fig. 1 is L-stable since it is
A-stable and also encroaches into the positive
half of the complex plane, [28].

4. RESULTS
4.1 Numerical Experiments

The computational method derived shall be
applied on some modeled RDEs to test how
reliable and efficient the method is.

The following notations shall be used in the
Tables below:

ERR= Absolute error in the computational
method

Eval t =Evaluation time per seconds

EFA-Absolute error in [19]

EYH-Absolute error in [20]

ENB-Absolute error in [25]

Problem 4.1:
Consider the Riccati differential equation,

y'() =1+2y(t) - y* (1) 1)

with the initial conditions,
»0)=0

The exact solution is given by,

()= 1+\/§tanh[\/§t+%log££;iD

Source: [19]

Problem 4.2:

Consider the Riccati differential equation,
y'(0)=1-y*(0)

with initial conditions,
»0)=0

The exact solution to the problem is

e’ —1
£) =
y(@) er +1

Source: [20]

(20)

(22)

(23)

(25)



Table 4.1. Showing the result for problem 4.1
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t Exact solution Computed solution ERR EFA Eval ¢
0.1000 0.1102951969169624 0.1102951968849455 3.201692e-011 2.2551e-06 0.2436
0.2000 0.2419767996211093 0.2419767992452385 3.758708e-010 4.7763e-06 0.2454
0.3000 0.3951048486603785 0.3951048472221335 1.438245e-009 7.3083e-06 0.2472
0.4000 0.5678121662929389 0.5678121629380356 3.354903e-009 9.5635e-06 0.2490
0.5000 0.7560143934313761 0.7560143878578516 5.573525e-009 1.1301e-05 0.2508
0.6000 0.9535662164719235 0.9535662096167838 6.855140e-009 1.1301e-05 0.2526
0.7000 1.1529489669796242 1.1529489609377850 6.041839e-009 1.2408e-05 0.2545
0.8000 1.3463636553683762 1.3463636521999636 3.168413e-009 1.2940e-05 0.2565
0.9000 1.5269113132806256 1.5269113134142971 1.336715e-010 1.3100e-05 0.2584
1.0000 1.6894983915943840 1.6894983930867824 1.492398e-009 1.3245e-05 0.2602
Table 4.2. Showing the result for problem 4.2
t Exact solution Computed solution ERR EYH Eval ¢
0.1000 0.0996679946249558 0.0996679946249443 1.149081e-014 4.1401e-07 0.1259
0.2000 0.1973753202249040 0.1973753202248368 6.716849e-014 6.0186e-07 0.1277
0.3000 0.2913126124515909 0.2913126124514075 1.833533e-013 7.3747e-07 0.1294
0.4000 0.3799489622552250 0.3799489622548863 3.386180e-013 1.7322e-07 0.1311
0.5000 0.4621171572600099 0.4621171572595237 4.861112e-013 6.8524e-07 0.1328
0.6000 0.5370495669980354 0.5370495669974555 5.798695e-013 7.9810e-07 0.1453
0.7000 0.6043677771171637 0.6043677771165689 5.948575e-013 9.2621e-07 0.1470
0.8000 0.6640367702678491 0.6640367702673163 5.327960e-013 2.8318e-07 0.1487
0.9000 0.7162978701990247 0.7162978701986086 4.161116e-013 6.6469e-07 0.1504
1.0000 0.7615941559557652 0.7615941559554906 2.745582e-013 7.2660e-07 0.1521
| J—— (e
2 ‘/‘_/
//f
Fig. 2. Graphical results for problem 4.1
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Fig. 3. Graphical results for problem 4.2



Problem 4.3:

Consider the Riccati differential equation,

y'(t)=—1i+y(t>—y2<t)
+1

with the initial conditions,

y(0)=1

The exact solution is given by,

1
t)=—o
o) 1+¢

Source: [19]
Problem 4.4:

Consider the Riccati differential equation,

y(O)=10+3y(6) =~ y*(1)

whose initial conditions are,

(29)

(30)
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y(0)=0
The exact solution is given by,

14¢”
fy=—24—C
() 542e"

Source: [25]

Problem 4.5:

Consider the Riccati differential equation,
y(O=y(0-1

with the initial conditions,
y(0)=0

The exact solution is given by,
() = —tanh(?)

Source: [25]

Table 4.3. Showing the result for problem 4.3

(31)

(32)

(34)

t Exact solution

Computed solution

ERR EFA

Eval?

0.1000 0.9090909090909091
0.2000 0.8333333333333334
0.3000 0.7692307692307692
0.4000 0.7142857142857142
0.5000 0.6666666666666666
0.6000 0.6250000000000000
0.7000 0.5882352941176470
0.8000 0.5555555555555555
0.9000 0.5263157894736841
1.0000 0.4999999999999999

0.9090909090932011
0.8333333333364473
0.769230769234 1456
0.7142857142891383
0.6666666666700610
0.6250000000033436
0.5882352941209419
0.5555555555588129
0.5263157894769185
0.5000000000032264

2.292055e-012
3.113954e-012
3.376410e-012
3.424150e-012
3.394396e-012
3.343548e-012
3.294920e-012
3.257394e-012
3.234413e-012
3.226530e-012

3.8296e-07
3.8296e-07
5.7951e-07
6.8133e-07
7.3394e-07
7.6091e-07
7.7483e-07
7.8257e-07
7.8799e-07
7.9326e-07

0.0197
0.0218
0.0236
0.0256
0.0274
0.0293
0.0312
0.0330
0.0349
0.0368

1

0.9

Exact Solution
I Computed Solution

oL,

N

.*
. Mo,

yt)

0.5

04

03

0.2

0 0.5 1

Fig. 4. Graphical results for problem 4.3
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Table 4.4. Showing the result for problem 4.4

t Exact solution Computed solution ERR ENB Eval ¢
0.1000 1.1229599550199856 1.1229599521930569 2.826929e-009 1.5x10°  0.0321
0.2000 2.3303636672393440 2.3303636731387738 5.899430e-009 3.2x107°  0.0493
0.3000 3.3592985913921902 3.3592986597014036 6.830921e-008 8.0x10”"  0.0667
0.4000 4.0762561998939519 4.0762563498062434 1.499123e-007 3.2x10°  0.1056
0.5000 4.5086402379423145 4.5086404218874883 1.839452e-007 3.7x107°  0.1229
0.6000 4.7470598637518648 4.7470600293402532 1.655884e-007 9.7x107  0.1419
0.7000 4.8720664654895440 4.8720665901929827 1.247034e-007 1.0x107° 0.1594
0.8000 4.9358801511182619 4.9358802354308153 8.431255e-008 8.5x107"  0.1766
0.9000 4.9680115179081801 4.9680115711478425 5.323966e-008 2.1x107 0.1939
1.0000 4.9840783622386367 4.9840783943645039 3.212587e¢-008 1.4x10°  0.2985
. l“’_..r" @ Gomputed Solton
25 / -
: m””/
0s "””’_,
Fig. 5. Graphical results for problem 4.4
Table 4.5. Showing the result for problem 4.5
t Exact solution Computed solution ERR ENB Eval?
0.1000 -0.0996679946249558 -0.0996679946249443 1.147693e-014 1.8x107” 0.2514
0.2000 -0.1973753202249040 -0.1973753202248368 6.714074e-014 1.2x10°° 0.2530
0.3000 -0.2913126124515909 -0.2913126124514075 1.834088e-013 2.7x107° 0.2547
0.4000 -0.3799489622552249 -0.3799489622548863 3.385625¢-013  3.5x107° 0.2564
0.5000 -0.4621171572600099 -0.4621171572595237 4.861112¢-013 2.9x10°° 0.2594
0.6000 -0.5370495669980354 -0.5370495669974555 5.798695e-013 1.6x107° 0.2610
0.7000 -0.6043677771171636 -0.6043677771165689 5.947465¢-013  8.7x107 0.2627
0.8000 -0.6640367702678492 -0.6640367702673163 5.329071e-013  9.2x107 0.2645
0.9000 -0.7162978701990246 -0.7162978701986086 4.160006e-013 1.1x107° 0.2661
1.0000 -0.7615941559557651 -0.7615941559554906 2.744471e-013  1.8x107 0.2678

5. DISCUSSION OF RESULTS

From the results above, it is obvious that the
computational method derived is efficient in
handling RDE and other first order differential
equations of the form (1). The stability region
obtained also shows that the method can

10

effectively handle even stiff equations since it is
L-stable. The evaluation time per seconds
obtained were very small, showing that the
method derived generates results faster. The
analysis presented also show that the method is
convergent, consistent and zero-stable.
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.Y

Exact Solution
| ™™= Computed Solution

L

-0.5 \
-0.6

y)

> '\
-0.9

Fig. 6. Graphical results for problem 4.5

6. CONCLUSION

The method developed in this research has been
shown to be efficient in solving RDEs of the form

(1).

Thus,

the computational method is an

alternative approach for solving RDEs.
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