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Abstract 
Software testing is an integral part of software development. Not only that 
testing exists in each software iteration cycle, but it also consumes a consi-
derable amount of resources. While resources such as machinery and man-
power are often restricted, it is crucial to decide where and how much effort 
to put into testing. One way to address this problem is to identify which com-
ponents of the subject under the test are more error-prone and thus demand 
more testing efforts. Recent development in machine learning techniques 
shows promising potential to predict faults in different components of a soft-
ware system. This work conducts an empirical study to explore the feasibility 
of using static software metrics to predict software faults. We apply four 
machine learning techniques to construct fault prediction models from the 
PROMISE data set and evaluate the effectiveness of using static software me-
trics to build fault prediction models in four continuous versions of Apache 
Ant. The empirical results show that the combined software metrics generate 
the least misclassification errors. The fault prediction results vary significant-
ly among different machine learning techniques and data set. Overall, fault 
prediction models built with the support vector machine (SVM) have the low-
est misclassification errors. 
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1. Introduction 

Testing is a crucial part of the software development life cycle [1]. Ultimately, 
the purpose of testing is to expose all faults in the software system. A solid test-
ing strategy can provide a high level of confidence about the correctness of an 
application after it has been deployed. However, software testing can be re-
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source-demanding [2]. Detecting faults in a system randomly may not be feasible 
[3] especially when dealing with large-scale projects. Practitioners (developers and 
testers) want to allocate resources in the most effective ways to find faults. 

Prior research [4] shows that a fault found after deployment can be 100 times 
as costly to fix in an early stage. Researchers strive to find a way to help practi-
tioners to detect software faults as early as possible [5]. The decisions of when 
and where to put the testing efforts are often based on developers’ experience 
and expertise. This approach might not be reliable. It may not even be sustaina-
ble and consistent as developers move in and out of an organization [6]. The ex-
perience-based approach also varies a lot since practitioners have different pers-
pectives regarding how to conduct testing. 

With recent advancements in applying AI technologies to software engineer-
ing problems [7], many research reports promising preliminary results using ma-
chine learning techniques to predict faults in software systems [8] [9] [10]. This 
study explores what software metrics [11] are suitable for constructing fault pre-
diction models and examine how well those machine learning models perform 
in predicting faults. 

Unlike prior research [12] that depends on similar projects to build the predic-
tion model, this study collects training data through different versions of the same 
project. Out approach outputs a much reliable representation of the application to 
build fault prediction models. It is also more practical to collect training data as the 
subject project evolves than to search for similar projects in the wild. 

This study aims to answer the following research questions when conducting 
the empirical study. 
• What static software metrics can provide the best faults prediction result? 
• Which machine learning models give the best fault prediction results? 
• How well do prediction models perform across the continuous versions of 

the subject program? 
We make the following contributions in this paper. 

• An empirical study in fault prediction with software metrics. 
• An evaluation of four different fault prediction models. 
• A publicly accessible data set. 
• A publicly accessible machine learning code (in MATLAB). 

This paper is organized as follows. In Section 2, we present the overall ap-
proach of the empirical study. In Section 3, we discuss the research questions 
and explain the design of the experiments. In Section 4, we examine the study 
results. In Section 5, we discuss the sensitivity analysis and the threat to validity. 
Lastly, we conclude the empirical study in Section 6. 

2. Approaches 

In this section, we discuss the overall approach adopted by this empirical study. 
Figure 1 shows an overview of the approach. In the pre-processing phase, we 
extract and synthesize software metrics [8] [13] from the subject programs. In 
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the model construction phase, we build fault prediction models and conduct 
sensitivity analysis to fine-tune the model hyperparameters. 

2.1. Data Pre-Processing 

We use static code analysis [14] to extract software metrics. Static software metrics 
is chosen over runtime software metrics for consistency concerns. For instance, in-
strumentation and monitor tools may be used to get the runtime metrics which 
may introduce high runtime overhead and disturb the execution of the subject pro-
gram [15]. Also, depending on the deployment environment (e.g., physical or vir-
tual machines running the subject program), we may get a completely different set 
of metrics readings [16]. Table 1 lists the static software metrics used in the study. 

Static software metrics undergo a series of pre-processing steps. First, we apply 
normalization [17] to bring metrics to the same scale while maintaining relative 
significance. For example, the value of the metric “Lack of Cohesion in Methods 

 

 
Figure 1. Approach overview. 

 
Table 1. Static software metrics. 

METRIC DESCRIPTION OO METRIC DESCRIPTION 

Files # of files WMC Weighted method count 

Lines Line of code DIT Depth of inheritance tree 

AVG-Len Average code length NOC The number of children for a class 

Cd/Cm + WS Code non-code ratio CA Afferent coupling 

Cd/Cm Code comments ratio CE Efferent coupling 

Cd/File Code file ratio DAM Data access metric 

Cm/File Comment file ratio MOA Measure of aggregation 
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(LCOM)” [13] could range from 0 to 2247 in dataset 3 before normalizing to the 
range of 0 to 1. It reduces the dramatic range in the metrics value space that may 
otherwise negatively affect the accuracy of the prediction models. 

Not all static software metrics are suitable for constructing the fault prediction 
model. Some of them may even reduce the model’s accuracy. Next, a forward 
and backward feature selection [18] is applied to reduce the feature space di-
mensionality and to achieve greater generalization. 

2.2. Fault Prediction Models 

In the second phase, we apply both supervised and unsupervised machine learning 
techniques to build fault prediction models. Decision Tree (DT) [19] is a classic 
supervised learning model. The tree is constructed by a recursive binary split on 
which the selected node maximizes local information gain [13]. We use Gini’s 
Diversity Index [20] ( )1 2igdi p i= −Σ  for tree pruning. Random Forest (RF) 
[21] is an ensemble method. RF combines an arbitrary number of decision trees. 
The number of decision trees used for each data set is based on a sensitivity 
analysis which will be discussed in Section 5. Support Vector Machine (SVM) 
[22] is a linear classification model that maximizes the decision boundary. The 
linear kernel is used for two-class learning. ( ), t

j k j kG x x x x=  where xj and xk are 
two observations. And an error-correcting output codes (ECOC) model for mul-
ti-class learning. K-nearest neighbor (KNN) [23] is an unsupervised learning 
method. KNN assumes that if two data points are similar, they are likely to be in 
the same class. We use the euclidean distance to calculate the shortest distance 
between a data point and the cluster’s centroid. We conduct a sensitivity analysis 
to evaluate different k values and select the k value that gives the least misclassi-
fication error [24] to construct KNN. To avoid overfitting [25], ten-fold cross- 
validation [26] is applied to all four models. Since ten-fold cross-validation ran-
domly samples instances and puts them in ten folds [27], the process is repeated 
ten times for each model to avoid sampling bias [28]. 

3. Empirical Study 

In this section, we discuss details of the implementation, subjects, and data set 
design. 

3.1. Implementation 

The experiment runs on a Mac OS X with a quad-core 2.4 GHz Intel Core-i5 
CPU, 16 GB of memory, and 256 GB of SSD. We use CodeAnalyzer [29] to ex-
tract static software metrics. CodeAnalyzer is a light-weighted tool for analyzing 
source code. To build fault prediction models, we use the MATLAB Statistics 
Toolbox [30]. 

3.2. Subjects and Data Sets 

Apache Ant is an open-source Java-based build tool. Tour continuous versions 
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(v1.4 to v1.7) of the Apache Ant is used for its popularity [31] and availability [32]. 
Table 2 shows the characteristics of Apache Ant. The first column (METRIC) 
shows the size of the Apache Ant. The third column (RATIO) shows the propor-
tion for source code. We refer to the online repository Models In Software En-
gineering (PROMISE) [32] for Apache Ant faults data. Figure 2 shows the dis-
tribution of faults in the four versions of Apache Ant. Color schemes are used in 
the bar chart to indicate different numbers of faults in a class. For example, in 
the ANT-V4 data set, 78% (565) classes have zero fault and 12.5% (91) classes 
have one fault. 

To prepare the raw training data set, we associate software metrics (features) 
of the training data with faults (labels) provided in the PROMISE by the mod-
ule’s class name. With each modeling iteration, the training data set is expended 
and fault prediction models are rebuilt using techniques outlined in Section 2.2. 

4. Results and Discussion 

In this section, we answer the following research questions and discuss the study 
results. 
• RQ1: What static software metrics can provide the best fault prediction result? 

 
Table 2. Apache ant characteristics. 

METRIC VALUE RATIO VALUE 

Total Files 228 Code /(Comment + Whitespace) Ratio 0.81 

Avg Line Length 34 Code/Whitespace Ratio 4.16 

Comment Lines 25,590 Code Lines Per File 113 

Total Lines 57,462 Code/Comment Ratio 1.01 

Code Lines 25,838 Code/Total Lines Ratio 0.45 

Whitespace Lines 6213 Comment Lines Per File 112 

 

 
Figure 2. Apache ant faults distribution. 
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• RQ2: Which machine learning models give the best fault prediction results? 
• RQ3: How well do prediction models perform across the continuous versions 

of the Apache Ant? 

4.1. RQ1: Software Metrics 

We build models with three sets of metrics (Table 1). For each model, the de-
fault, complex, and combined metrics are used as the training data, respectively. 
Table 3 shows a portion of the training data set for ANT-V1. For example, the 
“Module” column shows the class name; the “Weighted Methods per Class 
(WMC)” column is the sum of the complexities of all class methods; the “Bug” 
column shows the number of faults in the class. Figure 3 shows the performance 
of fault prediction models with all three sets of metrics. Their performance va-
ries among different data sets. For example, the complex metrics outperform the  

 
Table 3. ANT-V1. 

Module WMC DIT NOC CBO Cd/WS Cd/File Cm/File Bug 

Ant Class Loader 17 2 0 9 1.02 236 231 2 

Build Event 11 2 0 7 3.79 53 97 0 

Constants 0 1 0 0 3 3 1 0 

Main 14 1 0 7 5.32 367 178 1 

Project Helper 17 1 0 19 4.63 482 141 3 

Zip 22 4 1 15 4.17 192 126 3 

 

 
Figure 3. Software Metrics Performance. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4. 
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default metrics in ANT-V1 with DT but fall short in ANT-V2 compared to de-
fault metrics. On average, models built with combined metrics has the lowest 
misclassification error (0.2). 

4.2. RQ2: Fault Prediction Model Performance 

To answer RQ2, we compare the performance of models built with individual 
Apache Ant versions in Figure 4. The performance of fault prediction models 
varies across Apache Ant versions. For example, RF has a misclassification error 
of 0.09 in ANT-V2 compared to a misclassification error of 0.254 in ANT-V3. 
Overall, SVM has the least misclassification error (0.148) followed by RF (0.192), 
KNN (0.203), and DT (0.259). Figure 4 shows models trained with ANT-V2 
have the best performance with an average misclassification error of 0.103 com-
pared to ANT-V1 (0.227), ANT-V3 (0.248), and ANT-V4 (0.225). It is our ob-
servation that for linearly separable spaces, KNN is preferred for its interpreta-
bility. KNN does require a larger data set for it to work accurately. 

4.3. RQ3: Cross Program Training and Fault Prediction 

To answer RQ3, we examine whether training data from other project versions 
can improve fault prediction performance. To prepare the expended data set, 
we construct a new data set with all previous training data sets. For example, 
ANT-DS-2 contains data for ANT-DS-1 plus ANT-V2; and ANT-DS-3 contains 
data for ANT-DS-2 plus ANT-V3. Figure 5 illustrates the performance of each 
fault prediction model with the expanded data set. Overall, the model prediction 
misclassification error is equivalent to the regular data set (MCexpanded = 0.206 v.s. 
MCregular = 0.2). The misclassification error of models built with expanded data 
set outperform the regular data set in ANT-DS-3 (MCexpanded = 0.198 v.s. MCregular 
= 0.248), ANT-DS-4 (MCexpanded = 0.209 v.s. MCregular = 0.225) and underperform 
the regular data set in ANT-DS-2 (MCexpanded = 0.214 v.s. MCregular = 0.103). The 
results imply in cases when training data for a subject is unavailable, we may  

 

 
Figure 4. Fault prediction models performance. 
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Figure 5. Fault prediction with expanded data set. 

 
utilize training data of a different version of the same subject. 

5. Discussions 

In this section, we discuss the sensitivity analysis and the threats to validity of 
the empirical study. 

5.1. Sensitivity Analysis 

One challenge of using machine learning techniques is that we need to find 
proper values for the hyperparameters. To get a better fault prediction results, 
we try out different values to fine-tune the model. For example, Figure 6 shows 
the influence on the number of random trees used in RF. For KNN, a different 
number of neighbors (Figure 7) were selected to minimize the classification er-
rors. Empirical data indicates for Apache Ant the best number of neighbors fall 
between 13 and 16. 

5.2. Internal Validity 

A threat to internal validity for this study is the possible faults in the implemen-
tation of our approach and the tools that we use to perform the evaluation. We 
control this threat by extensively testing our tools and verifying their results 
against a small program for which we can manually determine the correctness of 
the results. Another threat involves the selection of hyperparameters [33] used in 
machine learning techniques. We use the recommended settings for each mod-
eling technique and conduct a sensitivity analysis to fine-tune the parameters. 
The accuracy of each fault prediction model may also be different with a different 
implementation. For example, the RF may report a different misclassification rate 
in scikit-learn [34] and weka [8] [35]. We choose the statistics and machine learn-
ing toolbox in MATLAB for its simplicity to use and its popularity (MATLAB has  
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Figure 6. Number of RF Trees. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4. 
 

been widely used in both industry and academia). 

5.3. External Validity 

The primary threat to external validity for this study involves the representa-
tiveness of the selected subjects and modeling techniques. Other subjects may 
exhibit different characteristics and lead to other conclusions [36]. We reduce 
this threat by studying multiple versions of the subject program. In addition, we 
apply four different modeling techniques on seven data sets to generalize con-
clusions. 

5.4. Construct Validity 

The primary threat to construct validity involves the dataset and software me-
trics used in the study. To mitigate this threat, we use data sets that are publicly 
available, well understood, and widely used [32]. We have also applied well- 
known software metrics in the data set that is straightforward to compute and is 
less error-prone. 
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Figure 7. Number of Neighbors. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4. 

5.5. Limitations 

The first limitation of this work is that our approach requires the source code to 
get the training data. In some cases, especially for a legacy program, the source 
code may not always be available [2]. Second, when preparing for the training 
data, it is not fully automated. Our approach first extracts static metrics from the 
source code, and then we manually combine the PROMISE labels (faults) to get 
the training data set. One solution is to automate the fault prediction model 
construction as part of the continuous integration (CI) [37]. We can leverage the 
fault information from the issue tracker to automatically append the labels to the 
training data set. 

6. Conclusion 

We conduct an empirical study to examine the effectiveness of building fault 
prediction models with static software metrics. We examine the effectiveness of 
metrics to build fault prediction models. We study four different types of fault 

https://doi.org/10.4236/jcc.2022.102003


X. Han, G. J. Yan 
 

 

DOI: 10.4236/jcc.2022.102003 43 Journal of Computer and Communications 
 

prediction models with four continuous versions of the Apache Ant. We eva-
luate the performance of fault prediction models across multiple Apache Ant 
versions. Our results suggest the fault prediction models built with combined 
software metrics have the lowest overall misclassification error (0.2). Among all 
fault prediction models, SVM has the least misclassification error (0.148). Lastly, 
our results show the fault prediction models built with the expanded data set are 
equally powerful. In cases when training data for a subject is unavailable, we may 
utilize training data of a different version of the same subject. 
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