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Abstract

In this paper, we construct a family of high order self-starting one-block numerical methods for the
solution of stiff initial value problems (IVP) in ordinary differential equations (ODE). The Reversed
Adams Moulton (RAM) methods, Generalized Backward Differentiation Formulas (GBDF) and
Backward Differentiation Formulas (BDF) are used in the constructions. The E-transformation is applied
to the triples and a family of self-starting methods are obtained. The family is L —stablefor £ <7.
The numerical implementation of the methods on some stiff initial value problems are reported to show
the effectiveness of the methods. The computational rate of convergence tends to the theoretical order as
h tends to zero.
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1 Introduction

The focus of many researchers is to construct methods that are stable and with improved level of accuracy,
for the solution of first and higher order ordinary differential equations. See [1,2,3,4,5,6,7]. In this paper,
we focus on the construction of a family of block methods that exhibits the above properties (stability and
accuracy) for the numerical solution y(7) of the initial value problem

y@)y=fy@); y(t,)=y,; tela,bl;

1
fRXxR" 5> R"; y:R > R” M

The Reversed Adams Moulton (RAM) methods are generally written as
k
yl_yozhnZﬁrfrHr (2)
i=0

k
(see [8]). They are therefore generally zero stable. The determination of the coefficients {ﬂ },_O is done

by imposing the maximum order £ + 1 on the method (2). This leads to the matrix equations

1
1
E 1 1 1 1...1 B,
) 01 2 3.k )il
3 0 1 2% 3% . k2 B,
=|. .. AR | (3)
1 0 1 28 3% . k* B
k+1

which is solved simultaneously for the coefficients (see [8,1]).
1.1 The backward differentiation formulas (BDF)

A k-step BDF introduced in [9] is a linear multistep formula that has order p = k£ and error constant
-1

pl ﬁwhen the coefficient of the derivative function is normalized to one. They are popular for
+

the solution of stiff differential equations (1). They have the general formula

k
Z AYii =M, B f ok &)
i=0
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k
The coefficients {a j } j=1 are uniquely determined by imposing the order & on (4) which leads to the

matrix equation

0 1 1 1 1. . .1 a,
1 o 1 2 3.. .k a,

2k |0 1 2> 3% . k|| a,
- . . (5)

k" 0 1 2% 3% k" )le,

which are solved simultaneously. The methods have been shown in [1,10,11] to be zero stable fork < 6,
and zero unstable for k > 7 .

1.2 The generalized backward differentiation formulae (GBDF)

This class of methods introduced in [8] has the form
k
2 :aiynﬂ' :hfn-i-j’ ©)
i=0

forallk > 1, where

k+2

2

(7
kil , forodd k.

, forevenk,
j=

It implemented by coupling it with some set of initial and final additional methods. While BDF are 0-

unstable, for £ > 6, GBDF though cannot be used as single integrator, provide 0 Jk—j Stable ,

Aj,kfj — Stable methods for all k <32 .

2 Construction of the New Self-starting Block Methods

The methodology for the construction is captured in the following theorem [2]:

Theorem
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. . m,K
Let the multi-family of LMF {,OIEJ] (R), O']E]] (R)}jzl,k=l be given, that is,
P (E)y, =ha/(E)f,; j=1M)m, k=1DK ®

with {,O,EJ] ) O'/E]] }for a fixed j forming a family of variable order pk,j of variable step number k. Then
the resultant system of composite LMF

E'p/NE)y, =hE'c/NE)f,: i=00k-1; j=12,..m ©
arising from the E-operator transformation of (8) can be composed as the block method

AY

L+ AY, =h(BF,, +B,F,); det(4,)#0 (10)

+1

if k is chosen such that l is an integer given as

_m+k(m=12)
m—1

[ ;m,k22 and k—12>0. (11)

where Yn+1 ) Y ; F+1 and Fn n :0, 1,2,... are vectors as defined below and

n? n

A1 ’ A() ’ B 1° B 0 are square matrices also defined below for a fixed m.

(1] (1]
Q, 0
[2] [2]
Q, 0
4, = L] B, = [m]
0 ; 0 (12)
(0 0 (0] 0
0 0

(2k=D)x(2k~I) (2k=D)x(2k~I)
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— T. _ T.
Yn+1 - (yn+1’yn+2 "“’yn+2k—l ) ’ Yn - (yn—2k+l+1’yn—2k+l+2 ""’yn—l’yn ) ’
(13)
— T, _ T
Fn+1 - (fn+1>fn+29""fn+2k—l ) ” Fn - (fn—2k+1+19fn—2k+l+2""’fn—l’fn )
n=0,1,2,..
Proof:
Notice that the E-operator is effectively applied -/ times on the system of LMF {p,Ej] » O IEJ] }k e Thus

there are  2k-/ unknown  solution points captured in the block of  solution

T
Yn+1 = (yn+1 s Vusnseoos Yook ) . By this the block definition in (11) is realized if the coefficient

matrices Al ) Ao 5 Bl 5 Bo are square matrices of dimension (2k - l) X (2k - l) .

This simply imply that 71 + I’I’I(k - l) =2k —1 sothat /is as in (12) and for a fixed m the k is then
chosen such that K —/ > 0 (-

In particular:

aym=2:1=2 k=23,4,...
k+3
e)ym=3 ;IZT - k=3,5,7,...

4+2k
Gym=4; ZZT . k=4,7,10,13, ...

When kK —[=0 , the method requires no shifting, this is so if m=k. However, the case of interest in

this paper is when m = 3.

Consider the triple of k-step LMF defined by [0,,0,] . [02,0,]and[05,05] Shifting this (k-7)
k+3

2

times, where [ = , we have a set of 2k-/ equations in 2k-/ unknowns which can be written in the

block form (10).

3 Stability of the Implicit Block Methods
When (10) is applied to test equation

y'=4y, Re(1)<0
(14)

it yields the characteristics equation.

7(R,z)=det(4, R+ A, —z(B,R+ B,)) (15)
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The region of absolute stability R 4 associated with (10) is the set
R, ={z:|R,(2)| <1, j =1(Dk}

ifweletZ —> 0 in (15), the difference system becomes
7(R,0) =det(A4A,R+ A4,)

All the proposed block methods can be cast in the form

AY,, +ay, =h(BF,  +bf,)
Where
[
a
{;] [
a 0
0 [2]
0
f=1| ., ml ; .
a a," b = [m]
0
0 0
0 (2k=D)x1 0 (2k—1)x1

—1A T
Note that for all the block methods, Al a= (1 1 11) =e

14,=[0 " |=(0 o

implying that

(16)

amn

(18)

(19)
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To see this, assume order P >1 for all the LMF that constitute the block, then by consistency,

Aetd=0 (20)
T
where € = (1 1 11) . From (20) it follows that

_1 ~
A a=-e @1

The above ensures zero-stability of the implicit block methods (10). Method (10) applied to test equation can
also be written as

Y. =M(2)Y,, z=4h (22)
where
M(z)=(I—z4'B))"(z4, B, — 4, 4,) o3

is the amplification matrix. If as z tends to infinity (23) tends to zero (that is M (OO) =0 ), it means that an

A-stable (10) is L-stable. If we take[ 0,071, [0,,05 Jand[ 05,075 ] to be RAM, GBDF and BDF
respectively, then the coefficients of order 3 method

0 0 -1

0 0 5 2 1
- 00 - 00 &5 3 1320
A = - 2 3 A = 3 i By = 12 ;B = 3 12
3, 1 o0 L 00 o o 0 1
2 6 3
Coefficients of order 5 method
1 0 0 0 0 0
1 1 1 1
: b3 oz "m0 ~1
5 10 137 1
sl s TE o T O 0 T
1= 4 1 0 o o o |'4 K
i1 ;11 1 5
30 4 3 2 20 03X5 03X1
_r 5 10 _5 1%
5 4 3 60
323 11 53 19 .
360 30 360 720
L o o o o0 1 o
— 1X5 “on |- —
BO‘(O 0720>'Bl‘ 251 323 11 53 v
X5 Xt 720 360 30 360 720
0 0 0 1 0 0
0 0 0 0 0o 1

Coefficients of order 7 method
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1 0 0 0 0 0 0 0 0
1 3 1 3 1 1
-—— — -1 — - - — 0
15 10 4 5 10 105
7 21 35 35 21 ; 363 0
6 5 4 3 2 140
-1 1 0 0 0 0 0 0 0
1 1 3 1 1 3 1 1 0
Ay =| 140 15 10 4 5 10 105 ;
1 7 1 35 35 21 7 363 0
7 6 5 4 3 2 ' 140
0 -1 1 0 0 0 0 0 0
0 1 1 3 L 1 3 1 1
140 15 10 4 5 10 105
0 1 7 21 35 35 21 . 363
7 6 5 4 3 2 140
-1
1
0 120 0 19087
Ag=| 7 T 5B =< 18 60480);
_7 08x8 08x1
06X8 06x1
2713 15487 586 6737 263 863 0 0
2520 20160 945 20160 2520 60480
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
19087 2713 15487 586 6737 263 863 0 0
B, = | 60480 2520 20160 945 20160 2520 60480
! 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 19087 2713 15487 586 6737 263 863 0
60480 2520 20160 945 20160 2520 60480
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
The stability function P (Z) is
_ _ pk-l
P(z)=Det[I,R-—M(z)]=R" (R-D(2)) (24)
The stability domain S of this family is
S={zeC:|R(z)|<1} 25)

The D(Z ) (the only non-zero value of R(z)) for this family of methods are given as a rational function
P(z)
0(z)

Case of order p = 3

D(z) =

. where P{z) and Q(z) are polynomials.
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138+ 168z + 6122
138 — 246z + 1782% — 4873

D(z) =

Case of orderp =5

(6459249604 1787505 12@ + 220190294422 + 15 278779262° + 57775 6622* +
20012481z°)
(645924960— 2088044640z + 31035215042 — 276174613823 + 15745055 78" —
54389149%° + 870444002°)

D(z) =

Case of order p =7

985165161473748003840 + 4402051392159709142400z +9312055882371249355800z° +
12274578010036761849000z° +111007963694668658748242z* +7050165866520364682640z° +

_29553482331585927995952° +519376147126246691525z" +1449168336336045000°
985165161473748003840 — 4464435061104022892160z + 9592782392620661229720z° —

12948410667896644552560z° +12238139385652807891884z* —8515729260833432221944z2° +
44314384729600538124042° —1675273338089451901240z” + 415880799121310628000z° +
51054324417768672000z°

D(z)

+
Definition 1: A block method is said to be pre-stable if the roots of Q(Z ) are contained in C .

For the cases of orders 3, 5 and 7 above D (Z ) has no negative pole on C™ . Inallthe cases, the roots

+
of Q(Z ) are contained in C as shown below:

roots for case: k=3 are
{{z - 1.018734038485 7744— 0.826345 1688443794},{z —
1.018734038485 7744+ 0.826345 1688443794},{z — 1.670865 25 63617843}

roots for case: k=5 are

{{z - 0.5496503163387506- 1.3267991841349167%},{z -
0.5496503163387506- 1.3267991841349167%},{z =
1.151541041151053 0.6310368906999217%},{z =
1.151541041151053% 0.6310368906999217%},{z =
1.4230274032805 632— 0.248221155 65 736874, {z -
1.4230274032805 6324 0.248221155 6 736874}}

roots for case: k=7 are

{{z - 0.12805543041947612- 1.6041775 714692936},{z — 0.12805 543041947612+
1.60417757146929363},{z — 0.78286293042475 31— 0.9771613463405 875}, {z =
0.7828629304247531+ 0.9771613463405 875}, {z —

1.052641898979391—- 0.30282200428785 017}, {z —

1.052641898979391+ 0.30282200428785 017}, {z —

1.2966180420834268— 0.8693941685 3705 42}, {z —

1.2966180420834268+ 0.8693941685 3705 42}, {z —» 1.625492036121483%}

10
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The one step block method is A4-stable if and only if it is stable on the imaginary axis (/-stable):
D(iy) £1 forall y € R, and D(z) is analytic for D(z) < 0 (i.e, Q(z) does not have roots with
negative or zero real parts), [-stability is equivalent to the fact that the Norsett polynomial defined by

E(y) =|0@)[ ~|P)|" = 0(»)O(~iv) - P(iy) P(~iy) (26)

satisfies E(y) >0 for all ye R , see [12]. In each of the cases of order p = 3, 5, 7, (26) is satisfied
and D (Z ) -0 as z —» o0 implying that the methods are L-stable for k<7

4 Numerical Implementation

Problem 1: (cf: [8])

~21 19  -20 1
y =/ 19 —21 20 |y; y0)=]| 0
40 - 40 —40 ~1

The theoretical solution of the problem is:

| e + e " (cos(40¢) + sin( 40¢))
y(t) = 5 e —e " (cos(40¢) + sin(40¢))
2e " (sin(40¢) — cos(40¢))

Problem 2: (cf: [13])

dy _ oo
dt—f(y), tel0,T]

The function fis defined by

—ky, +k,y,p, 1
f(y)= klyl_k2y2y3_k3y22 ; (0)=10

k3y22 0
k, =0.04; k, =10*; k, =3.10"

Problem 1 is solved using order p=3, 5, 7 and 9. The error and rate of computational convergence are
displayed in Table 1. It can be seen that the rate of computational convergence is tending towards the
theoretical order as / tends to 0 except for the method of order 9 which exhibit order reduction The error in
order 3 when used to solve problem 1 is plotted against the step size /# and displayed in Fig. 1.

11
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Table 1. Error and order of convergence of RAM/GBDF/BDF p=3, 5,7, 9

H Error Rate Error Rate Error Rate Error Rate
le-2 2.697e-02 6.136e-02 4.641e-02 7.166e-02
5e-3 4.879¢-03 247 2.735e-03 4.49 3.231e-03 3.84 1.047e-03 6.10
2.5¢-3 6.510e-04 291 7.608e-05 5.17 3.889¢-05 6.38 6.234e-06 7.39
1.25¢-3 8.363e-05 2.96 2.357e-06 5.01 3.909¢-07 6.64 3.803e-08 7.36
6.25¢-4 1.061e-05 2.98 7.192e-08 5.03 3.431e-09 6.83 2.753e-10 7.11

x 10°

6

5

4

3

w

2

1

— S

0 _
0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0
h

Fig. 1. Error in the proposed method of order p=3 for problem 1 versus /.

x 10°
1.2

0.8

0.4

0.2

0
0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0
h

Fig. 2. Slope for order 3 method

12



Ajie et al.; JAMCS, 31(6): 1-14, 2019; Article no.JAMCS.48357

Comparing Figs. 1 and 2, it is observed that the computational convergence rate and the theoretical rate of
convergence have the same slope for order 3 method.

Problem 2 is a Chemical Kinetics Problem. It is solved using order 5 of the proposed method and constant
step size & = 0.0001. The error tolerance for accuracy in the Newton-Raphson iteration is set at 10, The
errors in the Table 2 are the maximum absolute values of the difference between approximate solution of the
proposed method and that of MATLAB ODE15s (which is assumed to be the exact solution of the problem).

Table 2. Errors from proposed method, k=5; p=5 when applied to problem 2

T

2.00 5.00 7.5 10.00

Errors 2.30e-006 4.20e-006 4.41e-005 7.19e-005

5 Conclusion

We have constructed a family of high order self-starting one-block methods using multistep triple. This
family is zero stable for all k£ > 3, I-stable for k& < 7 and exhibit order reduction for k =9 . The numerical
examples considered showed that the methods are comparable to the existing ones.
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