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ABSTRACT

In this paper, we investigate the generalized Pell-Padovan sequences and we deal with, in detail,
four special cases, namely, Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order
Lucas-Pell sequences. We present Binet’s formulas, generating functions, Simson formulas, and
the summation formulas for these sequences. Moreover, we give some identities and matrices
related with these sequences.

Keywords: Pell-Padovan numbers; Pell-Perrin numbers; third order Fibonacci-Pell numbers; third
order Lucas-Pell numbers.
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1 INTRODUCTION
The aim of this paper is to define and to explore
some of the properties of generalized Pell-
Padovan numbers and is to investigate, in details,
four particular case, namely sequences of Pell-
Padovan, Pell-Perrin, third order Fibonacci-Pell

and third order Lucas-Pell. Before, we recall the
generalized Tribonacci sequence and its some
properties.

The generalized Tribonacci sequence
{Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly
{Wn}n≥0) is defined as follows:
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Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers.

This sequence has been studied by many authors, see for example [1,2,3,4,5,6,7,8,9,10,11,12,13].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation is

x3 − rx2 − sx− t = 0 (1.2)

whose roots are

α = α(r, s, t) =
r

3
+A+B

β = β(r, s, t) =
r

3
+ ωA+ ω2B

γ = γ(r, s, t) =
r

3
+ ω2A+ ωB

where

A =

(
r3

27
+

rs

6
+

t

2
+

√
∆

)1/3

, B =

(
r3

27
+

rs

6
+

t

2
−

√
∆

)1/3

∆ = ∆(r, s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
, ω =

−1 + i
√
3

2
= exp(2πi/3)

Note that we have the following identities

α+ β + γ = r,

αβ + αγ + βγ = −s,

αβγ = t.

If ∆(r, s, t) > 0, then the Equ. (1.2) has one real (α) and two non-real solutions with the latter being
conjugate complex (in our case all roots are reals). So, in this case, it is well known that generalized
Tribonacci numbers can be expressed, for all integers n, using Binet’s formula

Wn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)
(1.3)

where

b1 = W2 − (β + γ)W1 + βγW0, b2 = W2 − (α+ γ)W1 + αγW0, b3 = W2 − (α+ β)W1 + αβW0.

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers
n, for a proof of this result see [14]. This result of Howard and Saidak [14] is even true in the case of
higher-order recurrence relations.

In this paper we consider the case r = 0, s = 2, t = 1 and in this case we write Vn = Wn. A
generalized Pell-Padovan sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-order
recurrence relations

Vn = 2Vn−2 + Vn−3 (1.4)
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with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −2V−(n−1) + V−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (1.4) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized Pell-Padovan numbers. Binet formula of
generalized padovan numbers can be given as

Vn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0. (1.5)

Here, α, β and γ are the roots of the cubic equation x3 − 2x− 1 = 0. Moreover

α =
1 +

√
5

2
,

β =
1−

√
5

2
,

γ = −1.

Note that

α+ β + γ = 0,

αβ + αγ + βγ = −2,

αβγ = 1.

The first few generalized Pell-Padovan numbers with positive subscript and negative subscript are
given in the following Table 1.

Table 1. A few generalized Pell-Padovan numbers

n Vn V−n

0 V0 ...
1 V1 V2 − 2V0

2 V2 −2V2 + V1 + 4V0

3 2V1 + V0 4V2 − 2V1 − 7V0

4 2V2 + V1 −7V2 + 4V1 + 12V0

5 V2 + 4V1 + 2V0 12V2 − 7V1 − 20V0

6 4V2 + 4V1 + V0 −20V2 + 12V1 + 33V0

7 4V2 + 9V1 + 4V0 33V2 − 20V1 − 54V0

8 9V2 + 12V1 + 4V0 −54V2 + 33V1 + 88V0

9 12V2 + 22V1 + 9V0 88V2 − 54V1 − 143V0

10 1022V2 + 33V1 + 12V0 −143V2 + 88V1 + 232V0

Now we define four special cases of the sequence {Vn}. Pell-Padovan sequence{Rn}n≥0, Pell-
Perrin sequence {Cn}n≥0, third order Fibonacci-Pell sequence {Gn}n≥0 and third order Lucas-Pell

10
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sequence {Bn}n≥0 are defined, respectively, by the third-order recurrence relations

Rn+3 = Rn+1 +Rn, R0 = 1, R1 = 1, R2 = 1,

Cn+3 = Cn+1 + Cn, C0 = 3, C1 = 0, C2 = 2,

Gn+3 = Gn+1 +Gn, G0 = 1, G1 = 0, G2 = 2,

Bn+3 = Bn+1 +Bn, B0 = 3, B1 = 0, B2 = 4.

The sequences {Rn}n≥0, {Cn}n≥0, {Gn}n≥0 and {Bn}n≥0 can be extended to negative subscripts
by defining

R−n = −2R−(n−1) +R−(n−3) (1.6)

C−n = −2C−(n−1) + C−(n−3) (1.7)

G−n = −2G−(n−1) +G−(n−3) (1.8)

B−n = −2B−(n−1) +B−(n−3) (1.9)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.6), (1.7), (1.8) and (1.9) hold for all integer n.

For more information on Pell-Padovan sequence, see [15,16,17,18,19,20,21,22].

Next, we present the first few values of the Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and
third order Lucas-Pell numbers with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Rn 1 1 1 3 3 7 9 17 25 43 67 111 177 289

R−n −1 3 −5 9 −15 25 −41 67 −109 177 −287 465 −753
Cn 3 0 2 3 4 8 11 20 30 51 80 132 211 344
C−n −4 8 −13 22 −36 59 −96 156 −253 410 −664 1075 −1740
Gn 1 0 2 1 4 4 9 12 22 33 56 88 145 232

G−n 0 0 1 −2 4 −7 12 −20 33 −54 88 −143 232
Bn 3 0 4 3 8 10 19 28 48 75 124 198 323 520
B−n −2 4 −5 8 −12 19 −30 48 −77 124 −200 323 −522

For all integers n, Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order Lucas-Pell
numbers (using initial conditions in (1.5)) can be expressed using Binet’s formulas as

Rn = (1− 1√
5
)αn + (1 +

1√
5
)βn − γn,

Cn = (2− 3√
5
)αn + (2 +

3√
5
)βn − γn,

Gn =
1√
5
αn − 1√

5
βn + γn,

Bn = αn + βn + γn,

respectively.

Rn is the sequence A066983 in [23] associated with the relation

Rn+2 = Rn+1 +Rn + (−1)n, with R1 = R2 = 1.

Cn is not indexed in [23].

11
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Gn is the sequence A008346 in [23] associated with the relation

Gn = Fn + (−1)n

where Fn is Fibonacci sequence which is given as

Fn = Fn−1 + Fn−2 with F0 = 0 and F1 = 1.

Bn is the sequence A099925 in [23] associated with the relation

Bn = Ln + (−1)n

where Ln is Lucas sequence which is given as

Ln = Ln−1 + Ln−2 with L0 = 2 and L1 = 1.

Since
F−n = (−1)n+1Fn and L−n = (−1)nLn

we get
G−n = (−1)n+1Gn + 1 + (−1)n = (−1)n(1− Fn)

and
B−n = (−1)nBn − 1 + (−1)n = (−1)n(Ln + 1).

2 GENERATING FUNCTIONS

Next, we give the ordinary generating function
∞∑

n=0

Vnx
n of the sequence Vn.

Lemma 2.1. Suppose that fVn(x) =
∞∑

n=0

Vnx
n is the ordinary generating function of the generalized

Pell-Padovan sequence {Vn}n≥0. Then,
∞∑

n=0

Vnx
n is given by

∞∑
n=0

Vnx
n =

V0 + V1x+ (V2 − 2V0)x
2

1− 2x2 − x3
. (2.1)

Proof. Using the definition of generalized Pell-Padovan numbers, and substracting 2x2∑∞
n=0 Vnx

n

and x3∑∞
n=0 Vnx

n from
∑∞

n=0 Vnx
n we obtain

(1− 2x2 − x3)

∞∑
n=0

Vnx
n =

∞∑
n=0

Vnx
n − 2x2

∞∑
n=0

Vnx
n − x3

∞∑
n=0

Vnx
n

=

∞∑
n=0

Vnx
n − 2

∞∑
n=0

Vnx
n+2 −

∞∑
n=0

Vnx
n+3

=

∞∑
n=0

Vnx
n − 2

∞∑
n=2

Vn−2x
n −

∞∑
n=3

Vn−3x
n

= (V0 + V1x+ V2x
2)− 2V0x

2 +

∞∑
n=3

(Vn − 2Vn−2 − Vn−3)x
n

= V0 + V1x+ V2x
2 − 2V0x

2

= V0 + V1x+ (V2 − 2V0)x
2.
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Rearranging above equation, we obtain

∞∑
n=0

Vnx
n =

V0 + V1x+ (V2 − 2V0)x
2

1− 2x2 − x3
.

The previous lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third
order Lucas-Pell numbers are

∞∑
n=0

Rnx
n =

−x2 + x+ 1

1− 2x2 − x3
,

∞∑
n=0

Cnx
n =

3− 4x2

1− 2x2 − x3
,

∞∑
n=0

Gnx
n =

1

1− 2x2 − x3
,

∞∑
n=0

Bnx
n =

3− 2x2

1− 2x2 − x3
,

respectively.

3 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet formula of generalized Pell-Padovan numbers {Vn} by the use of generating
function for Vn.

Theorem 3.1. (Binet formula of generalized Pell-Padovan numbers)

Vn =
d1α

n

(α− β)(α− γ)
+

d2β
n

(β − α)(β − γ)
+

d3γ
n

(γ − α)(γ − β)
(3.1)

where

d1 = V0α
2 + V1α+ (V2 − 2V0),

d2 = V0β
2 + V1β + (V2 − 2V0),

d3 = V0γ
2 + V1γ + (V2 − 2V0).

Proof. Let
h(x) = 1− 2x2 − x3.

Then for some α, β and γ we write

h(x) = (1− αx)(1− βx)(1− γx)

i.e.,
1− 2x2 − x3 = (1− αx)(1− βx)(1− γx) (3.2)

Hence 1
α
, 1
β
, and 1

γ
are the roots of h(x). This gives α, β, and γ as the roots of

h(
1

x
) = 1− 2

x2
− 1

x3
= 0.

13
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This implies x3 − 2x− 1 = 0. Now, by (2.1) and (3.2), it follows that
∞∑

n=0

Vnx
n =

V0 + V1x+ (V2 − 2V0)x
2

(1− αx)(1− βx)(1− γx)
.

Then we write

V0 + V1x+ (V2 − 2V0)x
2

(1− αx)(1− βx)(1− γx)
=

A1

(1− αx)
+

A2

(1− βx)
+

A3

(1− γx)
. (3.3)

So

V0 + V1x+ (V2 − 2V0)x
2 = A1(1− βx)(1− γx) +A2(1− αx)(1− γx) +A3(1− αx)(1− βx).

If we consider x = 1
α
, we get V0 + V1

1
α
+ (V2 − 2V0)

1
α2 = A1(1− β

α
)(1− γ

α
). This gives

A1 =
α2(V0 + V1

1
α
+ (V2 − 2V0)

1
α2 )

(α− β)(α− γ)
=

V0α
2 + V1α+ (V2 − 2V0)

(α− β)(α− γ)
.

Similarly, we obtain

A2 =
V0β

2 + V1β + (V2 − 2V0)

(β − α)(β − γ)
, A3 =

V0γ
2 + V1γ + (V2 − 2V0)

(γ − α)(γ − β)
.

Thus (3.3) can be written as
∞∑

n=0

Vnx
n = A1(1− αx)−1 +A2(1− βx)−1 +A3(1− γx)−1.

This gives
∞∑

n=0

Vnx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn +A3

∞∑
n=0

γnxn =

∞∑
n=0

(A1α
n +A2β

n +A3γ
n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

Vn = A1α
n +A2β

n +A3γ
n

where

A1 =
V0α

2 + V1α+ (V2 − 2V0)

(α− β)(α− γ)
,

A2 =
V0β

2 + V1β + (V2 − 2V0)

(β − α)(β − γ)

A3 =
V0γ

2 + V1γ + (V2 − 2V0)

(γ − α)(γ − β)
.

and then we get (3.1).

Note that from (1.5) and (3.1) we have

V2 − (β + γ)V1 + βγV0 = V0α
2 + V1α+ (V2 − 2V0),

V2 − (α+ γ)V1 + αγV0 = V0β
2 + V1β + (V2 − 2V0),

V2 − (α+ β)V1 + αβV0 = V0γ
2 + V1γ + (V2 − 2V0).

Next, using Theorem 3.1, we present the Binet formulas of Pell-Padovan, Pell-Perrin, third order
Fibonacci-Pell and third order Lucas-Pell sequences.

14
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Corollary 3.2. Binet formulas of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order
Lucas-Pell sequences are

Rn = (1− 1√
5
)αn + (1 +

1√
5
)βn − γn,

Cn = (2− 3√
5
)αn + (2 +

3√
5
)βn − γn,

Gn =
1√
5
αn − 1√

5
βn + γn,

Bn = αn + βn + γn,

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [24].
Take k = i = 3 in Corollary 3.1 in [24]. Let

Λ =

 α2 α 1
β2 β 1
γ2 γ 1

 ,Λ1 =

 αn−1 α 1
βn−1 β 1
γn−1 γ 1

 ,

Λ2 =

 α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

 ,Λ3 =

 α2 α αn−1

β2 β βn−1

γ2 γ γn−1

 .

Then the Binet formula for Pell-Padovan numbers is

Rn =
1

det(Λ)

3∑
j=1

R4−j det(Λj) =
1

Λ
(R3 det(Λ1) +R2 det(Λ2) +R1 det(Λ3))

=
1

det(Λ)
(3 det(Λ1) + det(Λ2) + det(Λ3))

=

3

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .

Similarly, we obtain the Binet formula for Pell-Perrin, third order Fibonacci-Pell and third order Lucas-
Pell as

Cn =
1

Λ
(C3 det(Λ1) + C2 det(Λ2) + C1 det(Λ3))

=

3

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .
and

Gn =
1

Λ
(G3 det(Λ1) +G2 det(Λ2) +G1 det(Λ3))

=

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .
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and

Bn =
1

Λ
(B3 det(Λ1) +B2 det(Λ2) +B1 det(Λ3))

=

3

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣
respectively.

4 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 − F 2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.
This can be written in the form ∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

The following theorem gives generalization of this result to the generalized Pell-Padovan sequence
{Vn}n≥0.

Theorem 4.1 (Simson Formula of Generalized Pell-Padovan Numbers). For all integers n, we have∣∣∣∣∣∣
Vn+2 Vn+1 Vn

Vn+1 Vn Vn−1

Vn Vn−1 Vn−2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
V2 V1 V0

V1 V0 V−1

V0 V−1 V−2

∣∣∣∣∣∣ . (4.1)

Proof. (4.1) is given in Soykan [25].

The previous theorem gives the following results as particular examples.

Corollary 4.2. For all integers n, Simson formula of Pell-Padovan, Pell-Perrin, third order Fibonacci-
Pell and third order Lucas-Pell numbers are given as∣∣∣∣∣∣

Rn+2 Rn+1 Rn

Rn+1 Rn Rn−1

Rn Rn−1 Rn−2

∣∣∣∣∣∣ = −4

and ∣∣∣∣∣∣
Cn+2 Cn+1 Cn

Cn+1 Cn Cn−1

Cn Cn−1 Cn−2

∣∣∣∣∣∣ = −11

and ∣∣∣∣∣∣
Gn+2 Gn+1 Gn

Gn+1 Gn Gn−1

Gn Gn−1 Gn−2

∣∣∣∣∣∣ = −1

and ∣∣∣∣∣∣
Bn+2 Bn+1 Bn

Bn+1 Bn Bn−1

Bn Bn−1 Bn−2

∣∣∣∣∣∣ = 5

respectively.
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5 SOME IDENTITIES

In this section, we obtain some identities of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and
third order Lucas-Pell numbers. First, we can give a few basic relations between {Rn} and {Cn}.

Lemma 5.1. The following equalities are true:

2Cn = −12Rn+4 + 7Rn+3 + 21Rn+2, (5.1)

2Cn = 7Rn+3 − 3Rn+2 − 12Rn+1,

2Cn = −3Rn+2 + 2Rn+1 + 7Rn,

2Cn = 2Rn+1 +Rn − 3Rn−1,

2Cn = Rn +Rn−1 + 2Rn−2,

and

11Rn = −3Cn+4 − Cn+3 + 13Cn+2,

11Rn = −Cn+3 + 7Cn+2 − 3Cn+1,

11Rn = 7Cn+2 − 5Cn+1 − Cn,

11Rn = −5Cn+1 + 13Cn + 7Cn−1,

11Rn = 13Cn − 3Cn−1 − 5Cn−2.

Proof. Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing

Cn = a×Rn+4 + b×Rn+3 + c×Rn+2

and solving the system of equations

C0 = a×R4 + b×R3 + c×R2

C1 = a×R5 + b×R4 + c×R3

C2 = a×R6 + b×R5 + c×R4

we find that a = −6, b = 7
2
, c = 21

2
. The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {Rn} and {Gn}.

Lemma 5.2. The following equalities are true:

2Gn = Rn+3 −Rn+2, (5.2)

2Gn = −Rn+2 + 2Rn+1 +Rn,

2Gn = 2Rn+1 −Rn −Rn−1,

2Gn = −Rn + 3Rn−1 + 2Rn−2,

and

Rn = 9Gn+4 − 5Gn+3 − 15Gn+2,

Rn = −5Gn+3 + 3Gn+2 + 9Gn+1,

Rn = 3Gn+2 −Gn+1 − 5Gn,

Rn = −Gn+1 +Gn + 3Gn−1,

Rn = Gn +Gn−1 −Gn−2.
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Proof. Note that all the identities hold for all integers n. We prove (5.2). To show (5.2), writing

Gn = a×Rn+4 + b×Rn+3 + c×Rn+2

and solving the system of equations

G0 = a×R4 + b×R3 + c×R2

G1 = a×R5 + b×R4 + c×R3

G2 = a×R6 + b×R5 + c×R4

we find that a = 0, b = 1
2
, c = − 1

2
. The other equalities can be proved similarly.

Now, we give a few basic relations between {Rn} and {Bn}.

Lemma 5.3. The following equalities are true:

2Bn = −6Rn+4 + 5Rn+3 + 9Rn+2, (5.3)

2Bn = 5Rn+3 − 3Rn+2 − 6Rn+1,

2Bn = −3Rn+2 + 4Rn+1 + 5Rn,

2Bn = 4Rn+1 −Rn − 3Rn−1,

2Bn = −Rn + 5Rn−1 + 4Rn−2,

and

5Rn = −27Bn+4 + 19Bn+3 + 41Bn+2,

5Rn = 19Bn+3 − 13Bn+2 − 27Bn+1,

5Rn = −13Bn+2 + 11Bn+1 + 19Bn,

5Rn = 11Bn+1 − 7Bn − 13Bn−1,

5Rn = −7Bn + 9Bn−1 + 11Bn−2.

Proof. Note that all the identities hold for all integers n. We prove (5.3). To show (5.3), writing

Bn = a×Rn+4 + b×Rn+3 + c×Rn+2

and solving the system of equations

B0 = a×R4 + b×R3 + c×R2

B1 = a×R5 + b×R4 + c×R3

B2 = a×R6 + b×R5 + c×R4

we find that a = −3, b = 5
2
, c = 9

2
. The other equalities can be proved similarly.

Next, we present a few basic relations between {Cn} and {Gn}.

Lemma 5.4. The following equalities are true

11Gn = −6Cn+4 + 9Cn+3 + 4Cn+2, (5.4)

11Gn = 9Cn+3 − 8Cn+2 − 6Cn+1,

11Gn = −8× Cn+2 + 12Cn+1 + 9Cn,

11Gn = 12× Cn+1 − 7Cn − 8Cn−1,

11Gn = −7Cn + 16Cn−1 + 12Cn−2,
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and

Cn = 22Gn+4 − 13Gn+3 − 36Gn+2,

Cn = −13Gn+3 + 8Gn+2 + 22Gn+1,

Cn = 8Gn+2 − 4Gn+1 − 13Gn,

Cn = −4Gn+1 + 3Gn + 8Gn−1,

Cn = 3Gn − 4Gn−2.

Proof. Note that all the identities hold for all integers n. We prove (5.4). To show (5.4), writing

Gn = a× Cn+4 + b× Cn+3 + c× Cn+2

and solving the system of equations

G0 = a× C4 + b× C3 + c× C2

G1 = a× C5 + b× C4 + c× C3

G2 = a× C6 + b× C5 + c× C4

we find that a = − 6
11
, b = 9

11
, c = 4

11
. The other equalities can be proved similarly.

Next, we give a few basic relations between {Bn} and {Cn}.

Lemma 5.5. The following equalities are true

5Cn = −56Bn+4 + 37Bn+3 + 88Bn+2, (5.5)

5Cn = 37Bn+3 − 24Bn+2 − 56Bn+1,

5Cn = −24Bn+2 + 18Bn+1 + 37Bn,

5Cn = 18Bn+1 − 11Bn − 24Bn−1,

3Cn = −11Bn + 12Bn−1 + 18Bn−2,

and

11Bn = −20Cn+4 + 19Cn+3 + 28Cn+2,

11Bn = 19Cn+3 − 12Cn+2 − 20Cn+1,

11Bn = −12Cn+2 + 18Cn+1 + 19Cn,

11Bn = 18Cn+1 − 5Cn − 12Cn−1,

11Bn = −5Cn + 24× Cn−1 + 18Cn−2.

Proof. Note that all the identities hold for all integers n. We prove (5.5). To show (5.5), writing

Cn = a×Bn+4 + b×Bn+3 + c×Bn+2

and solving the system of equations

C0 = a×B4 + b×B3 + c×B2

C1 = a×B5 + b×B4 + c×B3

C2 = a×B6 + b×B5 + c×B4

we find that a = − 56
5
, b = 37

5
, c = 88

5
. The other equalities can be proved similarly.

Now, we present a few basic relations between {Gn} and {Bn}.
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Lemma 5.6. The following equalities are true

Bn = 8Gn+4 − 5Gn+3 − 12Gn+2, (5.6)

Bn = −5Gn+3 + 4Gn+2 + 8Gn+1,

Bn = 4Gn+2 − 2Gn+1 − 5Gn,

Bn = −2Gn+1 + 3Gn + 4Gn−1,

Bn = 3Gn − 2Gn−2,

and

5Gn = 12Bn+4 − 9Bn+3 − 16Bn+2,

5Gn = −9Bn+3 + 8Bn+2 + 12Bn+1,

5Gn = 8Bn+2 − 6Bn+1 − 9Bn,

5Gn = −6Bn+1 + 7Bn + 8Bn−1,

5Gn = 7Bn − 4Bn−1 − 6Bn−2.

Proof. Note that all the identities hold for all integers n. We prove (5.6). To show (5.6), writing

Bn = a×Gn+4 + b×Gn+3 + c×Gn+2

and solving the system of equations

B0 = a×G4 + b×G3 + c×G2

B1 = a×G5 + b×G4 + c×G3

B2 = a×G6 + b×G5 + c×G4

we find that a = 8, b = −5, c = −12. The other equalities can be proved similarly.

6 LINEAR SUMS

The following Theorem presents some formulas of generalized Pell-Padovan numbers with positive
subscripts.

Theorem 6.1. If r = 0, s = 2, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk = 1
2
(Vn+3 + Vn+2 − Vn+1 − V2 − V1 + V0) .

(b)
∑n

k=0 V2k = V2n+1 + (V2 − V1 − V0)n+ V0 − V1.

(c)
∑n

k=0 V2k+1 = 1
2
(V2n+3 + V2n+2 − V2n+1 + 2n (−V2 + V1 + V0)− V2 + V1 − V0) .

The above theorem is given in [26, Theorem 2.13].

From the above Theorem we have the following Corollary which gives sum formulas of Pell-Padovan
numbers (take Vn = Rn with R0 = 1, R1 = 1, R2 = 1).

Corollary 6.2. For n ≥ 0, Pell-Padovan numbers have the following property:

(a)
∑n

k=0 Rk = 1
2
(Rn+3 +Rn+2 −Rn+1 − 1) .

(b)
∑n

k=0 R2k = R2n+1 − n.

(c)
∑n

k=0 R2k+1 = 1
2
(R2n+3 +R2n+2 −R2n+1 + 2n− 1) .

Proof.
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(a) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula
n∑

k=0

Rk =
1

2
(Rn+3 +Rn+2 −Rn+1 −R2 −R1 +R0) .

(b) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula
n∑

k=0

R2k = R2n+1 + (R2 −R1 −R0)n+R0 −R1.

(c) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula
n∑

k=0

R2k+1 =
1

2
(R2n+3 +R2n+2 −R2n+1 + 2n (−R2 +R1 +R0)−R2 +R1 −R0) .

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last Theorem, we have the following Corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 6.3. For n ≥ 0, Pell-Perrin numbers have the following property:

(a)
∑n

k=0 Ck = 1
2
(Cn+3 + Cn+2 − Cn+1 + 1) .

(b)
∑n

k=0 C2k = C2n+1 − n+ 3.

(c)
∑n

k=0 C2k+1 = 1
2
(C2n+3 + C2n+2 − C2n+1 + 2n− 5) .

From the last Theorem, we have the following Corollary which gives linear sum formulas of third order
Fibonacci-Pell numbers (take Vn = Gn with G0 = 1, G1 = 0, G2 = 2).

Corollary 6.4. For n ≥ 0, third order Fibonacci-Pell numbers have the following property:

(a)
∑n

k=0 Gk = 1
2
(Gn+3 +Gn+2 −Gn+1 − 1) .

(b)
∑n

k=0 G2k = G2n+1 + n+ 1.

(c)
∑n

k=0 G2k+1 = 1
2
(G2n+3 +G2n+2 −G2n+1 − 2n− 3) .

From the last Theorem, we have the following Corollary which gives linear sum formulas of third order
Lucas-Pell numbers (take Vn = Bn with B0 = 3, B1 = 0, B2 = 4).

Corollary 6.5. For n ≥ 0, third order Lucas-Pell numbers have the following property:

(a)
∑n

k=0 Bk = 1
2
(Bn+3 +Bn+2 −Bn+1 − 1) .

(b)
∑n

k=0 B2k = B2n+1 + n+ 3.

(c)
∑n

k=0 B2k+1 = 1
2
(B2n+3 +B2n+2 −B2n+1 − 2n− 7) .

The following theorem presents some formulas of generalized Pell-Padovan numbers with negative
subscripts.

Theorem 6.6. If r = 0, s = 2, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k = 1
2
(−3V−n−1 − 3V−n−2 − V−n−3 + V2 + V1 − V0) .

(b)
∑n

k=1 V−2k = −V−2n+1 + V−2n + (V1 − V0) + (V2 − V1 − V0)n.

(c)
∑n

k=1 V−2k+1 = 1
2
(V−2n+1 − 3V−2n − V−2n−1 + (V2 − V1 + V0) + 2(−V2 + V1 + V0)n).

The above theorem is given in [26, Theorem 3.13].

From the last theorem, we have the following corollary which gives sum formula of Pell-Padovan
numbers (take Wn = Rn with R0 = 1, R = 1, R2 = 1).
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Corollary 6.7. For n ≥ 1, Pell-Padovan numbers have the following property:

(a)
∑n

k=1 R−k = 1
2
(−3R−n−1 − 3R−n−2 −R−n−3 + 1) .

(b)
∑n

k=1 R−2k = −R−2n+1 +R−2n − n.

(c)
∑n

k=1 R−2k+1 = 1
2
(R−2n+1 − 3R−2n −R−2n−1 + 1 + 2n).

Proof.

(a) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula

n∑
k=1

R−k =
1

2
(−3R−n−1 − 3R−n−2 −R−n−3 +R2 +R1 −R0) .

(b) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula

n∑
k=1

R−2k = −R−2n+1 +R−2n + (R1 −R0) + (R2 −R1 −R0)n.

(c) Take R0 = 1, R1 = 1, R2 = 1 in the following sum formula

n∑
k=1

R−2k+1 =
1

2
(R−2n+1 − 3R−2n −R−2n−1 + (R2 −R1 +R0) + 2(−R2 +R1 +R0)n).

Taking Wn = Cn with C0 = 3, C = 0, C2 = 2 in the last theorem, we have the following corollary
which gives sum formulas of Pell-Perrin numbers.

Corollary 6.8. For n ≥ 1, Pell-Perrin numbers have the following property:

(a)
∑n

k=1 C−k = 1
2
(−3C−n−1 − 3C−n−2 − C−n−3 − 1) .

(b)
∑n

k=1 C−2k = −C−2n+1 + C−2n − 3− n.

(c)
∑n

k=1 C−2k+1 = 1
2
(C−2n+1 − 3C−2n − C−2n−1 + 5 + 2n).

From the last theorem, we have the following corollary which gives sum formula of third order Fibonacci-
Pell numbers (take Vn = Gn with G0 = 1, G1 = 0, G2 = 2).

Corollary 6.9. For n ≥ 1, third order Fibonacci-Pell numbers have the following property:

(a)
∑n

k=1 G−k = 1
2
(−3G−n−1 − 3G−n−2 −G−n−3 + 1)

(b)
∑n

k=1 G−2k = −G−2n+1 +G−2n − 1 + n.

(c)
∑n

k=1 G−2k+1 = 1
2
(G−2n+1 − 3G−2n −G−2n−1 + 3− 2n)

Taking n = Bn with B0 = 3, B1 = 0, B2 = 4 in the last theorem, we have the following corollary which
gives sum formulas of third order Lucas-Pell numbers.

Corollary 6.10. For n ≥ 1, third order Lucas-Pell numbers have the following property:

(a)
∑n

k=1 B−k = 1
2
(−3B−n−1 − 3B−n−2 −B−n−3 + 1) .

(b)
∑n

k=1 B−2k = −B−2n+1 +B−2n − 3 + n.

(c)
∑n

k=1 B−2k+1 = 1
2
(B−2n+1 − 3B−2n −B−2n−1 + 7− 2n).
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7 MATRICES RELATED WITH GENERALIZED PELL-PADOVAN
NUMBERS

Matrix formulation of Wn can be given as Wn+2

Wn+1

Wn

 =

 r s t
1 0 0
0 1 0

n W2

W1

W0

 . (7.1)

For matrix formulation (7.1), see [27]. In fact, Kalman give the formula in the following form Wn

Wn+1

Wn+2

 =

 0 1 0
0 0 1
r s t

n W0

W1

W2

 .

We define the square matrix A of order 3 as:

A =

 0 2 1
1 0 0
0 1 0


such that detA = 1. From (1.4) we have Vn+2

Vn+1

Vn

 =

 0 2 1
1 0 0
0 1 0

 Vn+1

Vn

Vn−1

 (7.2)

and from (7.1) (or using (7.2) and induction) we have Vn+2

Vn+1

Vn

 =

 0 2 1
1 0 0
0 1 0

n V2

V1

V0

 .

If we take V = R in (7.2) we have Rn+2

Rn+1

Rn

 =

 0 2 1
1 0 0
0 1 0

 Rn+1

Rn

Rn−1

 . (7.3)

We also define

Bn =

 1
2
(Rn+3 −Rn+2)

1
2
(Rn+4 −Rn+3)

1
2
(Rn+2 −Rn+1)

1
2
(Rn+2 −Rn+1)

1
2
(Rn+3 −Rn+2)

1
2
(Rn+1 −Rn)

1
2
(Rn+1 −Rn)

1
2
(Rn+2 −Rn+1)

1
2
(Rn −Rn−1)


=

1

2

 Rn+3 −Rn+2 Rn+4 −Rn+3 Rn+2 −Rn+1

Rn+2 −Rn+1 Rn+3 −Rn+2 Rn+1 −Rn

Rn+1 −Rn Rn+2 −Rn+1 Rn −Rn−1


and

Dn =

 1
2
(Vn+3 − Vn+2)

1
2
(Vn+4 − Vn+3)

1
2
(Vn+2 − Vn+1)

1
2
(Vn+2 − Vn+1)

1
2
(Vn+3 − Vn+2)

1
2
(Vn+1 − Vn)

1
2
(Vn+1 − Vn)

1
2
(Vn+2 − Vn+1)

1
2
(Vn − Vn−1)

 .

Theorem 7.1. For all integer m,n ≥ 0, we have

(a) Bn = An
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(b) D1A
n = AnD1

(c) Dn+m = DnBm = BmDn.

Proof.

(a) By expanding the vectors on the both sides of (7.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get

Bn = ABn−1.

By induction argument, from the last equation, we obtain

Bn = An−1B1.

But B1 = A. It follows that Bn = An.

NOTE: (a) can be proved by mathematical induction (using directly).

(b) Using (a) and definition of D1, (b) follows.

(c) We have

ADn−1 =

 0 2 1
1 0 0
0 1 0

 1
2
(Vn+2 − Vn+1)

1
2
(Vn+3 − Vn+2)

1
2
(Vn+1 − Vn)

1
2
(Vn+1 − Vn)

1
2
(Vn+2 − Vn+1)

1
2
(Vn − Vn−1)

1
2
(Vn − Vn−1)

1
2
(Vn+1 − Vn)

1
2
(Vn−1 − Vn−2)


=

 Vn+1 − 1
2
Vn−1 − 1

2
Vn Vn+2 − 1

2
Vn+1 − 1

2
Vn Vn − 1

2
Vn−1 − 1

2
Vn−2

1
2
Vn+2 − 1

2
Vn+1

1
2
Vn+3 − 1

2
Vn+2

1
2
Vn+1 − 1

2
Vn

1
2
Vn+1 − 1

2
Vn

1
2
Vn+2 − 1

2
Vn+1

1
2
Vn − 1

2
Vn−1


=

 1
2
(Vn+3 − Vn+2)

1
2
(Vn+4 − Vn+3)

1
2
(Vn+2 − Vn+1)

1
2
(Vn+2 − Vn+1)

1
2
(Vn+3 − Vn+2)

1
2
(Vn+1 − Vn)

1
2
(Vn+1 − Vn)

1
2
(Vn+2 − Vn+1)

1
2
(Vn − Vn−1)

 = Dn,

i.e. Dn = ADn−1. From the last equation, using induction we obtain Dn = An−1D1. Now

Dn+m = An+m−1D1 = An−1AmD1 = An−1D1A
m = DnBm

and similarly
Dn+m = BmDn.

Note that Theorem 7.1 is true for all integers m,n.

Some properties of matrix An can be given as

An = 2An−2 +An−3

and
An+m = AnAm = AmAn

and
det(An) = 1

for all integer m and n.

Theorem 7.2. For m,n ≥ 0 we have

2(Vn+m+2 − Vn+m+1) = (Vn+3 − Vn+2)(Rm+2 −Rm+1) (7.4)

+(Vn+2 − Vn+1)(Rm+3 −Rm+2) + (Vn+1 − Vn)(Rm+1 −Rm).

Proof. From the equation Dn+m = DnBm = BmDn we see that an element of Dn+m is the product
of row Dn and a column Bm. From the last equation we say that an element of Dn+m is the product
of a row Dn and column Bm. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices Dn+m and DnBm. This completes the proof.
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Remark 7.1. By induction, it can be proved that for all integers m,n ≤ 0, (7.4) holds. So for all
integers m,n, (7.4) is true.

Corollary 7.3. For all integers m,n, we have

2(Rn+m+2 −Rn+m+1) = (Rn+3 −Rn+2)(Rm+2 −Rm+1)

+(Rn+2 −Rn+1)(Rm+3 −Rm+2) + (Rn+1 −Rn)(Rm+1 −Rm),

2(Cn+m+2 − Cn+m+1) = (Cn+3 − Cn+2)(Rm+2 −Rm+1)

+(Cn+2 − Cn+1)(Rm+3 −Rm+2) + (Cn+1 − Cn)(Rm+1 −Rm),

2(Gn+m+2 −Gn+m+1) = (Gn+3 −Gn+2)(Rm+2 −Rm+1)

+(Gn+2 −Gn+1)(Rm+3 −Rm+2) + (Gn+1 −Gn)(Rm+1 −Rm),

2(Bn+m+2 −Bn+m+1) = (Bn+3 −Bn+2)(Rm+2 −Rm+1)

+(Bn+2 −Bn+1)(Rm+3 −Rm+2) + (Bn+1 −Bn)(Rm+1 −Rm).

Note that using Theorem 7.1 (a) and the property

2Gn = Rn+3 −Rn+2

we see that

An =

 Gn Gn+1 Gn−1

Gn−1 Gn Gn−2

Gn−2 Gn−1 Gn−3

 = Bn.

We define

En =

 Vn Vn+1 Vn−1

Vn−1 Vn Vn−2

Vn−2 Vn−1 Vn−3

 .

In this case, Teorem 7.1, Theorem 7.2 and Corollary 7.3 can be given as follows:

Theorem 7.4. For all integer m,n ≥ 0, we have

(a) Bn = An

(b) E1A
n = AnE1

(c) En+m = EnBm = BmEn.

Proof.

(a) The proof is given in Theorem 7.1.

(b) Using (a) and definition of E1, (b) follows.

(c) We have

AEn−1 =

 0 2 1
1 0 0
0 1 0

 Vn−1 Vn Vn−2

Vn−2 Vn−1 Vn−3

Vn−3 Vn−2 Vn−4


=

 2Vn−2 + Vn−3 2Vn−1 + Vn−2 2Vn−3 + Vn−4

Vn−1 Vn Vn−2

Vn−2 Vn−1 Vn−3


=

 Vn Vn+1 Vn−1

Vn−1 Vn Vn−2

Vn−2 Vn−1 Vn−3

 = En,

i.e. En = AEn−1. From the last equation, using induction we obtain En = An−1E1. Now

En+m = An+m−1E1 = An−1AmE1 = An−1E1A
m = EnBm
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and similarly,
En+m = BmEn.

Theorem 7.5. For all integers m,n, we have

Vn+m = Vn+1Gm−1 + VnGm + Vn−1Gm−2.

Proof. From the equation En+m = EnBm = BmEn we see that an element of En+m is the product
of row En and a column Bm. From the last equation we say that an element of En+m is the product
of a row En and column Bm. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices En+m and EnBm. This completes the proof.

Corollary 7.6. For all integers m,n, we have

Rn+m = Rn+1Gm−1 +RnGm +Rn−1Gm−2,

Cn+m = Cn+1Gm−1 + CnGm + Cn−1Gm−2,

Gn+m = Gn+1Gm−1 +GnGm +Gn−1Gm−2,

Bn+m = Bn+1Gm−1 +BnGm +Bn−1Gm−2.

8 CONCLUSIONS

The sequences of numbers were widely used
in many research areas, such as physics,
engineering, architecture, nature and art.
Sequences of integer number such as Fibonacci,
Lucas, Pell, Jacobsthal are the most well-known
second order recurrence sequences. For rich
applications of these second order sequences in
science and nature, one can see the citations in
[28].

We introduce the generalized Pell-Padovan
sequence (it’s four special cases, namely, Pell-
Padovan, Pell-Perrin, third order Fibonacci-Pell
and third order Lucas-Pell sequences) and we
present Binet’s formulas, generating functions,
Simson formulas, the summation formulas, some
identities and matrices for these sequences.
For the application of Pell-Padovan numbers
to quaternions and groups see [20] and [19],
respectively. Third order sequences have many
other applications. We now present one of them.
The ratio of two consecutive Padovan numbers
converges to the plastic ratio, αP (which is given
in (8.1) below), which have many applications to
such as architecture, see [29]. Padovan numbers
is defined by the third-order recurrence relations

Pn+3 = Pn+1 + Pn, P0 = 1, P1 = 1, P2 = 1.

The characteristic equation associated with
Padovan sequence is x3 − x − 1 = 0 with roots

αP , βP and γP in which

αP =

(
1

2
+

√
23

108

)1/3

+

(
1

2
−
√

23

108

)1/3

≃ 1. 32471795724

(8.1)

is called plastic number (or plastic ratio or plastic
constant or silver number) and

lim
n→∞

Pn+1

Pn
= αP .

The plastic number is used in art and
architecture. Richard Padovan studied on plastic
number in Architecture and Mathematics in [30,
31].

As future work, we plan to study on the other third
order and higher order generalized sequences.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES
[1] Bruce I. A modified Tribonacci Sequence.

Fibonacci Quarterly. 1984;22(3):244-246.
[2] Catalani M. Identities for Tribonacci-related

sequences; 2012. arXiv:math/0209179

26



Soykan; AJARR, 11(2): 8-28, 2020; Article no.AJARR.57839

[3] Choi E. Modular Tribonacci numbers by
matrix method. Journal of the Korean
Society of Mathematical Education
Series B: Pure and Applied. Mathematics.
2013;20(3):207-221.

[4] Elia M. Derived sequences, the Tribonacci
recurrence and cubic forms. Fibonacci
Quarterly. 2001;39(2):107-115.

[5] Er MC. Sums of Fibonacci numbers
by matrix methods. Fibonacci Quarterly.
1984;22(3):204-207.

[6] Lin PY. De Moivre-type identities for the
Tribonacci numbers. Fibonacci Quarterly.
1988;26:131-134.

[7] Pethe S. Some identities for Tribonacci
sequences. Fibonacci Quarterly.
1988;26(2):144-151.

[8] Scott A, Delaney T, Hoggatt Jr. V. The
Tribonacci sequence. Fibonacci Quarterly.
1977;15(3):193-200.

[9] Shannon A. Tribonacci numbers and
Pascal’s pyramid. Fibonacci Quarterly.
1977;15(3):268&275.

[10] Soykan Y. Tribonacci and Tribonacci-lucas
sedenions. Mathematics. 2019;7(1):74.

[11] Spickerman W. Binet’s formula for the
Tribonacci sequence. Fibonacci Quarterly.
1982;20:118-120.

[12] Yalavigi CC. Properties of Tribonacci
numbers. Fibonacci Quarterly.
1972;10(3):231-246.

[13] Yilmaz N, Taskara N. Tribonacci and
Tribonacci-lucas numbers via the
determinants of special matrices. Applied
Mathematical Sciences. 2014;8(39):1947-
1955.

[14] Howard FT, Saidak F. Zhou’s theory of
constructing identities. Congress Numer.
2010;200:225-237.

[15] Atassanov K, Dimitriv D, Shannon A. A
remark on functions and Pell-Padovan’s
Sequence. Notes on Number Theory and
Discrete Mathematics. 2009;15(2):1-44.

[16] Bilgici G. Generalized Order–k Pell–
Padovan–like numbers by matrix methods.
Pure and Applied Mathematics Journal.
2013;2(6):174-178.
DOI:10.11648/j.pamj.20130206.11
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