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ABSTRACT

In this paper, we investigate the generalized Pell-Padovan sequences and we deal with, in detalil,
four special cases, namely, Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order
Lucas-Pell sequences. We present Binet’s formulas, generating functions, Simson formulas, and
the summation formulas for these sequences. Moreover, we give some identities and matrices
related with these sequences.

Keywords: Pell-Padovan numbers; Pell-Perrin numbers; third order Fibonacci-Pell numbers; third
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1 |NTRODUCT|ON and third order Lucas-Pell. Before, we recall the
generalized Tribonacci sequence and its some

The aim of this paper is to define and to explore properties.

some of the properties of generalized Pell-

Padovan numbers and is to investigate, in details, The  generalized  Tribonacci sequence

four particular case, namely sequences of Pell- {W,(Wo, Wi, Wa;7r,s,t)}n>0  (OF shortly

Padovan, Pell-Perrin, third order Fibonacci-Pell {Wn}n>0) is defined as follows:

*Corresponding author: E-mail: yuksel_soykan@hotmail.com;



http://www.sdiarticle4.com/review-history/57839

Soykan; AJARR, 11(2): 8-28, 2020; Article no.AJARR.57839

Wn =1rWp_14+ sWp_o +tW, _3, Wo=a, Wi =bWa=¢, n>3 (11)
where Wy, W1, W> are arbitrary complex (or real) numbers and r, s, ¢ are real numbers.

This sequence has been studied by many authors, see for example [1,2,3,4,5,6,7,8,9,10,11,12,13].
The sequence {W,, },.>0 can be extended to negative subscripts by defining
s r 1
W_n = 7¥W7(n71) - ¥W7(7L72) + EWf(nfS)
forn =1,2,3, ... when ¢ # 0. Therefore, recurrence (1.1) holds for all integer n.

As {W,} is a third order recurrence sequence (difference equation), it's characteristic equation is

2 —ra’ —se—1t=0 (1.2)
whose roots are
a = a(r,s,t)zg—i—A—&-B
B8 = ﬁ(r,s7t)=§+wA+w2B
vy = 'y(r,s,t):g+w2A+wB
where
r3 r rs t v
A = (27+—+ + ) ,B= ( +€+§—\/E)
r3t  r?2s®2  rst §° 2 —14+iv3 .
A = A(T,S,t) ?7 — 108 +?—2*7+* w = # 7exp(27m/3)

Note that we have the following identities

at+B+y =
af+ay+py = -—s,
afy = t.

If A(r,s,t) > 0, then the Equ. (1.2) has one real (o) and two non-real solutions with the latter being
conjugate complex (in our case all roots are reals). So, in this case, it is well known that generalized
Tribonacci numbers can be expressed, for all integers n, using Binet’s formula

bia™ n bo 3" " bsy"
(a=B)a—y) B-a)(B-7) (—a)y—5)

W, = (1.3)

where
b1 = Wa — (B4 v)W1 + ByWo, ba = W2 — (a + v)W1 + ayWo, bs = Wa — (a + B)W1 + afWo.

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers
n, for a proof of this result see [14]. This result of Howard and Saidak [14] is even true in the case of
higher-order recurrence relations.

In this paper we consider the case r = 0, s = 2,t = 1 and in this case we write V,, = W,,. A
generalized Pell-Padovan sequence {V,.}n>0 = {Va(Vo, Vi, V2)}n>o0 is defined by the third-order
recurrence relations

Vi=2Vh 2+ Vi3 (1.4)
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with the initial values Vy = co, Vi = ¢1, Vo = ¢2 not all being zero.

The sequence {V, },>0 can be extended to negative subscripts by defining
Vo = =2V_(u1) + Vo(nos)

forn =1,2,3,.... Therefore, recurrence (1.4) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized Pell-Padovan numbers. Binet formula of
generalized padovan numbers can be given as

bia” ba" bsy"

el P T P S 0 By Sl v vy

where
b1 =Vo—(B+v)Vi+ByVo, ba=Vo — (a+7)Vi + ayVo, b3 =Vo — (a+ B)Vi + afVs.  (1.5)
Here, o, 3 and ~ are the roots of the cubic equation z* — 22 — 1 = 0. Moreover
1++5
2 bl
1-+5

2 )
= —1.

Note that

atf+y = 0
aftay+py = -2
afy = 1.

The first few generalized Pell-Padovan numbers with positive subscript and negative subscript are
given in the following Table 1.

Table 1. A few generalized Pell-Padovan numbers

n Va V_n

0 Vo

1 Wi V2 =2V

2 Va —2Va + V1 +4Wy

3 2Vi+Wo 4Ve — 2V =TV
4 2V + V4 -7V +4Vy + 12V,
5 Vo +4V1 + 2V} 12V, — 7TV — 20V
6 4Vo + 4V + W —20Va 4+ 12V4 + 33V
7 4Vo +9V; + 4V, 33V — 20V; — 54V,
8 IVo + 12V7 + 4V, —54V5 + 33V, + 88V,
9 12V + 22V; + 9V, 88Vy — 54V, — 143V,

10 1022V5 + 33V + 12V, —143V5 + 88V + 232V,

Now we define four special cases of the sequence {V,,}. Pell-Padovan sequence{R,}.>o, Pell-
Perrin sequence {C }»>0, third order Fibonacci-Pell sequence {G,,}.>0 and third order Lucas-Pell

10
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sequence { B, }.>¢ are defined, respectively, by the third-order recurrence relations

Ruis = Rpi1+Rn, Ro=1R =1Ry=1,
Chss = Cnp1+Cn, Co=3,01=0C,=2,
Gnis = Gni1+Gn, Go=1G1=0Gy=2,
Buis = Bpi1+Bn, Bo=3DB1=0B=4.

The sequences {R.}n>0, {Cr}n>0, {Grn}n>0 and {B,},>o can be extended to negative subscripts
by defining

Ry = —2R_(n1)+R_(n3 (1.6)
Con = =20 (1) +C(ns (1.7)
Gon = —2G_(n1)+G (o3 (1.8)
Bon = —2B_(n1)+B_(ns (1.9)

forn = 1,2, 3, ... respectively. Therefore, recurrences (1.6), (1.7), (1.8) and (1.9) hold for all integer n.
For more information on Pell-Padovan sequence, see [15,16,17,18,19,20,21,22].

Next, we present the first few values of the Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and
third order Lucas-Pell numbers with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts

n 1 2 3 4 5 6 7 8 9 10 11 12 13
Ry 1 1 1 3 3 7 9 17 25 43 67 111 177 289
R_, -1 3 -5 9 —-15 25 41 67 —-109 177 287 465 —753
Ch 3 0 2 3 4 8 11 20 30 51 80 132 211 344
C_p -4 8 -13 22 =36 59 —-96 156 —253 410 —664 1075 —1740
Gn 1 0 2 4 4 9 12 22 33 56 88 145 232
G_n 0 0 1 -2 4 -7 12 —20 33 —54 88 —143 232
By 3 0 4 8 10 19 28 48 75 124 198 323 520
B_, -2 4 -5 8 —-12 19 =30 48 —77 124 —200 323 —522

For all integers n, Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order Lucas-Pell
numbers (using initial conditions in (1.5)) can be expressed using Binet’s formulas as

1 1

R, = (1-—=)"+00+4+—%=)8"—-7",
(1= R)a" + {1+ )8 =7

3 3

Cn = 2-—F)"+02+—F=)8"-"",
(2= 2"+ 2+ )8 =y
1 1

Gn = —F=a"——=p8"+7",
it \/gﬁ Y

B, = a"+p"+7",

respectively.
R, is the sequence A066983 in [23] associated with the relation
Ryt2 = Rpy1 + Ry + (—1)", with Ry = Ry = 1.

C,, is not indexed in [23].

11
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G, is the sequence A008346 in [23] associated with the relation
Gn=F,+(-1)"
where F), is Fibonacci sequence which is given as
F,=F,_1+ F,_owith F;, =0and F; = 1.
B, is the sequence A099925 in [23] associated with the relation
B, =L+ (-1)"
where L,, is Lucas sequence which is given as

Ln=Ln_1+ Ln_2 with Lo=2 and I, =1.

Since
Fop=(-1)""'"F,and L_, = (=1)"L,
we get
Gon=(-1)""Gu+ 1+ (-1)" = (-1)"(1 - F.)
and

By = (~1)"By — 14 (~1)" = (—1)"(Ln + 1).

2 GENERATING FUNCTIONS

Next, we give the ordinary generating function 3 V,,z" of the sequence V..

n=0

Lemma 2.1. Suppose that fv, () = Y. V,z" is the ordinary generating function of the generalized

n=0
Pell-Padovan sequence {V,, }.>o. Then, > V,z™ is given by

n=0

. Voo Viz+ (Vo — 2Vp)a?
Vo' = . 2.1
nZ:o v 1—222 — g3 1

Proof. Using the definition of generalized Pell-Padovan numbers, and substracting 22° 3~°° | V2"
and z° 3°°° V2™ from Y-°° Vi, 2™ we obtain

(1- 222 — xS) i Vo = i Voz" — 222 i Voz" — 2° i Vax™
n=0 no:o() oo’rL:O Oo'rL:O
Z V" — 2 Z Va2 - Z Vo T3
n=0 n=0 n=0
= Z V,x" — 2 Z Vioz" — Z Vi_sx"
n=0 n=2 n=3

= (Vo+Viz+Vea®) —2Voz® + ) (Vo — 2Vis — Vog)2"

n=3

= Vo+Vix+ V2:E2 — 2V0.Z'2
= Vo+Viz+ (Vo —2Vp)z>.

12
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Rearranging above equation, we obtain

n_ Vo 4 Vix 4 (Vo — 2Vp)x?
Zan - 1 — 222 — 3 '

The previous lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third
order Lucas-Pell numbers are

i“ -

respectively.

3 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet formula of generalized Pell-Padovan numbers {V,,} by the use of generating
function for V,.

Theorem 3.1. (Binet formula of generalized Pell-Padovan numbers)

dloc” dgﬂn dg’yn
@-Ba-n " T B-aE-7  G-an-5 6.1
where
dy = %a2+V1a+(V2 —QV()),
do = VB> +Vif+ (Va —2V0),
ds = Vo’ +Viy+ (Va —2V).
Proof. Let

h(z) =1 —22° — 2°.
Then for some «, 8 and vy we write

hz) = (1 — ax)(1 - fa)(1 — )

i.e.,
1-22° —2° = (1 — az)(1 — Bz)(1 — yx) (3.2)
Hence %, % and % are the roots of h(x). This gives «, 8, and v as the roots of
1 2 1
M) =l-mz -5 =0

13
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This implies =3 — 2z — 1 = 0. Now, by (2.1) and (3.2), it follows that

o]

w Vot Viz+ (Vo — 2Vp)a?
2V = T )i = Ba)i =)

n=0
Then we write

Vo + Vix + (V2 — 2V0)$2 _ A n Ao n As
(I-az)(1-Bz)1—7yz) (1-az) (1-PFz) (1-9z)

(3.3)

So
Vo4 Viz + (Vo — 2Vo)z® = Ar(1 — Bx)(1 — yz) + A2(1 — ax)(1 — vz) + As(1 — az)(1 — Bx).
If we consider z = £, we get Vo + Vi1 + (Vo —2Vp) 5 = Ay (1 — g)(l — ). This gives

s P(Vo+ Vit + (Ve —2W0) ) Voo + Via + (Vo — 2V)
T (a=B)a=-7) B (@a=pB)a=v)

Similarly, we obtain

Vo2 +ViB+ (Vo —2V0)

Ay — _ Vo’ + iy + (V2 — 2Vh)
? (B —a)(B—7)

= T T - B)

Thus (3.3) can be written as

Z Voz" = A1(1 —ax) ™" 4 Ax(1 — Bz) " + As(1 —~yz) .
n=0

This gives
S Var"=Ar D oz + A B3+ Az Y A " =) (Aa" + A" + Azy" )z
n=0 n=0 n=0 n=0 n=0

Therefore, comparing coefficients on both sides of the above equality, we obtain
Vi = A1a™ + A28™ + A"
where

Voo 4+ Via + (Va — 2V))
A = ,

(a—=B)(a—7)
Ay Vo + Vi + (Vo — 2Vh)
B—a)(B—7)
As Voy? 4+ Viy + (Va — 2Vo)
(v=—a)(y—=5)
and then we get (3.1).
Note that from (1.5) and (3.1) we have
Vo— (B+NWVi+B7Vo = Vool +Via+ (Va2 — 2V0),
Vo—(@+NVi+arVo = Vo +ViB+ (V2 —2W0),
Vo—(a+B)Vi+aBVo = Vo’ +Viy+ (Va—2V).

Next, using Theorem 3.1, we present the Binet formulas of Pell-Padovan, Pell-Perrin, third order
Fibonacci-Pell and third order Lucas-Pell sequences.

14
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Corollary 3.2. Binet formulas of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and third order
Lucas-Pell sequences are

1 n 1 n_ n
R, = (1—75)04 +(1+75)5 3",
3 n 3 n_ n
Cn = (2—%)04 +(2+%)5 7
1
G, = ,
f fﬁ tr

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [24].
Take k = ¢ = 3 in Corollary 3.1 in [24]. Let

a2 a 1 ot a1

A = <52 B 1),/\1—(5"1 ﬁ1>,
vy 1 Yoy 1
a? o™t a2 a ot

Ay = g Bt 1 A= B2 B B
¥ ot ¥ oy

Then the Binet formula for Pell-Padovan numbers is

3
1
R, = det(A);R4,jdet(A K(Rg,det(Al)—f—deet(Ag)+R1det(A3))
1
= ol (3det(Ay) + det(As) + det(As))
a” ' a1 o o™t 1 azaanl a2 a 1
= (3] B 1 |+|p B 1|+ B B /B B 1
oy A G | v oy 4t ¥ oy 1

Similarly, we obtain the Binet formula for Pell-Perrin, third order Fibonacci-Pell and third order Lucas-

+2

™ Q

Pell as
Cn = K
a1l a1
= gt g1
Ty 1
and
G, = K G3 det(Al) + G det(AQ
a 1
= 5"1 81
v 1

2

15

)
2
2
2

C; det(A1 + CQ det(Az) -+ Ol det(Ag))

O(n71

1
ﬂnfl 1
1

n—1

1 Gy det(As))

n—1 1

«
gty
,Yn—l 1
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and

1
(B3 det(Al) + B> det(Ag) + B1 det(A3))

A
a" a1 o o™t o1 o a1
= (3|6 B 1 |+4 5 gt 1|/ 8 B 1
v Y v
respectively.

4 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {F’, }, namely,
Fo Fo o —F2 = (="

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.

This can be written in the form
Fn+1 Fn _(_1\"
’ Fn anl - ( 1) ’

The following theorem gives generalization of this result to the generalized Pell-Padovan sequence
{Vn}nZO-

Theorem 4.1 (Simson Formula of Generalized Pell-Padovan Numbers). For all integers n, we have

Vn+2 Vn+1 Vn ‘/2 Vl VO
Vi Vi Vi |=| Vi Vo Vo | (4.1)
Vi Vaor Vaoo Vo Voi Voo

Proof. (4.1) is given in Soykan [25].

The previous theorem gives the following results as particular examples.

Corollary 4.2. For all integers n, Simson formula of Pell-Padovan, Pell-Perrin, third order Fibonacci-
Pell and third order Lucas-Pell numbers are given as

Ruy2 Rny1  Rn
Rn+1 Rn Rnfl =—4
Rn Rnfl Rn72

and
Cn+2 Cn+1 Cn
Cny1 Cn Cnho1 |=-11
Cn Cno1 Choo
and
Gny2 Gpia Gr
Gn+1 Gn anl =-1
Gn Gn—l Gn—2
and
Bn+2 Bn+1 Bn
Bn+1 Bn anl =5
Bn Bn—l Bn—2
respectively.

16
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5 SOME IDENTITIES

In this section, we obtain some identities of Pell-Padovan, Pell-Perrin, third order Fibonacci-Pell and
third order Lucas-Pell numbers. First, we can give a few basic relations between {R,, } and {C)}.

Lemma 5.1. The following equalities are true:

2C, = —12Rpia+ TRnis +21Rniz, (5.1)
9C, = TRpss —3Rnis — 12Rns1,
2C, = —=3Rpi2+2Rnt+1+ TRy,
2C, = 2Rp+1+ Rn —3Rn-1,
2C, = Rp+Rn-1+2R,_2,

and
1R, = —3Cnss— Cnss+13Cniz,
11R, = —Chy3+7Chy2—3Cht1,
11R, = 7Chi2—5Ch41 — Ch,
11R, = —5Cu41+13C, +7Cn_1,
11R, = 13C, —3Cn_-1 —5C,_2.

Proof. Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing
Chn =a X Rpya+bX Rpgs+c¢c X Ruyyo

and solving the system of equations

C() = aXRi+bx R3s+cx R
Ci = axRs+bXxRi+cXRs
Cy = axRg+bx Rs+cXx Rs

we find that a = —6,b = %, c = 2L. The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {R, } and {G..}.

Lemma 5.2. The following equalities are true:

2Gn = Ruis — Ruso, (5.2)
2Gn, = —Rnt2+2Rny1+ Ra,
2Gn = 2Rni1— Ry — Rn_1,
2Gn, = —Rn+3Rn-1+2R, 2,
and

R, = 9Gn44 —5Gny3 — 15Gn42,

Rn = —5Gn+3+3Gni2+9Gnq1,

R, = 3Gn42—Gnt1—5Gn,

R, = —Gpy1+G,+3Gn_1,

R, = Gn+Gno1—Gp_a.

17
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Proof. Note that all the identities hold for all integers n. We prove (5.2). To show (5.2), writing
G, =a X Rn+4+b>< Rn+3+CX Rn+2

and solving the system of equations

Go = axXRs+bxRs+cx Ry
G = aX Rs +bx Ry +c¢cXx R3
G2 = axXRsg+bxRs+cx Ry

we find that a = 0,b = 1, ¢ = —1. The other equalities can be proved similarly.

Now, we give a few basic relations between {R,} and {B,}.

Lemma 5.3. The following equalities are true:

2B, = —6Rnp+a+5Rnt3+ 9Rn12, (5.3)
2B, = b5Rn43—3Rpy2—6Rp41,
2B, = —3Rpt2+4Rni1+5Rn,
2B, = 4Rp41 — R, —3R,_1,
2B, = —Rn+5R,_1+4R,_2,
and
5R, = —27Bpya+19B, 3+ 41B, 2,
5Rn = 19Bn43 —13Bnis — 27Bn 1,
5R, = —13Bnt2+11Byq1+ 198,
5R, = 11B,i1— 7B, —13B,_1,
5R, = —-7B,+9B,-1+11B,_s.

Proof. Note that all the identities hold for all integers n. We prove (5.3). To show (5.3), writing
Bn:aXRn+4+bXRn+3+CXRn+2

and solving the system of equations

By = axRis+bx Rsz+cXx Rs
By = axXxRs+bx Rs+cxRs
By = axRs+bxRs+cxX Ry

we find that a = —3,b = 5, ¢ = 5. The other equalities can be proved similarly.

Next, we present a few basic relations between {C,} and {G,}.

Lemma 5.4. The following equalities are true

11Gn, = —6Cnis—+9Cnis—+4Cnis, (5.4)
11Gn = 9Ch43 — 8Chis — 6Cni1,

11Gn, = —8x Cnya+12Cns1 + 9Ch,

11Gn, = 12X Cpy1 — 7Cn — 8Ch_1,

11G, = —T7Cn +16C,_1 4 12C,_2,

18
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and
Cn = 22Gp44 — 13Gpy3 — 36G 42,
Cn = —13Gn+3+ 8Gn+2 +22Gp41,
Cn = 8Gny2 —4Gnt1 — 13Gn,
Cn = —4Gp+1+ 3G, +8Gn_1,
C, = 3G, —4G,_2.

Proof. Note that all the identities hold for all integers n. We prove (5.4). To show (5.4), writing
Gn:aXCn+4+b><Cn+3+C><Cn+2

and solving the system of equations

Go = axCi+bxC3+cxCsy
Gi = axCs+bxCi+cxCs
Gos = axCe+bxCs+cxCy
we find that a = — 2, b = %, ¢ = ;4. The other equalities can be proved similarly.

Next, we give a few basic relations between {B,.} and {C,}.

Lemma 5.5. The following equalities are true

5C, = —56Bn44+ 37Bn13+ 888,42, (5.5)
5C, = 37Bny3—24B,4+2 — 56841,
5C, = —24B,42+ 18Bp41 + 3785,
5C, = 18Bpy1 —11B, —24B,_1,
3C, = -11B,+12B,_1 +18B,_2,
and
11B, = —20Cn+4+ 19Ch+3 + 28CH42,
11B, = 19Cp43 —12Ch12 — 20Cy 41,
11B, = —12Cn42 + 18Ch41 + 19Ch,
11B, = 18Cp4+1 —5C, —12C, 1,
11B, = =5C,+24xCh_1+18C,_2.

Proof. Note that all the identities hold for all integers n. We prove (5.5). To show (5.5), writing
Chn =a X Bpya+bX Bpgys+ ¢ X Bryo

and solving the system of equations

Co = a><B4+b><B3+c><B2
Ci = axBs+bxBs+cx Bs
Co = axBg+bx Bs+cx By
we find that a = —35,b = 37 ¢ = 8. The other equalities can be proved similarly.

Now, we present a few basic relations between {G,} and {B.,}.

19
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Lemma 5.6. The following equalities are true

B, = 8Gnt4—5Gn+3 —12G 42, (5.6)
B, = —5Gn43+4Gni2 + 8Gn+1,
B, = 4Gp42 —2Gn+1 — 5Gy,
B, = —2Gn41+3Gn+4Gn_1,
B, = 3G, —2G,_2,
and
5G, = 12Bnis—9Bni3 — 16B,4o,
5G, = —9B,43+8Bni2+12Bny1,
5G, = 8Bpi2—6Bny1 —9B,,
5G, = —6Bny1+ 7B, +8Byn_1,
5G, = 7B, —4B,_1—6B,_s.

Proof. Note that all the identities hold for all integers n. We prove (5.6). To show (5.6), writing
Bn =a X Gn+4—|—b>< Gn+3—|—CX Gn+2

and solving the system of equations

By = axGs4+bxG3+cxGa
BT = axG5+bxGs+cxG3
By = axGg+bxGs+cxGy

we find that a = 8,b = —5, ¢ = —12. The other equalities can be proved similarly.

6 LINEAR SUMS

The following Theorem presents some formulas of generalized Pell-Padovan numbers with positive
subscripts.

Theorem 6.1. Ifr =0,s = 2,t = 1 then forn > 0 we have the following formulas:

@ i o Vi=12Vats+ Vo — Vig1 — Vo = Vi + 1)

(b) ZZ:O Vo = Vang1 + (Vo = Vi = Vo) n+ Vo — V4.

(©) > i o Vorsr = % (Vants + Vant2 — Vang1r +2n (=Va+ Vi + Vo) = Vo + Vi — V) .
The above theorem is given in [26, Theorem 2.13].

From the above Theorem we have the following Corollary which gives sum formulas of Pell-Padovan
numbers (take V,, = R, with Ry =1, R; = 1, Rz = 1).

Corollary 6.2. Forn > 0, Pell-Padovan numbers have the following property:
@ Y _oRk=12%(Ruts+ Rujo— Rny1—1).

(b) > 7_o Rox = Rang1 —n.

(©) >oh_o Raks1 = % (R2n+3 + Ront2 — Rong1 +2n—1).

Proof.
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(a) Take Ro =1, R1 = 1, R2 = 1 in the following sum formula
" 1
ZRk =3 (Rnys + Rny2 — Rny1 — R2 — R1 + Ro) .
k=0
(b) Take Ry = 1, Ry = 1, Rz = 1 in the following sum formula

ZR2k = Rons1+ (Rz — R — Ro)n—l— Ro — R;.
k=0

(c) Take Rp =1, R1 = 1, Rz = 1 in the following sum formula

= 1
E Roky1 = 5 (R2n+3 + Ront2 — Ront1 +2n(—Rz2+ R1 + Ro) — R2 + R1 — Ro) .
k=0

Taking W,, = C,, with Cy = 3,C; = 0,C> = 2 in the last Theorem, we have the following Corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 6.3. Forn > 0, Pell-Perrin numbers have the following property:

(@ > oCr= % (Crgs+ Cry2 — Cry1 +1).

(b) > o Cor = Con1 —n+3.

(€) >r_oCokt1 =3 (Conys + Conga — Cony1 +2n —5).

From the last Theorem, we have the following Corollary which gives linear sum formulas of third order
Fibonacci-Pell numbers (take V,, = G,, with Go = 1,G1 = 0, G2 = 2).

Corollary 6.4. Forn > 0, third order Fibonacci-Pell numbers have the following property:

(@ > oGr=5(Gnyz+Guia—Gny1 —1).

(b) > 7 _oGok = Gany1+n+ 1

(©) YroGart1 = 3 (Ganis + Ganto — Gany1 —2n — 3).

From the last Theorem, we have the following Corollary which gives linear sum formulas of third order
Lucas-Pell numbers (take V,, = B,, with Bo = 3, By = 0, B2 = 4).

Corollary 6.5. Forn > 0, third order Lucas-Pell numbers have the following property:

(@) Yr_oBr =3 (Bnts+ Bnya — Bap1 — 1).

(b) >y _oBar = Bany1+n+3.

(€) Yr_o Bak+1 = 3 (Bants + Bangz — Bang1 —2n—17).

The following theorem presents some formulas of generalized Pell-Padovan numbers with negative
subscripts.

Theorem 6.6. Ifr =0,s = 2,t = 1 then forn > 1 we have the following formulas:

@ >r Ve =2(3Ven1—3Von o= Vop s+ Va+ Vi — V).

(b) Yi  Viok = —Voonyi + Vogn + (Vi = Vo) + (Va = Vi — Vo)n.

(©) Yr Veorpr = 5(Voanis —3Vian — Voono1 + (Va = Vi + Vo) + 2(=Va + Vi + Vo)n).
The above theorem is given in [26, Theorem 3.13].

From the last theorem, we have the following corollary which gives sum formula of Pell-Padovan
numbers (take W,, = R, with Ry =1, R =1, Ry = 1).
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Corollary 6.7. Forn > 1, Pell-Padovan numbers have the following property:
@ >r  Rx=3%(-3Rn1-3R n2—R ns+1).

(b) > Ror=—R_ony1 +R_on—n.

(€) >y R-2kt1 = %(R72n+1 —3R_2n, — R_2n-1+ 1+ 2n).

Proof.
(a) Take Ry = 1, R1 = 1, R2 = 1 in the following sum formula

- 1
E R = 5 (=3R-n-1—-3R_—p—2—R_pn-3+Ra+R1— Ro).
k=1

(b) Take Ry =1, Ry = 1, Rz = 1 in the following sum formula

ZR—% = —R_ont+1 + R—2n + (R1 — Ro) + (R2 — R1 — Ro)n.
k=1

(c) Take Rp =1, R1 = 1, Rz = 1 in the following sum formula

S 1
g R_op+1 = §(R—2n+1 —3R_2n, — R_24-1+ (R2 — R1 + Ro) + 2(=R2 + R1 + Ro)n).
k=1

Taking W,, = C,, with Cy = 3,C = 0,C2 = 2 in the last theorem, we have the following corollary
which gives sum formulas of Pell-Perrin numbers.

Corollary 6.8. Forn > 1, Pell-Perrin numbers have the following property:

(a) EZ:l C_p = % (—3C_n_1 —-3C__2—C_,_3— 1) .

(b) EZ:1 C oy =—C_2pt1+C2p —3—n.

(C) E;@L:l C*2k+1 = %(C—2n+1 - 30—2n — C-Qn_l + 5 + 2n).

From the last theorem, we have the following corollary which gives sum formula of third order Fibonacci-
Pell numbers (take V,, = G, with Go = 1,G1 = 0,G2 = 2).

Corollary 6.9. Forn > 1, third order Fibonacci-Pell numbers have the following property:

(a) EZ:l G*k == % (_3G—n—1 - SG—n—2 - G—n—S + 1)

(b) > G or=—-G 2n41+G 20— 1+n.

(c) ELl G_2k41 = %(G—Qn-u —3G_2n — G_2n—1+3 —2n)

Taking » = B, with B = 3, B1 = 0, B> = 4 in the last theorem, we have the following corollary which
gives sum formulas of third order Lucas-Pell numbers.

Corollary 6.10. Forn > 1, third order Lucas-Pell numbers have the following property:

(@ Yr  B-x=3%(-3B_n-1—-3B_n_2—B_n_3+1).

(b) > B oxr=—-B 2141+ B2, —3+n.

(€) YhoiB-2kt1 = 35(B-2nt1 —3B_2n — B_on1 47— 2n).
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7 MATRICES RELATED WITH GENERALIZED PELL-PADOVAN

NUMBERS
Matrix formulation of W,, can be given as
Wiso t\" [ W
Wos1 | = 0 w1 . (7.1)
W 0 Wo
For matrix formulation (7.1), see [27]. In fact, Kalman give the formula in the following form
W 01 0\"/ W
W1 = 0 0 1 Wy .
W42 r s t Wa
We define the square matrix A of order 3 as:

X

such that det A = 1. From (1.4) we have

Viso 0 2 1
Vasr | =1 1 0 0
Vi 010

and from (7.1) (or using (7.2) and induction) we have

Viia 0 2 1
Vn+1 - 0
Vn 10

If we take V = R in (7.2) we have

o 3
—_ o ®

o = O
= O N

Vn+1
Vi (7.2)
anl

S =
o

(7.3)

S
5 &
S+ ¥
SN
~
\
//
o~ o
— o N
o O =
N~ —
/
Ty
I3 +
- =N
~

We also define
( 5(Rn+a — Ruts)  5(Rnt2 — Ruta)
Bn - (Rn+2 - Rn+1) %(Rn+3 - Rn+2) %(Rn+1 - Rn)
% %(Rn+2 - R’n+l) %(Rn - Rn—l)
1 ( Rn+3 - Rn+2 Rn+4 - Rn+3 Rn+2 - Rn+1 )

Rn+2 - Rn+1 Rn+3 - Rn+2 Rn+1 - Rn
Rn+1 — Rn Rn+2 - Rn+1 Rn - Rnfl

and
%(Vn+3 Vn+2) %(Vn+4 - Vn+3) %(Vn+2 - Vn+l)
Dn = %(Vn+2 - Vn+1) %(Vn+3 - Vn+2) %(Vn+l - Vn)
%(Vn-&-l Vn) %(Vn+2 - Vn+1) %(Vn - Vn—l)

Theorem 7.1. For all integer m,n > 0, we have
(@) B, = A"
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(b) DA™ = A" D,
(c) Dn-Hn = Dan = BmDn~
Proof.
(a) By expanding the vectors on the both sides of (7.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get
B, = AB,_1.
By induction argument, from the last equation, we obtain
B,=A""'B
But B; = A. It follows that B,, = A™.
NOTE: (a) can be proved by mathematical induction (using directly).
(b) Using (a) and definition of D1, (b) follows.

(c) We have
0 2 1 %( n+2 — ‘/nJrl) %(Vn+3 - Vn+2) %(Vn+1 Vn)
ADp_1 = 1 00 L(Vas1 = Vo) 3(Varz = V1) 3(Va—Va1)
0 1 0 %(V Vn 1) %(VTH»I - Vn) %(Vn 1— Vn 2)
Vn-oil - %Vn—11 - §Vn Vn-&iQ - %Vntl - %Vn Vo - %Vn—l - %Vn—Z
= 5Vat2 — 5Vt 5Vats — 5Vate 5Vatr1 — 5Va
%Vn+1 - %Vn %Vn+2 - %Vn-kl %Vn - %Vn—l

N[ =00] =

(

i.e. D, = AD,_,. From the last equation, using induction we obtain D,, = A"~*D;. Now

Dopgm = A" Dy = A"'A™ Dy = AV DA™ = Dy B,

(Vn+3 - Vn+2) %(Vn+4 - Vn+3) %(Vn+2 - Vn+l)
(Vn+2 - Vn+1) %(Vn+3 - Vn+2) %(Vn-kl - Vn) - Dn7
%(Vn+1 - Vn) %(Vn+2 - Vn+1) %(Vn - Vn—l)

and similarly
Dn+7n = B'mD'rL-

Note that Theorem 7.1 is true for all integers m, n.
Some properties of matrix A™ can be given as

An _ 2An72 + An73

and
An+m — AnAm — AmAn
and
det(A™) =1
for all integer m and n.
Theorem 7.2. Form,n > 0 we have
2(Vigm+2 = Vagmt1) = (Vags — Vag2)(Rmg2 — Rmt1) (7.4)

+(Vatz — Vag1)(Rm43 — Rm2) + (Vag1 — Vo) (Rm41 — Rm).

Proof. From the equation D, +,, = D, B,, = B, D, we see that an element of D,, 1, is the product
of row D,, and a column B,,. From the last equation we say that an element of D,, ., is the product
of a row D,, and column B,,. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices D,,+., and D,, B,,,. This completes the proof.
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Remark 7.1. By induction, it can be proved that for all integers m,n < 0, (7.4) holds. So for all

integers m, n, (7.4) is true.

Corollary 7.3. For all integers m,n, we have

2(Rn+m+2 - Rn+m+1)

(Rn+3 — Rng2)(Rm+2 — Rm41)

+(Rn+2 - Rn+1)(Rm+3 - Rm+2) + (Rn+1 - Rn)(RTrH»l - Rm),

2(CﬂH-m—O-2 - Cn+m+1)

(Cniz — Cny2)(Rmi2 — Rm1)

+(Cnt2 — Cnt1)(Rm+3 — Rm+2) + (Cnt1 — Cn)(Rm+1 — Rm),

2(CTVn+m-‘,-2 - Gn+m+1)

(Gnts — Gni2)(Rm42 — Rmy1)

+(Gn+2 - Gn+1)(Rm+3 - Rm+2) + (Gn+1 - Gn)(Rm+1 - Rm)7

2(B7L+m+2 - Bn+m+1)

(Bn+3 - B7L+2)(Rm+2 - Rm+1)

+(Bn+2 - Bn+l)(Rm+3 - Rm+2) + (Bn+1 - Bn)(Rm+1 - Rm)

Note that using Theorem 7.1 (a) and the property

2Gn = Rn+3 - Rn+2
we see that
E,

G7z+1
Gn
anl

Gn—l
Gn—2
Gn73
We define
Vn+1
1 Vn
Vn—l

Gn
Gn—l
Gn72

Vn
Voo
Va

—2

anl
Vn72
Vn—S

) |

By,.

)

In this case, Teorem 7.1, Theorem 7.2 and Corollary 7.3 can be given as follows:

Theorem 7.4. For all integer m,n > 0, we have
(a) B, =A"

(b) E1A" = A"E;

(©) Enim = EnBy = BnE,.

Proof.

(a) The proof is given in Theorem 7.1.
(b) Using (a) and definition of F1, (b) follows.

(c) We have
0 2 1 Vi1 Vi Voo
AEp—1 = 1 0 0 Vieo Vo1 Vs
010 Vn73 Vn—2 Vn,4
Wi+ Vas 2Vp1+Varo 2Va_3+ Vi
= Vi1 Vo Vo
Vn—2 Vn—l Vn_g
Voo Varr Vi
= V-1 Va Vo = FE,,
Vn—2 Vn—l Vn_g

i.e. E, = AE,_1. From the last equation, using induction we obtain E,, = A" ' E;. Now

En+m = An+m_1E1 = An_lAmEl =

25
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and similarly,

Ernim = BB

Theorem 7.5. For all integers m,n, we have

Vn+'m =

n+1Gm—1 + VnGm + Vn—le_Q.

Proof. From the equation E,.+,, = E, B, = B, E, we see that an element of E,,;., is the product
of row E,, and a column B,,. From the last equation we say that an element of E,,,, is the product
of a row E,, and column B,,. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices F, ., and E, B,,. This completes the proof.

Corollary 7.6. For all integers m,n, we have

Rn+m

Cn+m

Gn+m

Bn-Hn

8 CONCLUSIONS

The sequences of numbers were widely used
in many research areas, such as physics,
engineering, architecture, nature and art.
Sequences of integer number such as Fibonacci,
Lucas, Pell, Jacobsthal are the most well-known
second order recurrence sequences. For rich
applications of these second order sequences in
science and nature, one can see the citations in
[28].

We introduce the generalized Pell-Padovan
sequence (it's four special cases, namely, Pell-
Padovan, Pell-Perrin, third order Fibonacci-Pell
and third order Lucas-Pell sequences) and we
present Binet's formulas, generating functions,
Simson formulas, the summation formulas, some
identities and matrices for these sequences.
For the application of Pell-Padovan numbers
to quaternions and groups see [20] and [19],
respectively. Third order sequences have many
other applications. We now present one of them.
The ratio of two consecutive Padovan numbers
converges to the plastic ratio, ap (which is given
n (8.1) below), which have many applications to
such as architecture, see [29]. Padovan numbers
is defined by the third-order recurrence relations
Pn+3:Pn+1+Pn, P0:1,P1:1,P2:1.
The characteristic equation associated with
Padovan sequence is 2> — z — 1 = 0 with roots

26

Ryy1Gm-1+ RnGm + Rn1Gm—2,
Crnt1Gm-1+CnGm + Cro1Gpy—2,
Gn+1Gm—-1+ GnGm + Gn-1Gm—2,
Bn+1Gm-1+ BnGm + Br—1Gp—a.

ap, Bp and yp in which
1/3 1/3

~ 1.32471795724

(8.1)
is called plastic number (or plastic ratio or plastic
constant or silver number) and

1

2

23

108

1

2

23

108

Pn+1 _

lim
n—r oo n

The plastic number is used in art and
architecture. Richard Padovan studied on plastic
number in Architecture and Mathematics in [30,
31].

As future work, we plan to study on the other third
order and higher order generalized sequences.
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