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Abstract

In this paper we analyze a Chemostat model of two species competing for a single limiting
nutrient input varied periodically using a Fourier series with discrete delays. To understand
global aspects of the dynamics we use an extension of the Hopf bifurcation theorem, a method
that rigorously establishes existence of a periodic solution. We show that the interior equilibrium
point changes its stability and due to the delay parameter it undergoes a Hopf bifurcation.
Numerical results shows that coexistence is possible when delays are introduced and Fourier
series produces the required seasonal variations. We also show that for small delays periodic
variations of nutrients has more influence on species density variations than the delay.
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1 Introduction

The study of Chemostat is important in ecology and has seen many researchers devote themselves to
studying and analyzing its models. Its an important piece of laboratory apparatus that is designed
for production and functional study of micro-organisms. One of the reasons why a chemostat is very
useful is that it can grow micro-organisms in a physiologically steady state and it has the capacity
to keep constant all environmental conditions hence making mathematics easily traceable ( [1], [2],
[3]). Mathematical modelling with time delays has proven to be very valuable in understanding
various dynamics both natural and man-made. Delays are common in many natural processes [4])
and ( [5]. When environments being modelled are not instantaneous, then they should include
delays. Such environments include those of the Chemostat [6], [7], [8] and [9]. The environments
of natural populations undergo temporal variation, causing changes in the growth characteristics of
populations. One of the methods of incorporating temporal non-uniformity of the environments in
models is to assume that the parameters are periodic. A good example of physical environmental
conditions that fluctuates with time is temperature, humidity, PH, and availability of important
resources such as water and food. All this vary with time and seasons. Researchers (see for
instance [10], [11], [12], [13] and [14]), have succeeded in showing that after adding a periodic
function to the Chemostat model, coexistent can occur. For some it is the reservoir nutrient
concentration that they varied periodically and for others it is the washout rate function. Either
way, both results proved coexistence was possible.

In this study we incorporate discrete delay to model the lag in the process of nutrient conversion as
well as vary the nutrient supply periodically by a Fourier series as opposed to the commonly used
sine function.

2 The model

The chemostat model of two species competing for a single, essential and growth limiting nutrient
with a periodic nutrient input and a delay term of τ > 0 is described by:

Ṡ(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t− S(t)

)
D0 −

µ1c1x1(t)S(t)

k1 + S(t)
− µ2c2x2(t)S(t)

k2 + S(t)

ẋ1 = x1(t)

(
µ1S(t− τ1)

k1 + S(t− τ1)
−D1

)
(2.1)

ẋ2 = x2(t)

(
µ2S(t− τ2)

k2 + S(t− τ2)
−D2

)
where:

S0(t) is the input concentration at time.
S(t) is the concentration of the substrate at time t.

xi(t) is the concentration of the ith species at time t.
D0 is the dilution rate
Di is the death rate for species i.

µi is the maximum specific growth rate for the ith species

ki is the Michaelis-Menten constant for the ith species

ci is the constant of proportionality and the content of the nutrient in the ith species

S(0) ≥ 0, x1 ≥ 0, x2 ≥ 0, and the delay term τ is given as τ1 for the first species and τ2 for the
second species. The nutrient input is given by a Fourier series function as
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S0(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t

)
. This models prolonged seasonal nutrient variations

better than the commonly used sine function ( [10], [14]).

The interior equilibrium point defined by model 2.1 is ξ = (S∗, x∗
1, x

∗
2).

We translate ξ = (S∗, x∗
1, x

∗
2) to the origin by letting S(t) = S(t) − S∗, x1(t) = x1(t) − x∗

1, x2(t) =
x2(t)− x∗

2

With this new transformation, model 2.1 now becomes:

Ṡ(t) = (S0(t)− S(t)− S∗)D0 −
µ1c1(x1(t) + x∗

1)(S(t) + S∗)

(k1 + S(t) + S∗)

−µ2c2(x2(t) + x∗
2)(S(t) + S∗)

(k2 + S(t) + S∗)

ẋ1(t) = −D1(x1(t) + x∗
1) +

µ1S(t− τ1) + S∗)(x(t) + x∗
1)

k1 + S(t− τ1) + S∗ (2.2)

ẋ2(t) = −D2(x2(t) + x∗
2) +

µ2S(t− τ2) + S∗)(x(t) + x∗
2)

k2 + S(t− τ2) + S∗

For simplicity we let:

f = (S0 − S(t)− S∗)D0 −
µ1c1(x1(t) + x∗

1)(S(t) + S∗)

(k1 + S(t) + S∗)
− µ2c2(x2(t) + x∗

2)(S(t) + S∗)

(k2 + S(t) + S∗)

g = −D1(x1(t) + x∗
1) +

µ1(S(t− τ1) + S∗)(x1(t) + x∗
1)

k1 + S(t− τ1) + S∗

h = −D2(x2(t) + x∗
2) +

µ2(S(t− τ2) + S∗)(x2(t) + x∗
2)

k2 + S(t− τ2) + S∗

We now linearize 2.2 around ξ = (S∗, x∗
1, x

∗
2) by taking the partial derivatives as follows:

∂f

∂x1
=

−µ1c1S
∗

k1 + S∗

∂f

∂x2
=

−µ2c2S
∗

k2 + S∗

∂f

∂S(t)
= −D0 −

k1x
∗
1µ1C1

(K1 + s∗)2
− k2x

∗
2µ2C2

(K2 + s∗)2

∂g

∂x1(t)
= −D1 +

µ1S
∗

k1 + S∗

∂g

∂S(t− τ1)
=

k1µ1x
∗
1

(k1 + S∗)2

∂h

∂x2(t)
= −D2 +

µ2S
∗

k2 + S∗

∂h

∂S(t− τ2)
=

k2µ2x
∗
2

(k2 + S∗)2
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Combining all the three equations, our linearized system now becomes:

Ṡ(t) =

(
−µ1c1S

∗

k1 + S∗

)
x1(t) +

(
− µ2c2S

∗

k2 + S∗

)
x2(t) +

(
−D0 −

k1x
∗
1µ1c1

(K1 + s∗)2
− k2x

∗
2µ2c2

(K2 + s∗)2

)
S(t)

ẋ1(t) =

(
−D1 +

µ1S
∗

k1 + S∗

)
x1(t) +

(
k1µ1x

∗
1

(k1 + S∗)2

)
S(t− τ1) (2.3)

ẋ2(t) =

(
−D2 +

µ2S
∗

k2 + S∗

)
x2(t) +

(
k2µ2x

∗
2

(k2 + S∗)2

)
S(t− τ2)

For brevity we can let:

a11 = − µ1c1S
∗

k1 + S∗

a12 = − µ2c2S
∗

k2 + S∗

a13 = −
(
D0 +

k1x
∗
1µ1c1

(k1 + S∗)2
+

k2x
∗
2µ2c2

(k2 + S∗)2

)
a21 =

(
−D1 +

µ1S
∗

k1 + S∗

)
a23 =

(
k1µ1x

∗
1

(k1 + S∗)2

)
a32 =

(
−D2 +

µ2S
∗

k2 + S∗

)
a33 =

(
k2µ2x

∗
2

(k2 + S∗)2

)
The linearized equation now becomes:

Ṡ(t) = a11x1(t) + a12x2(t) + a13S(t)

ẋ1(t) = a21x1(t) + 0x2(t) + a23S(t− τ1) (2.4)

ẋ2(t) = 0x1(t) + a32x2(t) + a33S(t− τ2)

The characteristics equation corresponding to 2.4 is given by the polynomial

λ3−a11λ
2−a21a12λ−a13a21a32+(−a33λ

2+a11a33−a21a12a33)e
−λτ2+(−a32a23λ+a32a23a11)e

−λτ1 = 0
(2.5)

For brevity we can let:

A = −a11

B = −a21a12

C = −a13a21a32

D = −a33

E = a11a33

F = −a21a12a33

G = −a32a23

H = a32a23a11

The characteristics equation 2.5 is now simplified to:

λ3 +Aλ2 +Bλ+ C + (Dλ2 + Eλ+ F )e−λτ2 + (Gλ+H)e−λτ1 = 0 (2.6)
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3 Stability and Local Hopf Bifurcation

We will now analyze the stability of this characteristic equation and analyze when the Hopf
Bifurcation occurs.

In circumstances when either τ1 ̸= 0 or τ2 ̸= 0 we show that the interior equilibrium point
ξ = (S∗, x∗

1, x
∗
2) undergoes a Hopf bifurcation as either τ1 or τ2 increases from zero.

Theorem 3.1. From the characteristic equation 2.6 when τ1 = 0 and τ2 ̸= 0 and we let λ = ωi be
a root of 2.6, where (ω > 0) then:

τ2 =
1

ω

[
cos−1

(
(E −AD)ω4 + (EB1 +AF −DB2)ω

2 + FB2

D2ω4 − 2DFω2 + F 2

)
+ 2jπ,

]
j = 0, 1, 2...

Where the new terms;

B +G = B1

C +H = B2

And all the other terms are as defined above.

Proof. when τ1 = 0 and τ2 ̸= 0 the characteristic equation 2.6 will now become:

λ3 +Aλ2 + (B +G)λ+ (C +H) + (Dλ2 + Eλ+ F )e−λτ2 = 0

For simplicity we can let:

B +G = B1

C +H = B2

The equation now becomes:

λ3 +Aλ2 +B1λ+B2 + (Dλ2 + Eλ+ F )e−λτ2 = 0 (3.1)

We then let λ = ωi, (ω > 0) be a root of 3.1, therefore we shall have:

−ω3i−Aω2 +B1ωi+B2 + (−Dω2 + Eωi+ F )e−ωiτ2 = 0

Which we can write as

−ω3i−Aω2 +B1ωi+B2 + (−Dω2 + Eωi+ F )(cosωτ2 − i sinωτ2) = 0

Which implies

−ω3i − Aω2 + B1ωi + B2 − Dω2 cosωτ2 + Eωi cosωτ2 + F cosωτ2 + Dω2i sinωτ2 + Eω sinωτ2 −
iF sinωτ2 = 0

Separating the real and the imaginary parts yields:

−ω3 +B1ω + Eω cos τ2 +Dω2 sinωτ2 − F sinωτ2 = 0

−Aω2 +B2 −Dω2 cosωτ2 + F cosωτ2 + Eω sinωτ2 = 0

and we re-write it as

Eω cos τ2 + (Dω2 − F ) sinωτ2 = ω3 +B1ω

Eω sinωτ2 + (F −Dω2) cosωτ2 = Aω2 +B2 (3.2)
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This leads to:(
E2ω2 − (F −Dω2)2

)
cosωτ2 =

(
Eω(ω3 +B1ω)

)
−
(
Dω2 − F )Aω2 +B2

)
Which yields

τ2 =
1

ω

(
cos−1

(
Eω(ω3 +B1ω)− (Dω2 − F )Aω2 +B2

E2ω2 − (F −Dω2)2

)
+ 2jπ

)
, j = 0, 1, 2...

Collecting the like terms together the equation further simplifies to:

τ2 =
1

ω

[
cos−1

(
(E −AD)ω4 + (EB1 +AF −DB2)ω

2 + FB2

D2ω4 − 2DFω2 + F 2

)
+ 2jπ,

]
j = 0, 1, 2... (3.3)

Which completes the proof

Theorem 3.2. If there exist a polynomial of the form:

ω6 + pω4 + qω2 + r = 0 (3.4)

and let S = ω2 then, the polynomial 3.4 has atleast 3 positive roots ωn =
√
Sn where n = 1, 2, 3 and

therefore ±iωn are purely imaginary roots of equation 3.1

Proof. If solve simultaneously system 3.2 and Square both sides we shall have:

Eω2 cos2 ωτ2 + 2(Dω2 − F )Eω cosωτ2 sinωτ2 + (Dω2 − F )2 sin2 ωτ2 = ω6 + 2B1ω
4 +B1ω

2

E2ω2 sinωτ2 − 2(Dω2 − F )Eω cosωτ2 sinωτ2 + (F −Dω2)2 cos2 ωτ2 = Aω4 + 2AB2ω
2 +B2

2

Adding up the two equations yields:

ω6 + (2B1 +A−D2)ω4 + (B2
1 + 2AB2 − E2 + 2DF )ω2 − F 2 +B2

2 = 0 (3.5)

For simplicity we can let:

(2B1 +A−D2) = p

(B2
1 + 2AB2 − E2 + 2DF ) = q

−F 2 +B2
2 = r

Therefore equation 3.5 now becomes:

ω6 + pω4 + qω2 + r = 0 (3.6)

If we denote S = ω2 then, we obtain:

S3 + pS2 + qS + r = 0 (3.7)

According to Routh-Hurwitz criterion, [15] the polynomial 3.7 holds the following results:

• If S < 0 then, the equation 3.7 has atleast one positive root.

• If S ≥ 0 then, the equation 3.7 has no positive root.

• If S ≥ 0 and η = p2 − 3q > 0 then, equation 3.7 has positive roots iff S =
−P +

√
η

3
> 0

If 3.7 has positive roots then without loss of generality we can assume that the 3 roots are all
positive defined by S1, S2, S3. Its then true to conclude that equation 3.6 has three positive roots
defined by ωn =

√
Sn where n = 1, 2, 3.
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Consequently, when n = 1, 2, 3 then, equation 3.3 is denoted by

τ j
n =

1

ωn

[
cos−1

(
(E −AD)ω4

n + (EB1 +AF −DB2)ω
2
n + FB2

D2ω4
n − 2DFω2

n + F 2

)
+ 2jπ,

]
where:

(j = 0, 1, 2...) and (n = 1, 2, 3)

With ±iωn being the purely imaginary roots that has negative real parts for τn, which completes
the proof.

Theorem 3.3. Let λ(τ) = α(τ)+iω(τ) be the root of 3.1 near τ = τj satisfying ατj = 0, ω(τj) = ω0

then the following transversal condition holds:

α′(τ2)
−1|

τ=τ
j
n
= Re

[
dλ

dτ2

]−1

τ2=τ
j
n

̸= 0

Where: n = 1, 2, 3 and j = 0, 1, 2...

Proof. We consider the characteristic polynomial labelled 3.1 and evaluate the derivative of λ
implicitly with respect to τ2 to get:

3λ2 dλ

dτ2
+2Aλ

dλ

dτ2
+B1

dλ

dτ2
+(Dλ2 +Eλ+F )

(
−e−λτ2λ− e−λτ2τ2

dλ

dτ

)
+ e−λτ2

(
dλ

dτ
+ E

dλ

dτ

)
= 0

leading to

dλ

dτ
=

λe−λτ2
(
Dλ2 + Eλ+ F

)
3λ2 + 2Aλ+B1 − τ2e−λτ2 (Dλ2 + Eλ+ F ) + e−λτ2 (2Dλ+ E)

(3.8)

or: (
dλ

dτ

)−1

=
3λ2 + 2Aλ+B1e

λτ2

λ (Dλ2 + Eλ+ F )
+

(2Dλ+ E)

λ (Dλ2 + Eλ+ F )
− τ2

λ
(3.9)

with λ = ωni and τ2 = τ j
n, simply denoted here as τj , equation 3.9 becomes:(

dλ

dτ

)−1

=

(
−3ω2

n + 3Aωni+B1

)
eωniτj

−Diω3
n − Eω2

n + Fωni
+

(2Dωni+ E)

−Diω3
n − Eω2

n + Fωni
− τj

ωni
(3.10)

which leads to

=
1

Ω
(−3ω2

n cosωnτj − 3ω2
ni sinωnτj + 2Aωni cosωnτj − 2Aωn sinωnτj +B1 cosωnτj

+B1i sinωnτj + 2Dωni+ E)− τj
ωni

(3.11)

where Ω =
(
−Eω2n+ (Fωn −Dω3)i

)
or (

dλ

dτ

)−1

=
1

Θ

(
3Eω4

n cosωnτj + 3Fω3
ni cosωnτj − 3iDω5

n cosωnτj +

3Eω4 sinωnτj − 3Fω3i cosωnτj − 3iDω5
n cosωnτj −

2AEω3
ni cosωnτj + 2AFω2

n cosωnτj − 2ADω4
n cosωnτj +

+2AEω3
n sinωnτj + 2AFω2

ni sinωnτj − 2ADiω4
n sinωnτj −

B1Eω2
n cosωnτj −B1Fωni cosωnτj +B1Diω3

n cosωnτj −
B1Eω2

ni sinωnτj +B1Fωn sinωnτj −B1Dω3
n sinωnτj − 2DEω3

ni+

2DFω2
n − 2D2ω4

n − E2ω2
n − FEωni+ EIDω3

n

)
+

τji

ωn
(3.12)
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Where:
Θ = E2ω4

n + (Fωn −Dω3
n)

2

The real part of this complex function is:

Re

(
dλ

dτ

)−1

=
1

Θ

(
3Eω4

n cosωnτj − 3Fω3
n sinωnτj + 3Dω5

n cosωnτj +

2AFω2
n cosωnτj − 2ADω4

n cosωnτj + 2AEω3
n sinωnτj −

B1Eω2
n cosωnτj +B1Fωn sinωnτj −B1Dω3

n sinωnτj +

2DFω2
n − 2D2ω4

n − E2ω2
n

)
̸= 0 (3.13)

This completes the proof.

Lemma 3.4. When theorem 3.1, 3.2 and 3.3 hold, then as τ2 increases from zero, there exist a
critical value say α such that the equilibrium point ξ = (S∗, x∗

1, x
∗
2) is locally asymptotically stable

and unstable as τ2 rises greater than the critical value such that τ2 > τα.
In addition, the system 2.1 demonstrates Hopf bifurcation at the positive equilibrium point ξ =
(S∗, x∗

1, x
∗
2) for τ2 = τ j

n, (j = 0, 1, 2, ...) as delay increases past the critical value.

4 Numerical Results

Numerical results when τ1 = 0 and τ2 ̸= 0 given in the figures below are agreement with the
analytical results presented in the Theorems above including lemma 3.4.

Table 1. Parameter values used to graph figures when τ1 = 0 and τ2 ̸= 0

History Time S0 c1 c2 D0 = D1 = D2 µ1 = µ2 k1 = k2 b ω

[6,5,4] [0,900] 11 1 1 0.4675 0.571 0.5 8 π

The graphical representation with τ1 = 0 and τ2 = 1 with b = 0 is

Fig. 1. A graph showing coexistence of two species at the equilibrium point, τ2 = 1

The positive equilibrium of the system 2.1 is locally asymptotically stable for τ1 = 0 and τ2 = 1,
with the equilibrium points being (S∗, x∗

1, x
∗
2)=(2.2579, 4.7342, 4.007)

100



Ireri et al.; JAMCS, 35(3): 93-105, 2020; Article no.JAMCS.58036

Fig. 1. demonstrates that even with small delays and no periodicity, coexistence of the two
competing species is possible. This contrasts sharply with the results from a Chemostat model
without delays, which usually predicts competitive exclusion. Hence incorporating delays results in
a chemostat model that more closely predicts natural like environments.

A major weakness in this figure is that the density of both species is constant. This is not what
is observed in natural environment. clearly, there is need to modify the model so that even with
small delays, the naturally observed variations are reproduced.

As we increase the delay τ2, the density of species x2 keeps increasing while that of x1 keeps
decreasing. At τ2 = 7, the species x2 is the dominant species with the changeover taking place at
τ2 = 3.8

Fig. 2. A graph showing Coexistence at , τ2 = 7

However when we get near the bifurcation point which occurs at τ2 = 24, periodic variations keeps
being persistence for longer. The diagram is as shown in the Fig. 3.

The Figure illustrates the effects of large delays. The results are similar to those in Fig. 2. in terms
of coexistence. In the event we have competing species, coexistence is guaranteed and variations on
species density is clearly demonstrated. However in order to model variations for both small and
large variations we incorporate periodicity in form of Fourier series function.

Incorporation of periodic nutrient input through a Fourier series function results in an even better
model on natural environments as demonstrated by figure 4 with τ1 = 0 and τ2 = 1. The simulations
gives interesting insights into the model. We see that even in times of below-average nutrient supply,
there are occasional spices as expected in natural environments. In nature, assuming nutrients is
washed into a lake by rain water, we do expect occasional rains that add nutrients. This is especially
true in the tropics. The results agree with those obtained in Fig. 1. and as τ2 increases, so does its
average density.

It is important to note that in chemostat equations, when we use a Fourier series to vary the
nutrients periodically as well as evaluate the discrete delay at the bifurcation point τ2 = 24, then
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Fig. 3. A graph showing Bifurcation at , τ2 = 24

Fig. 4. A graph of two species at, τ2 = 1 with periodic nutrient

periodicity seems to be caused more by the delay other than the periodic term.
Fig. 3. shows a diagram for a model without periodic nutrient input while Fig. 5. shows the
same diagram with periodic nutrient input. While the equilibrium points remain similar in both
diagrams, Fig. 5. shows regions where the influence of either the periodic nutrient input or delays
play a major role. Fig. 4. clearly confirms that when the delay is small, then periodicity is more
significant and both play a big role in modelling natural environments.
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Fig. 5. A graph of two species at the bifurcation point, τ2 = 24 with periodic nutrient

These results are replicated if we let τ1 ̸= 0 and τ2 = 0

When we have τ1 > 0, and τ2 > 0, and nutrient input varied periodically, numerical computation
show that species coexist.

Fig. 6. A graph of two species with two distinct delays τ1 = 1 and τ2 = 3 and periodic
nutrient input

This is the situation that mimics nature more accurately. Species naturally lives in the same
ecosystem even in cases where we have some limited nutrients. In addition, species usually contain
delays even though some species may have smaller or larger delays compared to others and depending
on the problem being modelled. It’s unlikely that any of the delays will be zero at any time. In
addition when both delays are greater than zero,we note that the species with the larger delay
seems to persist in higher density than those with smaller delay. When delay terms are incorporated
with periodic nutrient, they also mimic the natural environment closely. Naturally, even though
competing species coexist, they comprise of distinct delay terms.
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Fig. 7. Graph of τ1 = 1and τ2 = 17 and
periodic nutrient input

Fig. 8. Graph of τ1 = 17and τ2 = 1 and
periodic nutrient input

5 Conclusion

The inclusion of discrete delays in a periodic chemostat model to cater for the time taken in nutrient
conversion is not just an approach to ensure coexistence holds but also a natural fact to explain that
consumption cannot at any time imply instant growth. Both numerical and analytical computations
show that incorporating delay terms provokes periodic solutions. It is also clear that incorporating
both delays and periodicity results in a much better prediction of natural environments and both
play an important role in determining how species coexist with each other. The model where the
two delays are distinct are more realistic because species do not contain the same delays in size,
growth and development, as well as age, which are the main factors that define maturity. The
species with larger delay exists in a greater density compared to the one with small delays as shown
in Fig. 7 and 8.
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