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Abstract

Discussions are presented by Morita and Sato on the problem of obtaining the particular solution of an
inhomogeneous differential equation with polynomial coefficients in terms of the Green’s function. In
succeeding papers, Morita gave discussions of this problem on the basis of nonstandard analysis. It was
applied to the hypergeometric, the Hermite, a simple ordinary and a fractional differential equation. In the
present paper, this method is applied to the solutions of inhomogeneous and homogeneous Heun’s differential
equations.
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1 Introduction

In a series of papers, Morita and Sato (2017, 2021) and

Morita (2022, 2023, 2024) studied the problem of obtaining the particular solutions of differential equations by
using the Green’s function and nonstandard analysis. In paper Morita and Sato (2017), this problem is studied
in the framework of distribution theory, where the method is applied to Kummer’s and the hypergeometric
differential equation. In paper Morita and Sato (2021), this problem is studied in the framework of nonstandard
analysis, where a recipe of solution of the present problem is presented, and it is applied to a simple fractional
and a first-order ordinary differential equation. In paper Morita (2022), a compact recipe based on nonstandard
analysis is obtained by revising the one given in Morita and Sato (2021), and is applied to Kummer’s differential
equation.

In Morita (2023), we adopt a recipe without the Green’s function, and is applied to the hypergeometric differential
equation, the differential equations treated in Morita and Sato (2021) and the Hermite differential equation. In
Morita (2024), we study the same differential equations as in Morita (2023), but the solutions are expressed in
terms of the Green’s function.

The purpose of the present paper is to give solutions of inhomogeneous and homogeneous Heun’s differential
equation, by using the method presented in Morita (2024).

The presentation follows those in Morita and Sato (2017, 2021); Morita (2022), in Introduction and in many
descriptions in the following sections.

We use Riemann-Liouville fractional integrals and derivatives, whose definition is given in Morita and Sato
(2013); Podlubny (1999), and also in Morita (2022, 2023, 2024). The property which we use is presened in
Section 1.1. The properties which we use in nonstandard analysis, are presented in Section 1.2, following papers
Morita (2022, 2023, 2024).

1.1 Riemann-Liouville fractional integrals and derivatives

We give here some notations to be used. Z is the set of all integers, R and C are the sets of all real numbers and
all complex numbers, respectively, and Z>a = {n ∈ Z | n > a}, Z<b = {n ∈ Z | n < b} and Z[a,b] = {n ∈ Z | a ≤
n ≤ b} for a, b ∈ Z satisfying a < b. We also use R>a = {x ∈ R | x > a} for a ∈ R, and C+ = {z ∈ C | Re z > 0}.

We use the step function H(t) for t ∈ R, which is equal to 1 if t > 0, and to 0 if t ≤ 0, and hk, which denotes
hk = 1 if k ∈ Z>−1, and hk = 0 if k ∈ Z<0.

We use the Riemann-Liouville fractional integral and derivative RD
ρ
t for ρ ∈ C, which is defined in the following

remark, that is given in Morita (2022, 2023, 2024).

Remark 1.1. Let gν(t) =
1

Γ(ν)
tν−1H(t) for ν ∈ C. Then gν(t) = 0 if ν ∈ Z<1, and if ν /∈ Z<1,

RD
ρ
t gν(t) = RD

ρ
t

1

Γ(ν)
tν−1H(t) =

1

Γ(ν − ρ)
tν−ρ−1H(t) = gν−ρ(t). (1)

As a consequence, we have RD
ν+n
t gν(t) = g−n(t) = 0 for n ∈ Z>−1.

In distribution theory Morita and Sato (2017); Schwartz (1966); Gelfand and Silov (1964); Zemanian (1965), we
use distribution H̃(t), which corresponds to function H(t), differential operator D and distribution δ(t) = DH̃(t),
which is called Dirac’s delta function.
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1.2 Preliminaries on nonstandard analysis

In nonstandard analysis Diener and Diener (1995), infinitesimal numbers appear. We denote the set of all
infinitesimal real numbers by R0. We use also its subset R0

>0 given by R0
>0 = {ϵ ∈ R0 | ϵ > 0}, which is such that

if ϵ ∈ R0
>0, there exists N ∈ Z>0 satisfying ϵ < 1

N
. Now R0 = R0

>0 ∪ {0} ∪ R0
<0, where R0

<0 = {ϵ ∈ R0 | ϵ < 0}.

We use Rns, which has subsets R and R0. If x ∈ Rns and x /∈ R, x is expressed as x1 + ϵ by x1 ∈ R and
ϵ ∈ R0, where x1 may be 0 ∈ R. Equation x ≃ y for x ∈ Rns and y ∈ Rns, is used, when x − y ∈ R0. We
denote the set of all infinitesimal complex numbers by C0, which is the set of complex numbers z which satisfy
|Re z| + |Im z|∈ R0. We use Cns, which has subsets C and C0. If z ∈ Cns and z /∈ C, z is expressed as z1 + ϵ by
z1 ∈ C and ϵ ∈ C0, where z1 may be 0 ∈ C.

In place of (1), we now use

RD
ρ
t gν+ϵ(t) = RD

ρ
t

1

Γ(ν + ϵ)
tν−1+ϵH(t) = gν−ρ+ϵ(t) =

1

Γ(ν − ρ+ ϵ)
tν−ρ−1+ϵH(t), (2)

for all ρ ∈ C and ν ∈ C, where ϵ ∈ R0
>0.

Lemma 1.1. Let ρ1 ∈ C, ρ2 ∈ C, ν ∈ C, ϵ ∈ R0
>0 and gν+ϵ(t) =

1
Γ(ν+ϵ)

tν+ϵ−1H(t). Then the index law:

RD
ρ1
t RD

ρ2
t gν+ϵ(t) = RD

ρ1+ρ2
t gν+ϵ(t) = gν−ρ1−ρ2+ϵ(t), (3)

always holds.

In nonstandard analysis, in place of H̃(t) and δ(t) in distribution theory, Hϵ(t) and δϵ(t) are used, which are
given by

Hϵ(t)=RD
−ϵ
t H(t) = g1+ϵ(t) =

1

Γ(ϵ+ 1)
tϵH(t), δϵ(t) =

d

dt
Hϵ(t) (4)

for ϵ ∈ R0
>0. We note that they tend to H(t) and 0, respectively, as ϵ → 0.

Lemma 1.2. In the notation in Remark 1.1, Hϵ(t) = g1+ϵ(t), δϵ(t) = gϵ(t), and

RD
ϵ
tHϵ(t) = RD

ϵ
tg1+ϵ(t) = g1(t) = H(t), RD

ϵ
tδϵ(t) = RD

ϵ
tgϵ(t) = g0(t) = 0. (5)

2 Heun’s Differential Equation

Before writing Heun’s differential equation, we present a related differential equation given by

p(RDt, t)u(t) := {(t− t3)(t− t1)(t− t2)
d2

dt2

+[γ3(t− t1)(t− t2) + γ1(t− t2)(t− t3) + γ2(t− t3)(t− t1)]
d

dt

+(α1β1t− α1β1q0)}u(t) +D0 · RD−1
t u(t) = f(t), (6)

where t1, t2, t3, γ1, γ2, γ3, α1, β1, q0 and D0 are constants. We express this equation as follows:

p(RDt, t)u(t)= [(A0 +A1t+A2t
2 +A3t

3)
d2

dt2
+ (B0 +B1t+B2t

2)
d

dt

+(C0 + C1t)]u(t) +D0 · RD−1
t u(t) = f(t), (7)

where

A0 = −t1t2t3, A1 = t1t2 + t2t3 + t3t1, A2 = −t1 − t2 − t3, A3 = 1,

B0 = γ1t2t3 + γ2t3t1 + γ3t1t2,

B1 = −γ1(t2 + t3)− γ2(t3 + t1)− γ3(t1 + t2), B2 = γ1 + γ2 + γ3,

C0 = −α1β1q0, C1 = α1β1, D0 = 0. (8)
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Heun’s equation is given by

pHe(t,RDt)u(t) := {t(t− 1)(t− t2)
d2

dt2

+[γ3t2 − [α1 + β1 + 1− γ1 + (γ1 + γ3)t2]t+ (α1 + β1 + 1)t2]
d

dt
−α1β1q0 + α1β1t}u(t) = f(t). (9)

This equation is a special one of Equations (6), in which t1 = 1, t3 = 0, γ2 = α1 + β1 + 1− γ1 − γ3 and D0 = 0.
As a consequence, we have the following lemma.

Lemma 2.1. Heun’s equation (9) is expressed by the equation which is obtained from Equation (7), by replacing
p(t,RDt) by pHe(t,RDt), and adopting

A0 = 0, A1 = t2, A2 = −(1 + t2), A3 = 1, (10)

B0 = γ3t2, B2 = γ1 + γ2 + γ3 = α1 + β1 + 1,

B1 = −[α1 + β1 + 1− γ1 + (γ1 + γ3)t2] = −[γ1t2 + γ2 + γ3(t2 + 1)],

C0 = −α1β1q0, C1 = α1β1, D0 = 0, (11)

in place of Equation (8).

2.1 Transformed equations of Equation (7) and Heun’s Equation (9)

We now consider the equation which is satisfied by w̃(t) = RD
−β
t ũ(t) = RD

−β
t RD

−ϵ
t u(t) = RD

−ρ
t u(t), for β ∈ C,

ϵ ∈ Ro
>0 and ρ = β + ϵ, when u(t) satifies Equation (7).

Lemma 2.2. Let u(t) be a solution of Equation (7), and w̃(t) be given by w̃(t) = RD
−ρ
t u(t). Then w̃(t) satisfies

pρ(RDt, t)w̃(t) :=RD
−ρ
t p(RDt, t)RD

ρ
t w̃(t)

= {A0
d2

dt2
+ [A1t

d2

dt2
+ B̃0(ρ)

d

dt
] + [A2t

2 d2

dt2
+ B̃1(ρ)t

d

dt
+ C̃0(ρ)]

+[A3t
3 d2

dt2
+ B̃2(ρ)t

2 d

dt
+ C̃1(ρ)t] + D̃0(ρ) · RD−1

t }w̃(t)

= f̃β(t) := RD
−ρ
t f(t), (12)

where

B̃0(ρ) = B0 −A1ρ, B̃2(ρ) = B2 −A3 · 3ρ, B̃1(ρ) = B1 −A2 · 2ρ,
C̃0(ρ) = C0 −B1ρ+A2 · ρ(ρ+ 1) +A3 · 3ρ(ρ+ 1),

C̃1(ρ) = C1 −B2 · 2ρ+A3 · 3ρ(ρ+ 1),

D̃0(ρ) = D0 − C1ρ+B2 · ρ(ρ+ 1)−A3 · ρ(ρ+ 1)(ρ+ 2). (13)

We call Equation (12) a transformed equation of Equation (7). When Equation (8) with Equation (13) is adopted,
Equation (12) is a transformed equation of Equation (6).

Proof. Remark 9 in Morita (2022) shows that when ν ∈ C, n ∈ Z>−1, ũ(t) =
tν+ϵ

Γ(ν+ϵ+1)
and ũn(t) =

dn

dtn
ũ(t), we

have

RD
−ρ
t [tũn(t)]= t · RD−ρ

t ũn(t)− ρ · RD−ρ−1
t ũn(t),

RD
−ρ
t [t2ũn(t)]= t · RD−ρ

t [tũn(t)]− ρ · RD−ρ−1
t [tũn(t)]

= t2 · RD−ρ
t ũn(t)− 2ρt · RD−ρ−1

t ũn(t) + ρ(ρ+ 1) · RD−ρ−2
t ũn(t),

RD
−ρ
t [t3ũn(t)]= t2 · RD−ρ

t [tũn(t)]− 2ρt · RD−ρ−1
t [tũn(t)] + ρ(ρ+ 1) · RD−ρ−2

t [tũn(t)]

= t3 · RD−ρ
t ũn(t)− 3ρt2 · RD−ρ−1

t ũn(t) + 3ρ(ρ+ 1)t · RD−ρ−2
t ũn(t)

−ρ(ρ+ 1)(ρ+ 2) · RD−ρ−3
t ũn(t). (14)
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By using these relations in Equation (7), we obtain

pρ(RDt, t)w̃(t) :=RD
−ρ
t p(RDt, t)u(t) = {(A0 +A1t+A2t

2 +A3t
3)

d2

dt2

+(B0 +B1t+B2t
2 −A1ρ−A2 · 2ρt−A3 · 3ρt2)

d

dt
+C0 + C1t−B1ρ−B2 · 2ρt+A2 · ρ(ρ+ 1) +A3 · 3ρ(ρ+ 1)t

+[D0 − C1ρ+B2 · ρ(ρ+ 1)−A3 · ρ(ρ+ 1)(ρ+ 2)]RD
−1
t }w̃(t)

= f̃β(t) := RD
−ρ
t f(t). (15)

This equation is expressed by Equation (12).

As a corollary of this lemma, we have the following lemma.

Lemma 2.3. Let u(t) be a solution of Equation (7), and ũ(t) be given by ũ(t) = RD
−ϵ
t u(t). Then we obtain the

following equation from Equation (12), by replacing ρ by ϵ and w̃(t) by ũ(t):

pϵ(RDt, t)ũ(t) := RD
−ϵ
t p(RDt, t)RD

ϵ
t ũ(t) = f̃(t) := RD

−ϵ
t f(t), (16)

which is a transformed equation of Equation (7), when Equations (8) and (13) are adopted.

We denote the transformed equations of Heun’s equation (9), which correspond to Equations (12) and (16), by
Equations (12-He) and (16-He), respectively.

Lemma 2.4. Lemmas 2.2 and 2.1 show that Equation (12-He) is obtained from Equation (12) by replacing
pρ(RDt, t) by pρ,He(RDt, t), and p(RDt, t) by pHe(RDt, t), and using Equations (10) and (11) in place of
Equations (8). In this replacement, Equation (13) is replaced by

B̃0(ρ)= (γ3 − ρ)t2, , B̃2(ρ) = γ1 + γ2 + γ3 − 3ρ = α1 + β1 + 1− 3ρ,

B̃1(ρ)=−[α1 + β1 + 1− γ1 + (γ1 + γ3)t2] + (1 + t2) · 2ρ = B1 + (1 + t2) · 2ρ,
C̃0(ρ)=−α1β1q0 −B1ρ+ (2− t2) · ρ(ρ+ 1),

C̃1(ρ)=α1β1 − (α1 + β1 + 1) · 2ρ+ 3ρ(ρ+ 1) = (α1 − 2ρ)(β1 − 2ρ)− ρ2 + ρ,

D̃0(ρ)=−α1β1ρ+ (α1 + β1 + 1) · ρ(ρ+ 1)− ρ(ρ+ 1)(ρ+ 2)

= (α1 − ρ− 1)(β1 − ρ− 1)ρ. (17)

Lemmas 2.2 and 2.3 show that Equation (16-He) is obtained from Equation (12-He) by replacing ρ by ϵ, and
w̃(t) by ũ(t).

Lemma 2.5. Lemma 2.4 shows that when we put ρ = 0 and replace w̃(t) by u(t), Equation (12-He) is Heun’s
equation (9).

Remark 2.1. Lemma 2.4 shows that Equations (12-He) and (16-He) are transformed equations of Heun’s
equation (9). In Sections 2.2 and 3, we obtain the solution w̃(t) of Equation (12-He) for the inhomogeneous
term f̃β(t) = δϵ(t) = gϵ(t), and then we obtain ũ(t) and u(t), given by ũ(t) = RD

β
t w̃(t) and u(t) = RD

β+ϵ
t w̃(t),

which are the solutions of Equation (16-He) for the inhomogeneous term given by f̃(t) = RD
β
t δϵ(t) = gϵ−β(t)

and, Heun’s differential equation (9) for f(t) = RD
β
t δϵ(t) = g−β(t) for β /∈ Z>−1, respectively.

When β = 0, f(t) = 0 and hence the solution of Heun’s equation is a complementary solution, which is studied
in Section 4, and we do not consider the case of β = n ∈ Z>0, for which f(t) = g−n(t) = 0.
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2.2 Solutions of Heun’s differential equation

We now use w̃(t) and f̃β(t) expressed by

w̃(t) =

∞∑
k=0

pk
1

Γ(α+ k + 1)
tα+kH(t) =

∞∑
k=0

pkgα+k+1(t), (18)

f̃β(t) =

∞∑
k=0

ck
1

Γ(ϵ+ k)
tϵ+k−1H(t), (19)

where p0 ̸= 0, α = ν + ϵ or α = ν, ν ∈ C\Z<0 and ϵ ∈ R0
>0. We then prepare the following equations:

d

dt
w̃(t) =

∞∑
k=0

pkgα+k(t), t
d2

dt2
w̃(t) =

∞∑
k=0

pk(α+ k − 1)gα+k(t),

w̃(t) =

∞∑
k=1

pk−1 · gα+k(t), tn
dn

dtn
w̃(t) =

∞∑
k=1

pk−1(α+ k − n)n · gα+k(t), n ∈ Z[1,2],

tn
dn−1

dtn−1
w̃(t) =

∞∑
k=2

pk−2(α+ k − n)n · gα+k(t), n ∈ Z[1,3]; RD
−1
t w̃(t) =

∞∑
k=2

pk−2 · gα+k(t).

(20)

By using Equation (20), f̃β(t) given by Equation (19), and Equations (10) and (17), Equation (12-He) is expressed
as follows:

pρ,He(RDt, t)w̃(t) :=RD
−ρ
t pHe(RDt, t)RD

ρ
t w̃(t)

=

∞∑
k=0

{pk[A1(α+ k − 1) + B̃0(ρ)]− hk−1pk−1Qk(α, ρ)

+hk−2pk−2Rk(α, ρ)}
1

Γ(α+ k)
tα+k−1H(t) = f̃β(t), (21)

where hk−l = 1 if k − l ∈ Z>−1, hk−l = 0 if k − l ∈ Z<0, and

A1(α+ k − 1) + B̃0(ρ) = t2(α+ k − 1 + γ3 − ρ), (22)

Qk(α, ρ)=−[A2(α+ k − 2) + B̃1(ρ)](α+ k − 1)− C̃0(ρ), k ∈ Z>0, (23)

Rk(α, ρ)= [[A3(α+ k − 3) + B̃2(ρ)](α+ k − 2) + C̃1(ρ)](α+ k − 1) + D̃0(ρ), k ∈ Z>1. (24)

Lemma 2.6. Let f̃β(t) be given by Equation (19), A1(α + k − 1) + B̃0(ρ), Qk(α, ρ) and Rk(α, ρ) be given by
Equations (22), (23) and (24), and pk and α be so determined that

p0t2(α− 1 + γ3 − ρ)
1

Γ(α)
tα−1H(t) = c0

1

Γ(ϵ)
tϵ−1H(t), (25)

p1t2(α+ γ3 − ρ)− p0Q1(α, ρ)]
1

Γ(α+ 1)
tαH(t) = c1

1

Γ(ϵ+ 1)
tϵH(t),

pkt2(α+ k − 1 + γ3 − ρ)− pk−1Qk(α, ρ) + pk−2Rk(α, ρ)]
1

Γ(α+ k)
tα+k−1H(t)

= ck
1

Γ(ϵ+ k)
tϵ+k−1H(t), k ∈ Z>1. (26)

Then w̃(t) given by Equation (18) is a solution of Equation (21).
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Lemma 2.7. When c0 = 1, Equation (25) is satisfied by α = ϵ and p0 = 1
t2(ϵ−1+γ3−ρ)

.

Lemma 2.8. When c0 = 0 or ϵ = 0, the righthand side of Equation (25) is 0. In this case, Equation (25) is
satisfied by α = 0 or α = 1− γ3 + ρ, and by any value of p0.

Lemma 2.9. When ck = 0 for k ∈ Z>0, we use p̃k in place of pk
p0

for k ∈ Z>−1, Then the equations in Equation
(26) are expressed as p̃0 = 1 and

p̃k =
1

t2(k − 1 + α+ γ3 − ρ)
[p̃k−1Qk(α, ρ)− hk−2p̃k−2Rk(α, ρ)], k ∈ Z>0. (27)

We also use the coefficients Pk in place of p̃k. They are defined by p̃0 = P0 = 1 and

p̃k =
1

tk2(α+ γ3 − ρ)k
Pk, i.e. Pk = tk2(α+ γ3 − ρ)kp̃k, k ∈ Z>−1. (28)

Now in place of Equation (27), we have P0 = 1 and

Pk = Pk−1Qk(α, ρ)− t2(k − 2 + α+ γ3 − ρ)hk−2Pk−2Rk(α, ρ), k ∈ Z>0. (29)

3 Particular Solutions

In the present section, we consider the solution w̃(t) of Equation (21) in the form of Equation (18), assuming
that f̃β(t) = δϵ(t), c0 = 1, ck = 0 for k ∈ Z>0 and α = ϵ, in Equations (25) and (26).

Theorem 3.1. (i) In the above condition, Lemmas 2.7 and 2.9 show that the coefficints p0 and p̃k = pk
pk

for
k ∈ Z>−1 are given by

p0 =
1

t2(−1 + γ3 − β)
, p̃0 = 1, (30)

p̃k =
1

t2(k − 1 + γ3 − β)
[p̃k−1Qk(ϵ, ρ)− hk−2p̃k−2Rk(ϵ, ρ)], k ∈ Z>0, (31)

and the solution of Equation (21) is expressed by

w̃(t) =

∞∑
k=0

pk
1

Γ(ϵ+ k + 1)
tϵ+kH(t) = p0

∞∑
k=0

p̃k
1

Γ(ϵ+ k + 1)
tϵ+kH(t). (32)

Remark 2.1 shows that by using Equation (32), we obtain the solution ũ(t) = RD
β
t w̃(t) of Equation (16-He) for

f̃(t) = RD
β
t δϵ(t) and β ̸= Z>0, as follows:

ũ(t)= p0

∞∑
k=0

p̃k
1

Γ(ϵ+ k + 1− β)
tϵ+k−βH(t)

= p0
1

Γ(ϵ+ 1− β)

∞∑
k=0

p̃k
1

(ϵ+ 1− β)k
tϵ+k−βH(t), (33)

and u(t) = RD
ϵ
t ũ(t) is obtained from Equation (33).

(ii) We note that if we replace Qk(ϵ, ρ) and Rk(ϵ, ρ) in Equation (31) by Qk(0, β) and Rk(0, β), respectively, so
that p̃0 = 1, and

p̃k ≃ 1

t2(k − 1 + γ3 − β)
[p̃k−1Qk(0, β)− hk−2p̃k−2Rk(0, β)], k ∈ Z>0, (34)
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w̃(t) and ũ(t) given by Equations (32) and (33), respectively, are deviated by a contribution of O(ϵ), which can
be neglected, and hence we can adopt it.

By Equations (23), (24) and (17), Qk(0, β) and Rk(0, β) are given by

Q1(0, β)=α1β1q0 +B1β + (2− t2) · β(β + 1),

Qk(0, β)= [(1 + t2)(k − 2− 2β)−B1](k − 1) + α1β1q0 +B1β + (2− t2) · β(β + 1),

Rk(0, β)= [(k − 2 + α1 −
3

2
β)(k − 2 + β1 −

3

2
β)− (α1 + β1)

1

2
β +

3

4
β2 + β](k − 1)

−[(α1 − β − 1)(β1 − β − 1)− β − 1]β, k ∈ Z>1. (35)

Remark 3.1. Following Lemma 2.4 in Morita (2024), we denote the solution given by Equation (32), by
GHeun,β,ϵ(t, 0). When we put ϵ = 0 in this solution, the obtained GHeun,β,0(t, 0) = RD

ϵ
tGHeun,β,ϵ(t, 0) is a

complementary solution of Equation (21) for ϵ = 0.

The solutions ũ(t) and u(t) are expressed by RD
β
t GHeun,β,ϵ(t, 0) and RD

β+ϵ
t GHeun,β,ϵ(t, 0), respectively. When

β = 0, these solutions are expressed by GHeun,ϵ(t, 0) and GHeun,0(t, 0) = RD
ϵ
tGHeun,ϵ(t, 0), respectively.

Corollary 3.1. (i) When β = 0, ũ(t) given by Equation (33), in which β = 0, is a particular solution of
Equation (16-He) for f̃(t) = δϵ(t). In this case, in place of Equation (31), we have the equations which are
obtained from those in it by replacing β by 0 and ρ by ϵ.

(ii) Followig Theorem 3.1(ii), when β = 0, we may use Qk(0) and Rk(0) in place of Qk(0, β) and Rk(0, β) in
Equation (34), so that p̃0 = 1 and

p̃k ≃ 1

t2(k − 1 + γ3)
[p̃k−1Qk(0)− hk−2p̃k−2Rk(0)], k ∈ Z>0, (36)

where Qk(0) and Rk(0) are given by

Q1(0) := Q1(0, 0)=α1β1q0,

Qk(0) := Qk(0, 0)= [(1 + t2)(k − 2)−B1](k − 1) + α1β1q0, k ∈ Z>0,

Rk(0) := Rk(0, 0)= (k − 2 + α1)(k − 2 + β1)(k − 1), k ∈ Z>1. (37)

Remark 3.2. In Remark 3.1, the solution w̃(t) which appears in Theorems 3.1 is called GHeun,β,ϵ(t, 0).

3.1 Use of coefficients Pk

Theorem 3.2. (i) In Theorem 3.1(i), we have the particular solution of Equation (16-He), given by Equation
(33). We now define Pk by Equation (28) for α = ϵ, that is

p̃k =
1

tk2(γ3 − β)k
Pk, i.e. Pk = tk2(γ3 − β)kp̃k, k ∈ Z>−1. (38)

By using Equation (29) for α = ϵ, we obtain P0 = 1 and

Pk = Pk−1Qk(ϵ, ρ)− t2(k − 2 + γ3 − β)hk−2Pk−2Rk(ϵ, ρ), k ∈ Z>0. (39)

and then the particular solution of Equation (16-He), given by Equation (33), is expressed by

ũ(t)= p0

∞∑
k=0

Pk
1

(γ3 − β)kΓ(k + 1− β + ϵ)tk2
tk−β+ϵH(t). (40)

and u(t) = RD
ϵ
t ũ(t) is obtained from Equation (40).
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(ii) In Theorem 3.1(ii), it is proposed to use Equation (34) in place of Equation (31). We now propose to use
the following eqution in place of Equation (39):

Pk ≃ Pk−1Qk(0, β)− t2(k − 2 + γ3 − β)hk−2Pk−2Rk(0, β), k ∈ Z>0. (41)

Corollary 3.2. (i) When β = 0, ũ(t) given by Equation (40) is a particular solution of Equation (16-He) for
f̃(t) = δϵ(t), where Equation (39) for β = 0 is used.

(ii) Corresponding to Theorem 3.2(ii), when β = 0, we propose to use Equation (41), by replacing Qk(0, β) and
Rk(0, β) by Qk(0) and Rk(0), respectively, where Qk(0) and Rk(0) are given in Equation (37).

3.2 Use of coefficients ak

Theorem 3.3. (i) In Theorem 3.1, we have a particular solution ũ(t) of Equation (16-He) for the inhomogeneous
term f̃(t) = RD

β
t δϵ(t) = gϵ−β(t). We now define ak by

p̃k = (ϵ− β + 1)k · ak, i.e. ak =
1

(ϵ− β + 1)k
p̃k, k ∈ Z>−1, (42)

and then we see that the solution ũ(t) of Equation (16-He), given by Equation (33), is expressed by

ũ(t) = p0

∞∑
k=0

p̃k
1

Γ(ϵ− β + k + 1)
tϵ−β+kH(t) = p0

1

Γ(ϵ− β + 1)

∞∑
k=0

akt
ϵ−β+kH(t), (43)

where ak satisfy a0 = 1 and

ak =
1

(ϵ−β+k)
1

t2(k−1+γ3−β)
[ak−1Qk(ϵ, ρ)

− 1
ϵ−β+k−1

hk−2ak−2Rk(ϵ, ρ)], k ∈ Z>0. (44)

Remark 2.1 shows that u(t) = RD
ϵ
t ũ(t) is obtained from Equation (43).

(ii) Following Theorems 3.1(ii) and 3.2(ii), we now propose to use the following equtions in place of Equation
(44):

ak ≃
1

(ϵ− β + k)

1

t2(k − 1 + γ3 − β)
[ak−1Qk(0, β)

− 1

ϵ− β + k − 1
hk−2ak−2Rk(0, β)], k ∈ Z>0. (45)

Proof. By using the first equation of Equation (42) in Equation (31), we obtain

(ϵ− β + 1)kak =
1

t2(k − 1 + γ3 − β)
[(ϵ− β + 1)k−1ak−1Qk(ϵ, ρ)

−(ϵ− β + 1)k−2hk−2ak−2Rk(ϵ, ρ)], (46)

This gives Equation (44).

Corollary 3.3. (i) When β = 0, ũ(t) given by Equation (43) for β = 0, is a particular solution of Equation
(16-He) for f̃(t) = δϵ(t), where Equation (44) for β = 0 is used.

(ii) Corresponding to Theorem 3.3(ii), when β = 0, we propose to use Equation (45) for β = 0, by replacing
Qk(0, β) and Rk(0, β) by Qk(0) and Rk(0), respectively,

Remark 3.3. In Remark 3.1, the solutions ũ(t) and u(t) which appear in Theorems 3.1, 3.2 and 3.3 are called

RD
β
t GHeun,β,ϵ(t, 0) and RD

β+ϵ
t GHeun,β,ϵ(t, 0), respectively.

Remark 3.4. In Remark 3.1, ũ(t) which appear in Corollaries 3.1, 3.2 and 3.3, are called GHeun,ϵ(t, 0).
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4 Complementary Solutions

In the present section, we apply the results in Section 2.2, to the cases of β = 0 and f(t) = f̃β(t) = 0. Lemma
2.8 shows two choices. We first consider the case of α = ϵ = 0.

Remark 4.1. In Corollaries 3.1(i), 3.2(i) and 3.3(i), the solutions ũ(t) for the cases of β = 0, f(t) = f̃β(t) = δϵ(t)
and α = ϵ are given. The solutions u(t) in the present section, are obtained from them by u(t) = RD

ϵ
t ũ(t) or by

replacing ũ(t) by u(t), ϵ by 0, and a value of p0 by an arbitrary number.

Theorem 4.1. In the case stated above, Lemmas 2.8 and 2.9 show that by using Equations (19) and (27) for
α = ϵ = 0 and ρ = 0, a complementary solution u(t) of Equation (9) is given by

u(t) =

∞∑
k=0

pk
1

k!
tkH(t) = p0

∞∑
k=0

p̃k
1

k!
tkH(t), (47)

where p0 is any number, pk = p0p̃k for k ∈ Z>−1, and p̃k for k ∈ Z>−1 satisfy p̃0 = 1 and

p̃k =
1

t2(k − 1 + γ3)
[p̃k−1Qk(0)− hk−2p̃k−2Rk(0)], k ∈ Z>0, (48)

where Qk(0) and Rk(0) are given in Equation (37).

Note here that Equation (48) is obtained from Equation (36), by replacing ≃ by =.

Theorem 4.2. Lemmas 2.8 and 2.9 show that by using Equations (28) and (29) for α = ϵ = 0 and ρ = 0, Pk is
defined by p̃k = 1

tk2 (γ3)k
Pk, and the solution u(t) of Equation (9), given by Equation (47), is expressed as follows:

u(t) = p0

∞∑
k=0

Pk
1

(γ3)kk!
(
t

t2
)kH(t). (49)

Here p0 is any number, and Pk for k ∈ Z>−1 are given by P0 = 1 and

Pk = Pk−1Qk(0)− t2(k − 2 + γ3)hk−2Pk−2Rk(0), k ∈ Z>0. (50)

Theorem 4.3. The complementary solution of Heun’s differential equation (9), which is given by Equation (47),
is also expressed as follows:

u(t) = p0

∞∑
k=0

akt
k, (51)

where p0 is any number, and ak are related with p̃k by

p̃k = akk!, i.e. ak = p̃k
1

k!
, k ∈ Z>1. (52)

Then we cofirm that ak satisfy a0 = 1 and

ak =
1

(γ3 + k − 1)kt2
[ak−1Qk(0)−

1

k − 1
hk−2ak−2Rk(0)]

=
1

(γ3 + k − 1)kt2
{[ak−1[(1 + t2)(k − 2 + γ3) + γ2 + γ1t2](k − 1) + α1β1q0]

−hk−2ak−2(k − 2 + α1)(k − 2 + β1)}, k ∈ Z>0. (53)

Proof. By using the first equation of Equation (52) in Equation (48), we obtain

k! · ak =
1

t2(γ3 + k − 1)
[(k − 1)! · ak−1Qk(0)− (k − 2)! · hk−2ak−2Rk(0)].

This gives the first equality in Equation (53).
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This result is given in Section 3.3 in Arscott (1995) and in Section 8.2 in Kristenson (2010).

Remark 4.2. Remark 4.1 states that when p0 is given by Equation (30) for β = 0, the solutions u(t) in
Equations (47), (48) and (51) are obtained from the solutions ũ(t) given in Corollaries 3.1(i), 3.2(i) and 3.3(i).
In Remark 3.1, the solutions u(t) are called GHeun,0(t, 0).

4.1 Complementary solution, II

In Theorems 4.1∼4.3, we studied the case of f̃(t) = 0, β = 0 and α = ϵ = 0 in Lemma 2.8. We now study the
case of α = 1− γ3 and ϵ = 0 in place of α = ϵ = 0.

Theorem 4.4. Lemmas 2.8 and 2.9 show that by using Equations (19) and (27) for α = 1− γ3 and ρ = 0, we
obtain the complementary solution of Equation (9), given by

u(t)= p0

∞∑
k=0

p̃k
1

Γ(2− γ3 + k)
t1−γ3+kH(t)

=
1

Γ(2− γ3)
t1−γ3p0

∞∑
k=0

p̃k
1

(2− γ3)k
tkH(t), (54)

where p0 is any number, p̃0 = 1 and

p̃k =
1

t2k
[p̃k−1Qk(1− γ3)− hk−2p̃k−2Rk(1− γ3)], k ∈ Z>0, (55)

Qk(1− γ3) := Qk(1− γ3, 0)= [(1 + t2)(k − 1− γ3)−B1](k − γ3) + α1β1q0, k ∈ Z>0,

Rk(1− γ3) := Rk(1− γ3, 0)= [[(k − 2− γ3) + α1 + β1 + 1](k − 1− γ3) + α1β1](k − γ3)

= (k − 1− γ3 + α1)(k − 1− γ3 + β1)(k − γ3), k ∈ Z>1. (56)

Theorem 4.5. In Theorem 4.4, p0 is any number, and p̃k satisfiy Equation (55). By using Equation (28) for
α = 1− γ3 and ρ = 0, we define Pk by

p̃k =
1

tk2k!
Pk, i.e. Pk = tk2k! · p̃k, k ∈ Z>−1. (57)

Then Pk satisfy P0 = 1, and

Pk = Pk−1Qk(1− γ3)− t2(k − 1)hk−2Pk−2Rk(1− γ3), k ∈ Z>0. (58)

By using Equation (57) in Equation (54), the complementary solution of Equation (9) is expressed by

u(t) = p0

∞∑
k=0

Pk
1

tk2k! · Γ(1− γ3 + k + 1)
t1−γ3+kH(t). (59)

Proof. Using the first equation of Equation (57) in Equation (55), we obtain

1

tk2k!
Pk =

1

t2k
[

1

tk−1
2 (k − 1)!

Pk−1Qk(1− γ3)−
1

tk−2
2 (k − 2)!

hk−2Pk−2Rk(1− γ3)], (60)

which gives Equation (58).

Theorem 4.6. The complementary solution of Heun’s equation, which is given by Equation (54), is also
expressed as follows:

u(t)= p0
1

Γ(2− γ3)
t1−γ3

∞∑
k=0

akt
kH(t), (61)
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where p0 is any number, and ak are defined by

p̃k =(2− γ3)kak, i.e. ak =
1

(2− γ3)k
p̃k, k ∈ Z>−1. (62)

By using the first equation of Equation (62) in Equation (55), we obtain a0 = p̃0 = 1, and

ak =
1

(2− γ3)k
pk =

1

(2− γ3)kt2k
[p̃k−1Qk(1− γ3)− hk−2p̃k−2Rk(1− γ3)]

=
1

(2− γ3 + k − 1)t2k
[ak−1Qk(1− γ3)−

1

2− γ3 + k − 2
hk−2ak−2Rk(1− γ3)]

=
1

t2k(1− γ3 + k)
{ak−1[[(1 + t2)(k − 1) + γ2 + γ1t2](k − γ3) + α1β1q0]

−hk−2ak−2(k − 1− γ3 + α1)(k − 1− γ3 + β1)}, k ∈ Z>0. (63)

5 Conclusion

In a preceding paper Morita (2024) of the present author, the particular solutions of Kummer’s and the
hypergeometric differential equation are obtained for the inhomogeneous term given by f(t) = g−β(t) =

1
Γ(−β)

t−1−β for β ∈ C\Z>−1. When the desired solution of Kummer’s equation is u(t), we construct a

transformed differntial equation of Kummer’s equation, which is satisfied ũ(t) = RD
−ϵ
t u(t), and obtain its

solution ũ(t) and the desired solution by u(t) = RD
ϵ
t ũ(t).

In Section 3, we present the solution of the same problem for the case of Heun’s equation. The solutions obtained
are given in three formats.

In Section 4, we obtain two complementary solutions of Heun’s equation. They are expressed in three formats.
The complementary solution in one format is in agreement with a solution presented in the past, given in Section
3.3 in Arscott (1995) and in Section 8.2 in Kristenson (2010).
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