

International Journal of Environment and Climate Change

Volume 15, Issue 1, Page 140-155, 2025; Article no.IJECC.129710 ISSN: 2581-8627

(Past name: British Journal of Environment & Climate Change, Past ISSN: 2231-4784)

Exploring River's Flood Dynamics: Integrating HEC-RAS 1-D Modelling and Geospatial Techniques for the Karjan River in Gujarat's Narmada Basin, India

Anurag Bhargav a* and R.Suresh a

^a Department of Soil and Water Conservation Engineering, College of Agricultural Engineering and Technology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India.

Authors' contributions

This work was carried out in collaboration between both authors. Author AB wrote the manuscript, did statistical Evaluation and Conceptualization. Author RS evaluated and conceptualized the study. Both authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ijecc/2025/v15i14681

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/129710

Received: 08/11/2024 Accepted: 10/01/2025 Published: 15/01/2025

Original Research Article

ABSTRACT

Floods rank among the most devastating natural disasters, causing extensive damage to property and severe impacts on communities. Effective management and mitigation of flood risks necessitate reliable data regarding flood depth, discharge, and extent. The Karjan River Basin's low-lying regions experienced significant flooding in 2020. This research utilizes the latest new HEC-RAS version for one-dimensional hydrodynamic flood modelling for the Karjan River in low-

*Corresponding author: E-mail: anurag_bhargav@yahoo.com;

Cite as: Bhargav, Anurag, and R. Suresh. 2025. "Exploring River's Flood Dynamics: Integrating HEC-RAS 1-D Modelling and Geospatial Techniques for the Karjan River in Gujarat's Narmada Basin, India". International Journal of Environment and Climate Change 15 (1):140-55. https://doi.org/10.9734/ijecc/2025/v15i14681.

lying areas and the merging point of the Karjan River Basin in Narmada River, emphasizing geospatial techniques. The study showcases the analytical process of the new HEC-RAS v6 in spatial analysis. River features like bank lines and cross-sections were derived from ALOS Palsar for flood modeling. An unsteady flow simulation was conducted to model water dynamics, yielding water depth results viewable in the HEC-RAS geospatial RAS mapper. Flood depth maps created for 2020 reveal that areas low lying area i.e. Dhamncha, bhadam, Juna Rundh and surrounding area near the merging point of Karjan River are prone to floods when river discharge surpasses 8836 cubic meters per second. Model accuracy was verified by comparing simulated outcomes with historical data from the mentioned events, demonstrating the model's precision and reliability.

Keywords: Flood assessment; geospatial techniques; HEC-RAS; Karjan River; river dynamics.

1. INTRODUCTION

India faces significant challenges with floods, influenced by its diverse climate and rainfall patterns. The country's geographical diversity and monsoon-dependent climate make it highly susceptible to extreme weather events. Some areas experience severe flooding, while others suffer from drought (Chandole et al., 2024; Meena & Jha, 2022; Mondal & Mujumdar, 2012; Pal et al., 2022; Ramkar & Yadav, 2018; Sharma et al., 2024). The interplay of these extreme events poses significant threats to both the environment and the socio-economic fabric of the nation. Climate change has exacerbated these floods, particularly in India's drier regions (ASCE. 2018; Padikkal et al., 2020; Joshy et al., 2022 Mangukiya & Andharia, 2024; Mehta et al., 2023; Trivedi et al., 2023), leading to more frequent and severe flood events. Floods are among the world's most frequent and damaging natural disasters, and their occurrence and intensity are expected to increase due to climate change (Samarasinghe et al., 2010). To address these issues, experts use various tools to assess flood risks, identify flood-prone areas, and develop strategies to reduce potential damage.

From 1901 to 2020, heavy rainfall events tripled in northern and central India, likely due to warming in the Arabian Sea. As floods become more frequent, new approaches are needed. These may include improving water management structures, implementing early warning systems, smart land-use planning, working with natural water management, preparing communities, and setting aside funds for disasters (Mangukiya & Sharma, 2022; Mitsopoulos et al., 2022; Šakić Trogrlić et al., 2022; Sättele et al., 2016). Researchers gather data from various sources, including detailed elevation maps and on-site surveys, to create accurate flood models and validate their findings. Satellite imagery has proven useful in assessing flood risk (Hag et al., 2012). Patel and Dholakia (2010) proposed remote sensing and GIS techniques to identify flood plains areas in Surat. Similar techniques have been applied in other countries to develop flood mitigation plans (Mangukiya & Yadav, 2021; Trambadia et al., 2022; Wang et al., 2002) and assess coastal vulnerabilities (Malik & Abdalla, 2016). Wetlands play an important role in managing floods, and studies have shown how remote sensing and geographical information systems can help protect these areas (Deb & Talukdar, 2010). Researchers have also used various tools to map flood-prone areas in different parts of India (Kumar et al., 2017; NDMA, 2017; Samanta et al., 2018).

Factors like industrial development, cyclones. and urban growth contribute to flooding in regions like northern Australia while combining flood risk management with mapping systems has shown promise in mitigating impacts (Zerger & Wealands, 2004). Studies have addressed flood risks in diverse areas, from typhoon-prone Korea (Wang et al., 2002) to coastal regions threatened by sea-level rise (Malik & Abdalla, 2016). Following a catastrophic flood in Surat in 2006, researchers created detailed flood maps of low-lying areas (D. P. Patel & Srivastava, 2014), while similar predictive modeling was conducted for Navsari city (Pathan & Agnihotri, 2020). These studies collectively demonstrate how modern technology and mapping techniques can enhance flood prediction and preparation, potentially reducing damage and saving lives in vulnerable communities.

Flooding in the Karjan River has been a concern, particularly during heavy rainfall and other events due to overflowing conditions of the Narmada River which leads to flood-like conditions in the low-lying areas of the Karjan River. events highlight the challenges faced by communities in managing water levels and mitigating flood risks. This study has taken a significant step in this direction by river dynamics, flood flow multiple inflows, and single outflow conditions. The lower

Narmada basin encompasses rivers such as Ashvin, Kim, and Heran, small tributaries, and major tributaries like Karjan and Orsang extending downstream to the Gulf of Cambay and covering the Bharuch and Narmada districts. Flooding in the Karjan River is often caused by heavy rainfall, leading to waterlogging in various areas and rivers overflowing their banks. This study aims to demonstrate the application of the version 6.0 HEC-RAS (Hydrological Engineering Central Analysis System) to a onedimensional hydrodynamic flood model. This study focuses on the extraction of water geometry data from ALOS PALSAR DEM (Digital Elevation Model) using the RAS Mapper available HEC-RAS, geospatial tool in demonstrating the use of geospatial methods in flood production. The simulation results show the water depth at each turn during floods. This approach can be a useful tool for disaster management authorities for flood forecasting and flood-warning during future flood emergencies. study highlights the importance continuous research and innovation in flood management for the safety and well-being of communities in flood-prone areas.

2. METHODOLOGY

2.1 Study Area

The Karjan River Basin is one of the sub-basins of the Lower Narmada Basin which is the main focus of this study. Narmada River Basin is subdivided into subbasins: Sukhi, Rami, and Karjan. The Karjan River, a significant tributary of the Narmada River, originates from the Mandvi hills near Bilwan, located in the Trappean highlands. It flows predominantly northward for approximately 90 km, passing through the hilly terrain of Mosda-Sagbara and Dediyapada uplands. The river's journey through these highlands is characterized by its meandering path until it reaches the alluvial plains near

Jitnagar. Eventually, it converges with the Narmada River at Mota Bhilwada. The Taray and Daman Khadi are notable right-bank tributaries that join the Karian River in its upper reaches. enhancing its flow and hydrological significance in the region. Together with one of its tributaries, the Terav, it forms a "winding valley" in the faulted ridges and valleys of the Deccan Trap terrain south of the Narmada. Karjan River starts from Bardipada, which is closer to the Tapti River than Narmada, and its course in its first part consists of faults and cracks. However, it has a valley before emerging as a plain in the north. The Karjan Dam, an important structure within this basin, is located at approximately 22.504°N latitude and 73.405°E longitude. The right bank of the Karjan Reservoir was under consideration of this research (Fig.1).

2.2 Data Collection

The data for the hydrodynamic models were meticulously sourced from a variety of openaccess websites and administrative authorities. The ALOS PALSAR DEM, renowned for its high accuracy and detailed surface information, was obtained from the Alaska portal. With a spatial resolution of 12.5 meters, this Digital Elevation Model (DEM) leverages L-band synthetic aperture radar to penetrate through vegetation and provide precise ground elevation data. This makes it particularly useful for flood modeling in regions characterized by dense vegetation or complex terrain. An analysis of the research supplemented by Google region, underscores the significant impact of floods in the lower region. A site visit is planned to verify ground features and conduct a bank discharge survey to investigate the area's flooding. This survey is pivotal for validating the 1D hydraulic model results, as it confirms that the river has enough water up to the validation point to cause flooding.

Table 1. Data Acquisition table for modelling

Data types	Details	Data Source	Use of Data	Data Frequency
Digital elevation models	ALOS Palsar (12.5 m)	Japan Aerospace Exploration Agency (JAXA)	Terrain Model	-
Topographical drawings	1:50,000 scale	Survey of India	River reach generation	-
Stream gauge data	Karjan Dam	SSNNL	Model input variable	Daily
Water surface level data	Rajpipla Bridge	SSNNL	Manning roughness coefficient, validation	Daily

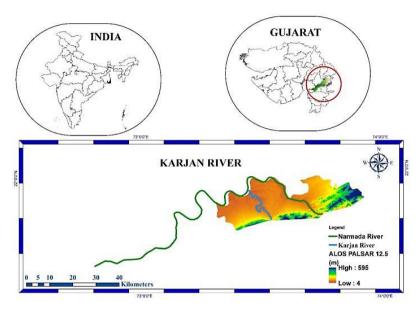


Fig. 1. Study area of Karjan River Basin

Stage-discharge information for the Karjan Dam was collected from SSNNL (Sardar Sarovar Narmada Nigam Limited). Historical flood data for the study area was collected from various official publications by the SANDARP (South Asian Networks on Dams, Rivers, and People), the Central Water Commission, India (CWC), and SSNNL authorities in Gandhinagar, Gujarat. The amalgamation of these data sources ensures a comprehensive understanding of the flood dynamics in the sub-basins of the Lower Narmada Basin Named as Karjan River Basin. Table 1 summarizes the relevant facts and data needed for the analysis.

3. METHODS

The HEC RAS 1-D hydrodynamic model, which uses mapping methods, is a fast and

accurate way to figure out how depth of the water will be in different places during a flood. This process of making a flood map has two parts: first, we organize the data with a mapping tool, and then the HEC RAS program is used to predict the flood. There's a chart (Fig. 2) that shows the steps of this method. In this connection. а model was developed with the river stage and cross-section analysis in order to overbank discharge of the river throughout the meeting point in Narmada River. Discharge data on a daily basis from Karjan dam as upstream boundary conditions and validation Raipipla designated as downstream boundary conditions as normal depth. River geometry was created with cross-section spacing of 200m each and 2000m wide.

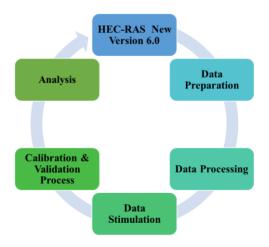


Fig. 2. Process flowchart

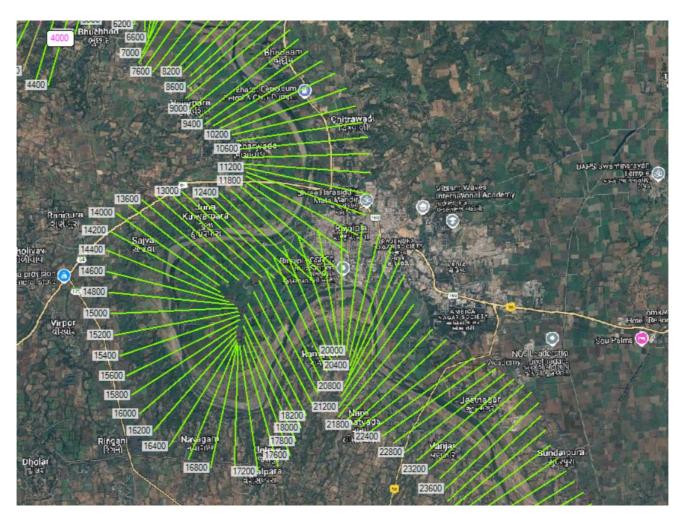


Fig. 3. River Cross Section

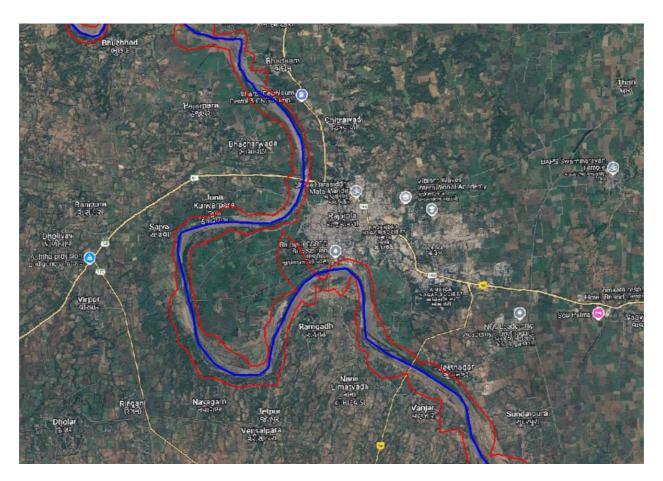


Fig. 4. River Bank line in Karjan River

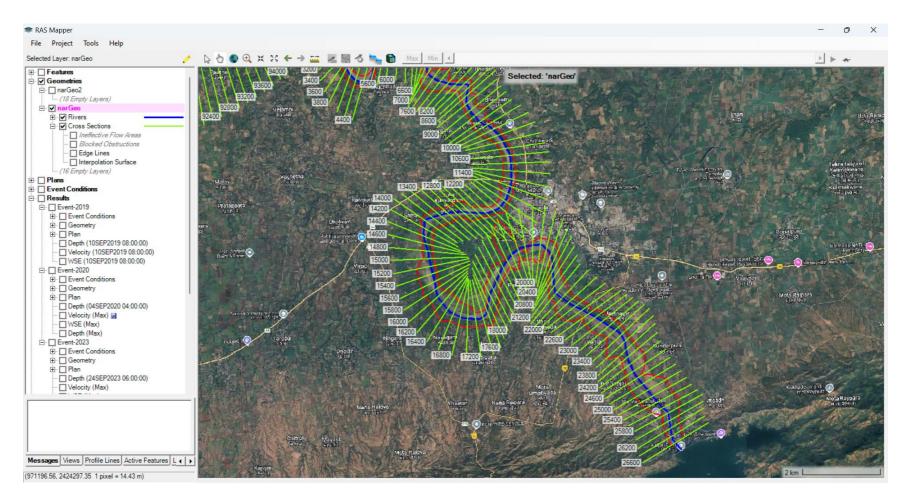
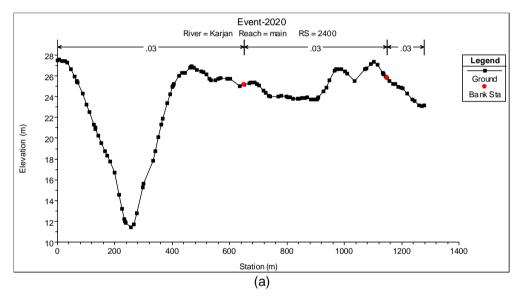


Fig. 5. Screenshot of RAS Mapper editor

Initially, ALOS Palsar has a resolution of 12.5 m and is available for free download from the Japan Exploration Aerospace Agency (https://search.asf.alaska.edu/). Then, DEM data was converted into DTM (Digital Terrain Model) by adding DEM data to the RAS Mapper a GIS tool of HEC-RAS (Hydrological Engineering Center-River Analysis System). Additionally, georeferenced projection data was placed in the same window installed in the work area. River centerlines, shorelines, flowlines, and section lines were digitized on a HEC-RAS plotter as shown in Figs. 3 and 4. The oceanic portion of the research area was captured in HEC-RAS. This study also suffers the lack of ground surveyed cross sections of the stretch. In this context, the DEM generated cross sections are used for the study purpose. The data processing window is presented in Fig. 5 Station gain data obtained on CS-11800, CS-CS-5400. and CS-2400 shown in Figs. 6a, b, c, and d, the sub-area after the measurement station. The middle river is shown in blue, and the crossing line is shown in green; The Google Maps satellite image is overlaid on top of the terrain map as a base map. A regular survey was conducted on the Karjan River in 2020, with the maximum flow rate upper limit being 5437 m³/s and the slope lower limit being 0.00195 (Patel et al. et al. 2020). In semi-arid regions, the Manning-n value is 0.03.

4. RESULTS

Calibration: At the Rajpipla gauging station, the peak depth was measured in a Single-year event, and due to insufficient data, only a random trial was made to match the observed depth with the actual depth. Perform instability tests on simulation models. The results obtained in this study are the water depth corresponding to the discharge of 31844.50 m³/s from the Narmada Dam for the year 2020. The simulation results are less affected by floods due to the height of section no. 11400 at maximum discharge and the bridge location. There is also a section number. 7200, 5400, and 2800 are close to Dhamncha, bhadam, and Juna Rundh areas located at the confluence of Karjan and Narmada rivers, which are prone to floods, as shown in Figs. 6a, b, c, d. Changes in water depth at different points are shown in Figs. 7 (a, b, c, d).


Validation: The verification was done using observation data from the Rajpipla Bridge gauging station near Rajpipla town. Due to the scarcity of data, the data obtained from a measurement site can only be used to validate the simulation presented in HEC-RAS. Water depth data 2020 is used to check the consistency of the simulation model. A comparison of the simulated data with the measured data of Rajpipla station is shown in Table 2. Future flood forecasting and this model can be used in situations where information is scarce. The current study is limited to one-sided modeling and only floods observed in the channel. Diffusion analysis was not taken into account in this study. The method of using two-dimensional flood quantity for flood analysis will provide authorities with better information on flood prevention. An example of a two-dimensional hydrodynamic model and continuous analysis has been made for the Karjan River region. Flooding was observed in low-lying areas of the city area of Nandod, Bhadam, Juna Rundh, Dhanpor, and Dhamancha in the Karjan River basin. Therefore, the HEC-RAS 2-D model needs to be simulated as a normal flood problem in the Karjan River, especially during heavy rainfall and other events that cause flood-like conditions in the low-lying areas due to overflow of the Narmada River in the region along the Karjan River.

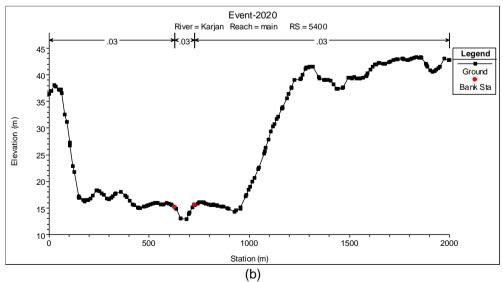

Simulated Flood Map: The 2020 flood event Simulated Karjan river basin is shown in Fig. 8, with a corresponding flow of 31844.5 m³/s from Sardar Sarovar Dam. The simulated flood map shows the changes in water depth along the channel in color, dark blue indicates deeper water and light blue indicates deeper water. Fig. 8 depicts that the impact of floods in the lower reaches of the Karjan River (Juna Rundh, Dhamancha, and Dhanpore) in the Karjan Basin during the 2020 event was very high with a correlation of 1158.35 m³/s and equal to 31844.5 m³/s from Narmada Dam. The major cause of this flood in the Karian River basin's low-lying area is due to high discharge from the Narmada River.

Table 2. Calibrated water depth (m) at Rajpipla Gauging Site

Date	Simulated Depth	Actual Depth	Difference in depth
21/08/2020	3.44	6.71	3.27
22/08/2020	3.28	6.38	3.1
23/08/2020	3.28	6.53	3.25

Date	Simulated Depth	Actual Depth	Difference in depth
24/08/2020	5.06	7.01	1.95
25/08/2020	3.37	6.61	3.24
26/08/2020	3.05	6.34	3.29
27/08/2020	3.05	6.33	3.28
28/08/2020	3.31	6.29	2.98
29/08/2020	3.08	6.22	3.14
30/08/2020	3.68	6.75	3.07
31/08/2020	4.27	7.45	3.18
01/09/2020	5.35	7.51	2.16
02/09/2020	4.12	6.65	2.53
03/09/2020	3.53	6.11	2.58
04/09/2020	3.05	6.05	3
05/09/2020	3.05	6.01	2.96
06/09/2020	3.06	5.98	2.92
07/09/2020	3.05	6.02	2.97
08/09/2020	3.06	6.01	2.95
09/09/2020	3.05	5.97	2.92
10/09/2020	3.06	5.97	2.91

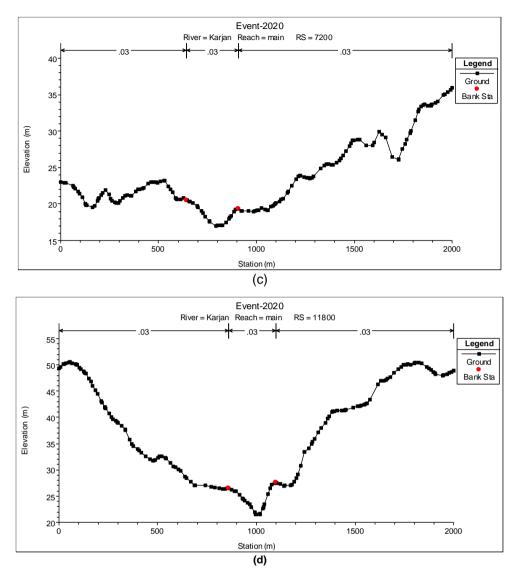
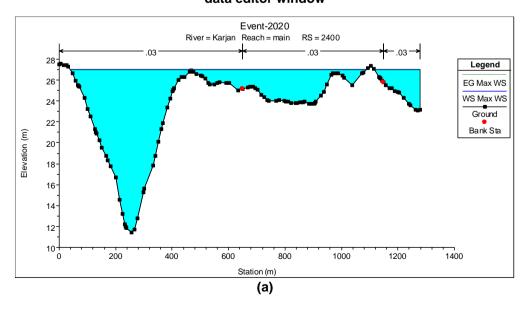



Fig. 6(a, b, c & d). Station-elevation data of extracted cross-sections in HEC-RAS geometric data editor window

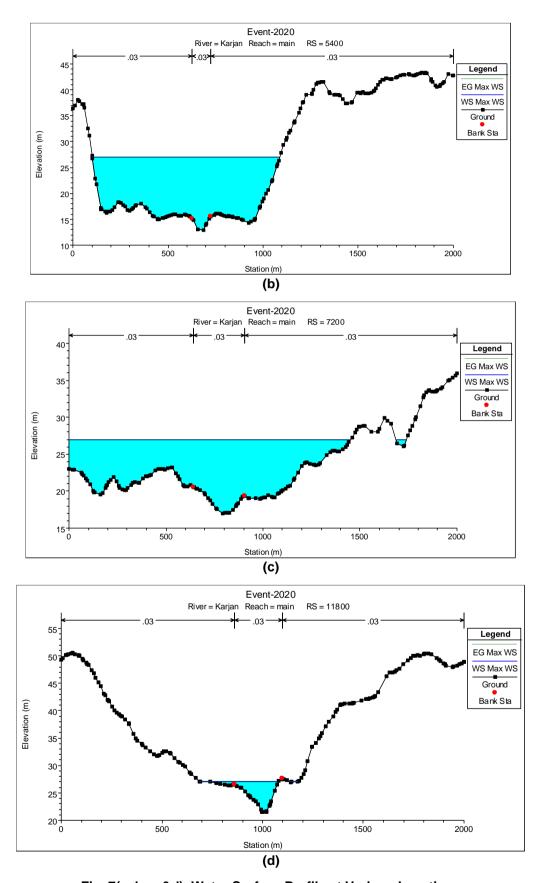


Fig. 7(a, b, c &d). Water Surface Profile at Various Locations

Fig. 8. Stimulated Flood Map

5. DISCUSSION

This research demonstrates the capabilities of the latest HEC-RAS version, which includes integrated mapping tools for more efficient river data collection. The process combines ARC-GIS software with the HEC-GeoRAS in the old version now RAS Mapper add-on, now streamlined within RAS Mapper. This integration allows for more accurate river modeling while reducing initial setup time.

High-resolution ALOS Palsar satellite images were used to map the river's geometry. The

study analyzed water flow patterns during the 2020 flood event. Results identified specific lowlying areas along the Karjan River that experienced flooding (Bhargav et al., 2024; Farooq et al., 2019; Trivedi et al., 2023). Fig. 8 presents a flood depth map, while Fig. 7 compares model predictions with actual water depths, validating the model's accuracy. Fig. 8 illustrates water levels at various cross-sections along the river, derived from satellite imagery analysis. The study revealed that flood impacts varied across different river sections (Pandya & Patel, 2024; M. Patel & Parekh, 2024; Pathan & Agnihotri, 2021). Table 2 compares predicted water depths with actual measurements, demonstrating the value and effectiveness of combining HEC-RAS with mapping techniques and difference in simulated and observed flood stage data is might be due to cumulative flood flow inundation simultaneously at the site. However, depth predictions showed some discrepancies due to limitations in the Digital Elevation Model (DEM) profile (Adesina et al., 2022; Jena et al., 2016; Masood & Takeuchi, 2012; Pramanik et al., 2010; Wang et al., 2002).

Factors affecting water level measurements can include instrument precision issues, improper gauge placement, or environmental elements i.e. debris (Md Ali et al., 2015; Orlyankin & Aleshina, 2020; Saini & Barik, 2024). To address these challenges in the flat terrain, high-resolution DEMs created using Unmanned Aerial Vehicle (UAVs) were employed (Şerban et al., 2016).

6. CONCLUSION

The study focused on applying the latest version of HEC-RAS v 6.0, coupled with geospatial techniques, to the Karian River Basin in Guiarat. India. During monsoons and heavy rainfall, areas like Bhadam, Juna Rundh, Dhanpor, and Dhamancha experience flooding, exacerbated by high discharge rates from the Narmada Dam. The GIS capabilities of HEC-RAS v 6 were validated by extracting river geometry data from the ALOS Palsar DEM (12.5 m). A 1-D hydrodynamic simulation, using unsteady flow analysis, was executed in HEC-RAS. Simulated results for the 2020 flood events were visualized in the RAS Mapper window, closely aligning with observed data. This approach demonstrates that geospatial methods, combined with HEC-RAS, provide an accurate and reliable method for onedimensional hydrodynamic flood modeling of the Karjan River. Our future work aims to extend this analysis to а two-dimensional modeling approach, covering the entire Karjan River stretch in the lower Narmada Basin, enhancing our understanding of flood parameters for effective mitigation strategies.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

DATA AVAILABILITY

The datasets used during this study are available at the Alaska Satellite Facility website

(https://asf.alaska.edu/). Other datasets can be obtained from the relevant authorities as per their policies.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Adesina, E. A., Musa, A., Ajayi, O. G., Odumosu, J. O., Opaluwa, Y. D., & Onuigbo, I. C. (2022). Comparative assessment of SRTM and UAV-Derived DEM in flood modelling. *Environmental Technology and Science Journal*, 12(2), 58–70. https://doi.org/10.4314/etsj.v12i2.6.
- ASCE (American Society of Civil Engineers). (2018). Climate-Resilient Infrastructure: Adaptive Design and Risk Management. https://sp360.asce.org/personifyebusiness/Merchandise/Productld/244232276.
- Bhargav, A. M., Suresh, R., Tiwari, M. K., Trambadia, N. K., Chandra, R., & Nirala, S. K. (2024). Optimization of Manning's roughness coefficient using 1-dimensional hydrodynamic modelling in the perennial river system: A case of lower Narmada Basin, India. *Environmental Monitoring and Assessment*, 196(8). https://doi.org/10.1007/s10661-024-12883-w.
- Chandole, V., Joshi, G. S., & Srivastava, V. K. (2024). Flood risk mapping under changing climate in Lower Tapi river basin, India. Stochastic Environmental Research and Risk Assessment, 38(6), 2231–2259. https://doi.org/10.1007/s00477-024-02677-4.
- Deb, D., & Talukdar, B. (2010). Remote Sensing and Geographic Information System for Assessment, Monitoring, and Management of Flooded and Waterlogged Areas, North District of Tripura State, India. *Watershed Management* 2010, 1013–1024. https://doi.org/10.1061/41143(394)92.
- Farooq, M., Shafique, M., & Khattak, M. S. (2019). Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural Hazards, 97(2), 477–492. https://doi.org/10.1007/s11069-019-03638-9
- Haq, M., Akhtar, M., Muhammad, S., Paras, S., & Rahmatullah, J. (2012). Techniques of

- Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. *The Egyptian Journal of Remote Sensing and Space Science*, 15(2), 135–141. https://doi.org/10.1016/j.ejrs.2012.07.002.
- Jena, P. P., Panigrahi, B., & Chatterjee, C. (2016). Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions. Water Resources Management, 30(3), 1293–1309.
 - https://doi.org/10.1007/s11269-016-1226-
- Joshy, K.A., Chandran, S.R. and Padikkal, S., 2022. Role of flood control dams in managing extreme climatic events: A case study of Kerala's periyar basin. INCOLD Journal (A Half Yearly Technical Journal of Indian Committee on Large Dams), 11(1), pp.48-52.
- Kumar, S., Jaswal, A., Pandey, A., & Sharma, N. (2017). Literature Review of Dam Break Studies and Inundation Mapping Using Hydraulic Models and GIS. *International Research Journal of Engineering and Technology*. www.irjet.net.
- Malik, A., & Abdalla, R. (2016). Geospatial modeling of the impact of sea level rise on coastal communities: application of Richmond, British Columbia, Canada. *Modeling Earth Systems and Environment*, 2(3), 146. https://doi.org/10.1007/s40808-016-0199-2.
- Mangukiya, N. K., & Andharia, B. R. (2024). Modeling of Flood Inundation Extent in Data-Scare Regions: The Case Study of Bhavnagar District (pp. 13–22). https://doi.org/10.1007/978-981-99-1890-4 2.
- Mangukiya, N. K., & Sharma, A. (2022). Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework. *Natural Hazards*, 113(2), 1285–1304. https://doi.org/10.1007/S11069-022-05347-2/METRICS.
- Mangukiya, N. K., & Yadav, S. M. (2021). Integrating 1D and 2D hydrodynamic models for semi-arid river basin flood simulation. International Journal of Hydrology Science and Technology, 1(1), 1.
 - https://doi.org/10.1504/IJHST.2021.100359 28.
- Masood, M., & Takeuchi, K. (2012). Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D

- hydrodynamic model. *Natural Hazards*, 61(2),757–770. https://doi.org/10.1007/s11069-011-0060-
- https://doi.org/10.1007/s11069-011-0060-
- Md Ali, A., Solomatine, D. P., & Di Baldassarre, G. (2015). Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. *Hydrology and Earth System Sciences*, 19(1), 631–643. https://doi.org/10.5194/hess-19-631-2015.
- Meena, R. S., & Jha, R. (2022). Flood Inundation Modeling Using Coupled 1D–2D HEC-RAS Model in Lower Kosi River Basin, India with Limited Data (pp. 177–188). https://doi.org/10.1007/978-981-16-9933-7_12.
- Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V., & Azamathulla, H. M. (2023). Improving flood forecasting in Narmada river basin using hierarchical clustering and hydrological modelling. *Results in Engineering*, 20, 101571. https://doi.org/10.1016/J.RINENG.2023.10 1571.
- Mitsopoulos, G., Panagiotatou, E., Sant, V., Baltas, E., Diakakis, M., Lekkas, E., & Stamou, A. (2022). Optimizing the Performance of Coupled 1D/2D Hydrodynamic Models for Early Warning of Flash Floods. *Water*, 14(15), 2356. https://doi.org/10.3390/w14152356.
- Mondal, A., & Mujumdar, P. P. (2012). On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. *Water Resources Research*, *48*(10). https://doi.org/10.1029/2011WR011468.
- NDMA. (2017). *Gujarat Flood 2017, A case study*. National Disaster Management Authority, Gujarat Institute of Disaster Management.
 - https://gidm.gujarat.gov.in/sites/default/files/educate_your_self_document/Gujarat%20Flood%202017%20-
 - %20A%20Case%20Study%20by%20NDM A%20%26%20GIDM_2.pdf.
- Orlyankin, V. N., & Aleshina, A. R. (2020). Using SRTM Elevation Matrices in Preliminary Calculations and Mapping of the Depths of the Potential Flood Inundation of Fluvial Plains. *Izvestiya, Atmospheric and Oceanic Physics*, *56*(9), 1168–1176. https://doi.org/10.1134/S0001433820090182.
- Padikkal, S., Rema, K.P. and Gopi, G., 2020. Frequented Extreme Climatic Events in

- Kerala-Evolving Sustainable Management Paradigm. *Journal of the Indian Society of Coastal Agricultural Research*, 38(2), pp.140-146.
- Pal, S. C., Chowdhuri, I., Das, B., Chakrabortty, R., Roy, P., Saha, A., & Shit, M. (2022). Threats of climate change and land use patterns enhance the susceptibility of future floods in India. *Journal of Environmental Management*, 305, 114317. https://doi.org/10.1016/j.jenvman.2021.114 317.
- Pandya, U. D., & Patel, D. (2024). One Dimensional Steady Flow Analysis Using HEC-RAS—A Case of Sabarmati River, Gujarat, India (pp. 73–86). https://doi.org/10.1007/978-981-99-3557-4_7.
- Patel, D. P., & Srivastava, P. K. (2014). Application of Geo-Spatial Technique for Flood Inundation Mapping of Low Lying Areas (pp. 113–130). https://doi.org/10.1007/978-3-319-05906-8_7.
- Patel, D., & Dholakia, M. (2010). Feasible Structural and Non- Structural Measures to Minimize Effect of Flood in Lower Tapi Basin.
- Patel, M., & Parekh, F. (2024). A Comprehensive Flood Risk Inundation Mapping and Hybrid Model for Flood Forecasting in the Panam River Basin. *Contemporary Mathematics*, 1522–1538.
 - https://doi.org/10.37256/cm.5220243426.
- Pathan, A. I., & Agnihotri, P. G. (2020). One Dimensional Floodplain Modelling Using Soft Computational Techniques in HEC-RAS A Case Study on Purna Basin, Navsari District (pp. 541–548). https://doi.org/10.1007/978-3-030-33585-4 53.
- Pathan, A. I., & Agnihotri, P. G. (2021). Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. *Modeling Earth Systems and Environment*, 7(2), 1133–1144. https://doi.org/10.1007/s40808-020-00961-0.
- Pramanik, N., Panda, R. K., & Sen, D. (2010).
 One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections. Water Resources Management, 24(5), 835–852. https://doi.org/10.1007/s11269-009-9474-6.

- Ramkar, P., & Yadav, S. M. (2018). Spatiotemporal drought assessment of a semi-arid part of middle Tapi River Basin, India. *International Journal of Disaster Risk Reduction*, 28, 414–426. https://doi.org/10.1016/j.ijdrr.2018.03.025.
- Saini, D. S., & Barik, D. K. (2024). Simulation of the Hydraulic Model HEC-RAS Coupled with GIS and Remote Sensing to Study the Effect of River Cross-section Width in Detecting Flood-prone Areas. *Journal of* the Geological Society of India, 100(3), 367–376.
- https://doi.org/10.17491/jgsi/2024/173843.
 Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A., & Golding, B. (2022). Early Warning Systems and Their Role in Disaster Risk Reduction. In *Towards the "Perfect" Weather Warning* (pp. 11–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-98989-7_2.
- Samanta, R. K., Bhunia, G. S., Shit, P. K., & Pourghasemi, H. R. (2018). Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. *Modeling Earth Systems and Environment*, *4*(1), 395–408. https://doi.org/10.1007/s40808-018-0427-
- Samarasinghea, S. M. J. S., Nandalalb, H. K., Weliwitiyac, D. P., Fowzed, J. S. M., Hazarikad, M. K., & Samarakoond, L. (2010). Application of remote sensing and GIS for flood risk analysis: a case study at Kalu-Ganga River, Sri Lanka. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science*, 38(8), 110-115.
- Sättele, M., Bründl, M., & Straub, D. (2016). Quantifying the effectiveness of early warning systems for natural hazards. *Natural Hazards and Earth System Sciences*, 16(1), 149–166. https://doi.org/10.5194/nhess-16-149-2016.
- Şerban, G., Rus, I., Vele, D., Breţcan, P., Alexe, M., & Petrea, D. (2016). Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: case study in the north-east of Apuseni Mountains, Transylvania. *Natural Hazards*, 82(3), 1817–1832. https://doi.org/10.1007/s11069-016-2266-4

- Sharma, A., Poonia, M., Rai, A., Biniwale, R. B., Tiwari, A., Lachure, S., Tuegel, F., Holzbecher, E., & Hinkelmann, R. (2024). Impact of land use and rainfall change on runoff and flood resilience of an urban environment: a case study of Chennai City, India. *Arabian Journal of Geosciences*, 17(7), 208.
 - https://doi.org/10.1007/s12517-024-11985-6.
- Trambadia, N. K., Patel, D. P., Patel, V. M., & Gundalia, M. J. (2022). Comparison of two open-source digital elevation models for 1D hydrodynamic flow analysis: a case of Ozat River basin, Gujarat, India. *Modeling Earth Systems and Environment*, 8(4), 5433–5447.
 - https://doi.org/10.1007/s40808-022-01426-2

- Trivedi, K., Patel, V., Pandya, U., & Trambadia, N. (2023). Development of 1D hydrodynamic Analysis in Data Scarce Region by Comparing Two Digital Elevation Models. *IARJSET*, 10(5). https://doi.org/10.17148/iarjset.2023.1057.
- Wang, Y., Colby, J. D., & Mulcahy, K. A. (2002).
 An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. *International Journal of Remote Sensing*, 23(18), 3681–3696. https://doi.org/10.1080/0143116011011448 4.
- Zerger, A., & Wealands, S. (2004). Beyond Modelling: Linking Models with GIS for Flood Risk Management. *Natural Hazards*, 33(2), 191–208.
 - https://doi.org/10.1023/B:NHAZ.00000370 40.72866.92.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/129710