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ABSTRACT

Floods rank among the most devastating natural disasters, causing extensive damage to property
and severe impacts on communities. Effective management and mitigation of flood risks
necessitate reliable data regarding flood depth, discharge, and extent. The Karjan River Basin’s
low-lying regions experienced significant flooding in 2020. This research utilizes the latest new
HEC-RAS version for one-dimensional hydrodynamic flood modelling for the Karjan River in low-
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lying areas and the merging point of the Karjan River Basin in Narmada River, emphasizing
geospatial techniques. The study showcases the analytical process of the new HEC-RAS v6 in
spatial analysis. River features like bank lines and cross-sections were derived from ALOS Palsar
for flood modeling. An unsteady flow simulation was conducted to model water dynamics, yielding
water depth results viewable in the HEC-RAS geospatial RAS mapper. Flood depth maps created
for 2020 reveal that areas low lying area i.e. Dhamncha, bhadam, Juna Rundh and surrounding
area near the merging point of Karjan River are prone to floods when river discharge surpasses
8836 cubic meters per second. Model accuracy was verified by comparing simulated outcomes with
historical data from the mentioned events, demonstrating the model’s precision and reliability.

Keywords: Flood assessment; geospatial techniques; HEC-RAS; Karjan River; river dynamics.

1. INTRODUCTION

India faces significant challenges with floods,
influenced by its diverse climate and rainfall
patterns. The country's geographical diversity
and monsoon-dependent climate make it highly
susceptible to extreme weather events. Some
areas experience severe flooding, while others
suffer from drought (Chandole et al.,, 2024;
Meena & Jha, 2022; Mondal & Mujumdar, 2012;
Pal et al., 2022; Ramkar & Yadav, 2018; Sharma
et al.,, 2024). The interplay of these extreme
events poses significant threats to both the
environment and the socio-economic fabric of the
nation. Climate change has exacerbated these
floods, particularly in India's drier regions (ASCE,
2018; Padikkal et al.,2020; Joshy et al., 2022
Mangukiya & Andharia, 2024; Mehta et al., 2023;
Trivedi et al., 2023), leading to more frequent
and severe flood events. Floods are among the
world's most frequent and damaging natural
disasters, and their occurrence and intensity are
expected to increase due to climate change
(Samarasinghe et al., 2010). To address these
issues, experts use various tools to assess flood
risks, identify flood-prone areas, and develop
strategies to reduce potential damage.

From 1901 to 2020, heavy rainfall events tripled
in northern and central India, likely due to
warming in the Arabian Sea. As floods become
more frequent, new approaches are needed.
These may include improving water management
structures, implementing early warning systems,
smart land-use planning, working with natural
water management, preparing communities, and
setting aside funds for disasters (Mangukiya &
Sharma, 2022; Mitsopoulos et al., 2022; Saki¢
Trogrli¢ et al, 2022; Sattele et al.,, 2016).
Researchers gather data from various sources,
including detailed elevation maps and on-site
surveys, to create accurate flood models and
validate their findings. Satellite imagery has
proven useful in assessing flood risk (Haq et al.,
2012). Patel and Dholakia (2010) proposed

remote sensing and GIS techniques to identify
flood plains areas in Surat. Similar techniques
have been applied in other countries to develop
flood mitigation plans (Mangukiya & Yadav,
2021; Trambadia et al., 2022; Wang et al., 2002)
and assess coastal vulnerabilities (Malik &
Abdalla, 2016). Wetlands play an important role
in managing floods, and studies have shown how
remote sensing and geographical information
systems can help protect these areas (Deb &
Talukdar, 2010). Researchers have also used
various tools to map flood-prone areas in
different parts of India (Kumar et al., 2017;
NDMA, 2017; Samanta et al., 2018).

Factors like industrial development, cyclones,
and urban growth contribute to flooding in
regions like northern Australia while combining
flood risk management with mapping systems
has shown promise in mitigating impacts (Zerger
& Wealands, 2004). Studies have addressed
flood risks in diverse areas, from typhoon-prone
Korea (Wang et al., 2002) to coastal regions
threatened by sea-level rise (Malik & Abdalla,
2016). Following a catastrophic flood in Surat in
2006, researchers created detailed flood maps of
low-lying areas (D. P. Patel & Srivastava, 2014),
while similar predictive modeling was conducted
for Navsari city (Pathan & Agnihotri, 2020).
These studies collectively demonstrate how
modern technology and mapping techniques can
enhance flood prediction and preparation,
potentially reducing damage and saving lives in
vulnerable communities.

Flooding in the Karjan River has been a concern,
particularly during heavy rainfall and other events
due to overflowing conditions of the Narmada
River which leads to flood-like conditions in the
low-lying areas of the Karjan River. events
highlight the challenges faced by communities in
managing water levels and mitigating flood risks.
This study has taken a significant step in this
direction by river dynamics, flood flow multiple
inflows, and single outflow conditions. The lower
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Narmada basin encompasses rivers such as
Ashvin, Kim, and Heran, small tributaries, and
major tributaries like Karjan and Orsang
extending downstream to the Gulf of Cambay
and covering the Bharuch and Narmada districts.
Flooding in the Karjan River is often caused by
heavy rainfall, leading to waterlogging in various
areas and rivers overflowing their banks. This
study aims to demonstrate the application of the
new HEC-RAS version 6.0 (Hydrological
Engineering Central Analysis System) to a one-
dimensional hydrodynamic flood model. This
study focuses on the extraction of water
geometry data from ALOS PALSAR DEM (Digital
Elevation Model) using the RAS Mapper
geospatial tool available in HEC-RAS,
demonstrating the use of geospatial methods in
flood production. The simulation results show the
water depth at each turn during floods. This
approach can be a useful tool for disaster
management authorities for flood forecasting and
flood-warning during future flood emergencies.
This study highlights the importance of
continuous research and innovation in flood
management for the safety and well-being of
communities in flood-prone areas.

2. METHODOLOGY
2.1 Study Area

The Karjan River Basin is one of the sub-basins
of the Lower Narmada Basin which is the main
focus of this study. Narmada River Basin is
subdivided into subbasins: Sukhi, Rami, and
Karjan. The Karjan River, a significant tributary of
the Narmada River, originates from the Mandvi
hills near Bilwan, located in the Trappean
highlands. It flows predominantly northward for
approximately 90 km, passing through the hilly
terrain of Mosda-Sagbara and Dediyapada
uplands. The river's journey through these
highlands is characterized by its meandering
path until it reaches the alluvial plains near

Jithagar. Eventually, it converges with the
Narmada River at Mota Bhilwada. The Tarav and
Daman Khadi are notable right-bank tributaries
that join the Karjan River in its upper reaches,
enhancing its flow and hydrological significance
in the region. Together with one of its tributaries,
the Terav, it forms a "winding valley" in the
faulted ridges and valleys of the Deccan Trap
terrain south of the Narmada. Karjan River starts
from Bardipada, which is closer to the Tapti River
than Narmada, and its course in its first part
consists of faults and cracks. However, it has a
valley before emerging as a plain in the north.
The Karjan Dam, an important structure within
this basin, is located at approximately 22.504°N
latitude and 73.405°E longitude. The right bank
of the Karjan Reservoir was under consideration
of this research (Fig.1).

2.2 Data Collection

The data for the hydrodynamic models were
meticulously sourced from a variety of open-
access websites and administrative authorities.
The ALOS PALSAR DEM, renowned for its high
accuracy and detailed surface information, was
obtained from the Alaska portal. With a spatial
resolution of 12.5 meters, this Digital Elevation
Model (DEM) leverages L-band synthetic
aperture radar to penetrate through vegetation
and provide precise ground elevation data. This
makes it particularly useful for flood modeling in
regions characterized by dense vegetation or
complex terrain. An analysis of the research
region, supplemented by Google Maps,
underscores the significant impact of floods in
the lower region. A site visit is planned to verify
ground features and conduct a bank discharge
survey to investigate the area’s flooding. This
survey is pivotal for validating the 1D hydraulic
model results, as it confirms that the river has
enough water up to the validation point to cause
flooding.

Table 1. Data Acquisition table for modelling

Data types Details Data Source Use of Data Data
Frequency

Digital elevation  ALOS Palsar Japan Aerospace Terrain Model -

models (12.5m) Exploration Agency (JAXA)

Topographical 1:50,000 scale  Survey of India River reach -

drawings generation

Stream gauge Karjan Dam SSNNL Model input variable  Daily

data

Water surface Rajpipla Bridge SSNNL Manning roughness  Daily

level data coefficient, validation
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Fig. 1. Study area of Karjan River Basin

Stage-discharge information for the Karjan Dam
was collected from SSNNL (Sardar Sarovar
Narmada Nigam Limited). Historical flood data
for the study area was collected from various
official publications by the SANDARP (South
Asian Networks on Dams, Rivers, and People),
the Central Water Commission, India (CWC),
and SSNNL authorities in Gandhinagar, Gujarat.
The amalgamation of these data sources
ensures a comprehensive understanding of the
flood dynamics in the sub-basins of the Lower
Narmada Basin Named as Karjan River Basin.
Table 1 summarizes the relevant facts and data
needed for the analysis.

3. METHODS

The HEC RAS 1-D hydrodynamic model, which
uses mapping methods, is a fast and

accurate way to figure out how depth of the water
will be in different places during a flood. This
process of making a flood map has two parts:
first, we organize the data with a mapping tool,
and then the HEC RAS program is used to
predict the flood. There’s a chart (Fig. 2) that
shows the steps of this method. In this
connection, a model was developed
with the river stage and cross-section analysis in
order to overbank discharge of the river
throughout the meeting point in the
Narmada River. Discharge data on a daily basis
from Karjan dam as upstream boundary
conditions and validation site  Rajpipla
designated as downstream boundary conditions
as normal depth. River geometry was created
with cross-section spacing of 200m each and
2000m wide.

Fig. 2. Process flowchart
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Initially, ALOS Palsar has a resolution of 12.5 m
and is available for free download from the Japan
Aerospace Exploration Agency (JAXA)
(https://search.asf.alaska.edu/). Then, DEM data
was converted into DTM (Digital Terrain Model)
by adding DEM data to the RAS Mapper a GIS
tool of HEC-RAS (Hydrological Engineering
Center-River Analysis System). Additionally,
georeferenced projection data was placed in the
same window installed in the work area. River
centerlines, shorelines, flowlines, and section
lines were digitized on a HEC-RAS plotter as
shown in Figs. 3 and 4. The oceanic portion of
the research area was captured in HEC-RAS.
This study also suffers the lack of ground
surveyed cross sections of the river
stretch. In this context, the DEM generated cross
sections are used for the study purpose.
The data processing window is presented in Fig.
5 Station gain data obtained on CS-11800, CS-
7200, CS-5400, and CS-2400 are
shown in Figs. 6a, b, ¢, and d, the sub-area after
the measurement station. The middle river is
shown in blue, and the crossing line is
shown in green; The Google Maps satellite
image is overlaid on top of the terrain map as a
base map. A regular survey was conducted on
the Karjan River in 2020, with the maximum flow
rate upper limit being 5437 m3/s and the slope
lower limit being 0.00195 (Patel et al. et al.
2020). In semi-arid regions, the Manning-n value
is 0.03.

4. RESULTS

Calibration: At the Rajpipla gauging station, the
peak depth was measured in a Single-year
event, and due to insufficient data, only a random
trial was made to match the observed depth with
the actual depth. Perform instability tests on
simulation models. The results obtained in this
study are the water depth corresponding to the
discharge of 31844.50 m3/s from the Narmada
Dam for the year 2020. The simulation results
are less affected by floods due to the height of
section no. 11400 at maximum discharge and the
bridge location. There is also a section number.
7200, 5400, and 2800 are close to Dhamncha,
bhadam, and Juna Rundh areas located at the
confluence of Karjan and Narmada rivers, which
are prone to floods, as shown in Figs. 6a, b, c, d.

Changes in water depth at different points are
shown in Figs. 7 (a, b, c, d).

Validation: The verification was done using
observation data from the Rajpipla Bridge
gauging station near Rajpipla town. Due to the
scarcity of data, the data obtained from a
measurement site can only be used to validate
the simulation presented in HEC-RAS. Water
depth data 2020 is used to check the consistency
of the simulation model. A comparison of the
simulated data with the measured data of
Rajpipla station is shown in Table 2. Future flood
forecasting and this model can be used in
situations where information is scarce. The
current study is limited to one-sided modeling
and only floods observed in the channel.
Diffusion analysis was not taken into account in
this study. The method of using two-dimensional
flood quantity for flood analysis will provide
authorities with better information on flood
prevention. An example of a two-dimensional
hydrodynamic model and continuous analysis
has been made for the Karjan River region.
Flooding was observed in low-lying areas of the
city area of Nandod, Bhadam, Juna Rundh,
Dhanpor, and Dhamancha in the Karjan River
basin. Therefore, the HEC-RAS 2-D model
needs to be simulated as a normal flood problem
in the Karjan River, especially during heavy
rainfall and other events that cause flood-like
conditions in the low-lying areas due to overflow
of the Narmada River in the region along the
Karjan River.

Simulated Flood Map: The 2020 flood event
Simulated Karjan river basin is shown in Fig. 8,
with a corresponding flow of 31844.5 m3/s from
Sardar Sarovar Dam. The simulated flood map
shows the changes in water depth along the
channel in color, dark blue indicates deeper
water and light blue indicates deeper water. Fig.
8 depicts that the impact of floods in the lower
reaches of the Karjan River (Juna Rundh,
Dhamancha, and Dhanpore) in the Karjan Basin
during the 2020 event was very high with a
correlation of 1158.35 m3/s and equal to 31844.5
m?3/s from Narmada Dam. The major cause of
this flood in the Karjan River basin’s low-lying
area is due to high discharge from the Narmada
River.

Table 2. Calibrated water depth (m) at Rajpipla Gauging Site

Date Simulated Depth Actual Depth Difference in depth
21/08/2020 3.44 6.71 3.27

22/08/2020 3.28 6.38 3.1

23/08/2020 3.28 6.53 3.25

147



Bhargav and Suresh; Int. J. Environ. Clim. Change, vol. 15, no. 1, pp. 140-155, 2025; Article no.lJJECC.129710

Date Simulated Depth Actual Depth Difference in depth
24/08/2020 5.06 7.01 1.95
25/08/2020 3.37 6.61 3.24
26/08/2020 3.05 6.34 3.29
27/08/2020 3.05 6.33 3.28
28/08/2020 3.31 6.29 2.98
29/08/2020 3.08 6.22 3.14
30/08/2020 3.68 6.75 3.07
31/08/2020 4.27 7.45 3.18
01/09/2020 5.35 7.51 2.16
02/09/2020 4,12 6.65 2.53
03/09/2020 3.53 6.11 2.58
04/09/2020 3.05 6.05 3
05/09/2020 3.05 6.01 2.96
06/09/2020 3.06 5.98 2.92
07/09/2020 3.05 6.02 2.97
08/09/2020 3.06 6.01 2.95
09/09/2020 3.05 5.97 2.92
10/09/2020 3.06 5.97 2.91
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Fig. 6(a, b, ¢ & d). Station-elevation data of extracted cross-sections in HEC-RAS geometric

data editor window
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5. DISCUSSION

This research demonstrates the capabilities of
the latest HEC-RAS version, which includes
integrated mapping tools for more efficient river
data collection. The process combines ARC-GIS
software with the HEC-GeoRAS in the old
version now RAS Mapper add-on, now
streamlined within RAS Mapper. This integration
allows for more accurate river modeling while
reducing initial setup time.

High-resolution ALOS Palsar satellite images
were used to map the river's geometry. The

study analyzed water flow patterns during the
2020 flood event. Results identified specific low-
lying areas along the Karjan River that
experienced flooding (Bhargav et al., 2024;
Farooq et al., 2019; Trivedi et al., 2023). Fig. 8
presents a flood depth map, while Fig. 7
compares model predictions with actual water
depths, validating the model's accuracy. Fig. 8
illustrates water levels at various cross-sections
along the river, derived from satellite imagery
analysis. The study revealed that flood impacts
varied across different river sections (Pandya &
Patel, 2024; M. Patel & Parekh, 2024; Pathan &
Agnihotri, 2021). Table 2 compares predicted
water depths with actual measurements,

151



Bhargav and Suresh; Int. J. Environ. Clim. Change, vol. 15, no. 1, pp. 140-155, 2025; Article no.lJJECC.129710

demonstrating the value and effectiveness of
combining HEC-RAS with mapping techniques
and difference in simulated and observed flood
stage data is might be due to cumulative flood
flow inundation simultaneously at the site.
However, depth predictions showed some
discrepancies due to limitations in the Digital
Elevation Model (DEM) profile (Adesina et al.,
2022; Jena et al.,, 2016; Masood & Takeuchi,
2012; Pramanik et al., 2010; Wang et al., 2002).

Factors affecting water level measurements can
include instrument precision issues, improper
gauge placement, or environmental elements i.e.
debris (Md Ali et al., 2015; Orlyankin & Aleshina,
2020; Saini & Barik, 2024). To address these
challenges in the flat terrain, high-resolution
DEMs created using Unmanned Aerial Vehicle
(UAVs) were employed (Serban et al., 2016).

6. CONCLUSION

The study focused on applying the latest version
of HEC-RAS v 6.0, coupled with geospatial
techniques, to the Karjan River Basin in Gujarat,
India. During monsoons and heavy rainfall, areas
like Bhadam, Juna Rundh, Dhanpor, and
Dhamancha experience flooding, exacerbated by
high discharge rates from the Narmada Dam.
The GIS capabilities of HEC-RAS v 6 were
validated by extracting river geometry data from
the ALOS Palsar DEM (125 m). A 1-D
hydrodynamic simulation, using unsteady flow
analysis, was executed in HEC-RAS. Simulated
results for the 2020 flood events were visualized
in the RAS Mapper window, closely aligning with
observed data. This approach demonstrates that
geospatial methods, combined with HEC-RAS,
provide an accurate and reliable method for one-
dimensional hydrodynamic flood modeling of the
Karjan River. Our future work aims to extend this
analysis to a two-dimensional modeling
approach, covering the entire Karjan River
stretch in the lower Narmada Basin, enhancing
our understanding of flood parameters for
effective mitigation strategies.
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