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Abstract

Redundancy allocation is a valuable technique that system engineers can use to design high level of reliability
into complex systems. Broadly however, redundancy allocation problems are NP-hard. The main goal of this
paper is to solve a relaxed minimum-cost problem by proving that Newton’s method finds the optimal value
of the Lagrange multiplier. The paper first establishes lower and upper bounds on the optimal Lagrange
multiplier, and then starting from an initial value determined by he the model’s parameters, Newton’s method
finds the optimal value of the Lagrange multiplier. The paper also illustrates the method with two examples
and presents a general conclusion.
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1 Introduction

This paper deals with non-linear optimization problems of the form

n
min Zcmi (1.1)
i=1

n
subject to H(l —piy>Randz; >0,i=1,...,n.

i=1
The size of the model, n, is an integer greater than 1 and the values of the decision variables, x1,%z,...,Zn,
are restricted to positive real numbers. The objective coefficients are positive real numbers ci, co, ..., ¢,. Since
the objective is linear, it can be scaled so that mini<;<n ¢; = 1. The constraint parameters are real numbers, R,
the predetermined system reliability, and p;, @ = 1,2,3,--- , n, the unreliability component at the i*"stage, for
which0 < R<landO0<p;<1lfori=1,2,...,n.

Model (1) can be solved by the method of Lagrange multipliers. Nmah ([1, 2]) showed that there is a unique
optimal solution (z71,z5,...,x;) of the form

@} =In(ei/(c; + A"Rln(p; 1))/ In(py), (12)

where \* is the unique positive root of the equation

H ARIn(p;")/(ci + ARIn(p; ")) = R. (1.3)

i=1

The classic redundancy allocation model is a discrete optimization model that differs from (1) only in that the
values of the decision variables, x;, are restricted to positive integers. In the context of redundancy allocation,
the optimal values of the decision variables for the discrete optimization model show the levels of redundancy for
each subsystm in a series system that will achieve a required level of reliability, while minimizing a competing
characteristic, such as cost or weight.

The purpose of this work is to show that Equation (3) can be solved by Newton’s method from an initial value
determined by the model’s parameters. The main result of Section 2 gives upper and lower bounds for the root
A*. The results of Section 3 show how to approximate A* by Newton’s method, and Section 4 presents examples
and conclusions.

1.1 Review of related works

The desire to improve the reliability of products or complex systems in a competitive market has been of
paramount interest to industries (Leon and Cascaval [3]). As Rice et al [4] and Kuo and Wan [5] pointed out,
redundancy allocation can be used to improve the reliability of a structure with inadequate reliability. In fact,
since the birth of the industrial revolution, manufacturers have been finding ways to build trust in their products.
But it was not until after the Second World War that the scholarly foundations of reliability were developed
(Japan Standard Association [6] and Tillman et al. [7]).

To meet this desired need, industrial system designers have turned to redundancy allocation techniques (Rice

et al [4], Tillman et al [8], and Devi et al [9]). Redundancy allocation is a useful and practical technique that
engineering designers use when designing engineering systems that need high levels of system reliability while
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satisfying limitations on cost, weight, volume, etc.(Rice et al [4]). It is done during the design phase where
system designers install additional identical redundant components arranged in parallel. Thus, redundancy
allocation models may be viewed as system designs in which system engineers built component redundancies
into the system. Both Elsayed [10] and Chern [11] pointed out that, in general, redundancy allocation models
are NP-hard.

One of the initial methods for solving optimal redundancy allocation problems was based on the classical
Lagrange multiplier method (Ushakov [12]). Li and Zio [13], Devi et al. [9] as well as Tillman et al. [7],
respectively, gave in-depth and comprehensive literature reviews of various redundancy allocation models. Both
Li et al. [13] and Leon et al. [14] considered several optimization methods for redundancy allocation in large
systems and did an excellent study of series-parallel reliability models. Recently, the use of redundancy allocation
models has entered into the space of artificial intelligence Devi et al. [9].

2 Upper and Lower Bounds on the Optimal Lagrange Multiplier

Constants a1, az, ..., a, can be computed from the parameters ¢;, p;, and R of Model (1) with the equations
ai = ¢;/Rln(p; ). (2.1)
These strictly positive constants determine a rational function f defined on [0, c0) as
n
FO) =[IM(a + . (2.2)
i=1
When Equation (3) is rewritten in terms of a1, as, ..., an, the result is
f(\*) = R. (2.3)

Let amin and amaz denote the smallest and largest of the constants in Equation (4) and let the constants Amin
and Amaz be given by the equations

Rl/n Rl/n
Amin = aminm and  Amaz = amazm»

Proposition 1. The optimal Lagrange multiplier A\* satisfies the inequalities A\pmin < A* < Amaz-

Proof. The function f is strictly increasing on [0,00) and its range is the interval [0,1). Since 0 < R < 1,
Equation (6) has a unique, strictly positive solution. Clearly, 0 < Amin < Amaz and

)\min " )\maz !
m | =Rp=(_—Z"mer ) |
(amin + Amzn) (amaz + Amaz )

Since f(A) < (A/(amin + A))7, it follows that f(Amin) < R and Amin < A*. Likewise, f(A) > (A/(@maz + )7,
SO Amaz > A*. M

Corollary 1. Either amin = @maz, in which case \* = Anin and f(Amin) = R, OF Gmin < Gmaz, in which case
A > Amin, and f(Amin) < R.

Proof. If Gmin = Gmae, then the proposition shows that A* = Amin and so f(Amin) = R. If amin < dmae, then
FA) < (A (amin +A))" on (0,00). In particular, f(Amin) < R, 50 A* > Apmin. B

Corollary 2. For p and R in (0,1), set ¢; = 1 and p; = p for 1 <14 < n. Then the solution of Model (1) is
N =RY"/In(p " R(1 — RM™),

and
z; =In(1—RY™)/In(p) for 1<i<n.
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Proof. For these parameters, amin = Qmaz = 1/Rln(p71). Then, the optimal value \* is given by the previous
proposition and the optimal values of the coordinates z; are given by Equation (2). MW

3 Using Newton’s Method

The purpose of this section is to establish that Newton’s method, applied to a transformation of the function
f of Equation (5) and initialized with Amin, generates an increasing sequence that converges to the optimal
Lagrange multiplier.

Definition 1. For the constants a1, az, ..., an, of Equation (4), the function h is defined on (0, 00) as
h(A) =In(f(A)) —In(R) =Y In(A/(a; + A)) — In(R).
i=1
Lemma 1. Let h be as defined on (0,00) in Definition 1. Then

hEI(A) = (=1)F Lk — I, (%k - (T) k=1,2,3,-

Proof. The proof follows from the Principle of Mathematical Induction. To begin, let k = 1; then:

_ % <zn: In ( > - ln(R)>

Now assume that it is true for k. That is,

k — k— n
OO = (D k= DI (5 — ke )
Then for k + 1, we have h*TD (X)) = LK) ()),

which by the induction hypothesis is equivalent to:

B+ () = ddA <(1)’“‘1(k - (% N (a+1A)’“)>
1 d - 1 !
= (D" (k- 1)l o5 <Zl (F (a+A)>>
= (=D R ==K Y (Ak1+1  (ai +1A)’““>

P 1 1
~1) k!;(xkﬂ _(ai+A)k+1>"

Note: While all we need is h € C?((0,0)), it is clear from Lemma 1 that h € C*((0, c0)).

Lemma 2. The function h is strictly increasing on (0,00) and strictly concave there.
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Proof. On (0,00), the derivative, h', is strictly positive and the second derivative, h”, is strictly negative. In

fact, Lemma 1 with & = 1,2 yields 1’(A) = 37", (; - a,lﬂ) and h'(\)=-Y", (712 - W)l

Corollary 3. The optimal Lagrange multiplier A\* is the unique zero of the function h.

Proof. That h(\*) = 0 follows from the definition of the function h. This root is unique because h is strictly
increasing and its range is (—00,0). W

Definition 2. When amin < @maz, the sequence \i is generated by the equations Ao = Amin and

Aetr1 = A — h(Ar) /A (Ak).

When amin = @maz, Corollary 1 shows that no iterative method is needed to find the root \*. When amin < @maz,
the proof of Theorem 1 will show that each term of the sequence {\ : k > 0} is positive and thus in the domain
of the functions h and h’.

The proofs of the next two theorems are adaptations of an argument in Allen & Isaacson [15], where it is
attributed to Henrici [16].

Theorem 1. If amin < Gmaz, then, for k>0, 0 < Appin < Ap < Aet1 < A"

Proof. Suppose amin < @maz.- Then Corollary 1 shows that Ao < A", and so h(A¢) < 0. Furthermore, since
R'(Xo) >0 and A1 = Ao — h(Ao)/h' (Xo), it follows that A1 > Ao.

Next, we need to show that A1 < A*. Since Ao < A*, the Mean Value Theorem implies that —h(A\o) =
R(A*) —h(Xo) = K/ (c)(A* — Ag) for some ¢ € (Ao, A*). From Lemma 2, b’ is strictly decreasing, so h'(c) < h'(Xo).
Thus7 —h()\()) < h/()\o)()\* — )\0), or A1 — Ao < A — Ao-

Next, assume that Ao < A\ < A*. As above, it follows that Agt+1 > Ag. From the Mean Value Theorem and the
fact that h' is decreasing, we have —h(Ar) < h'(Ag)(A* — Ak), or App1 — Ao < A* — Xo. W

As noted by Allen & Isaacson [15] and Henrici[16], the next theorem relies on a result from the theory of real
variables which states that a bounded, nondecreasing sequence of real numbers converges to its least upper
bound (Lebl [17]).

Theorem 2. If amin < Qmaz, then limg_ 00 A = A™.

Proof. Suppose amin < Gmaz. Then by Theorem 1, {\x} is a bounded, nondecreasing sequence of real numbers.
Thus, it has a limit, say . From Theorem 1, it also follows that 0 < Apin < b < \* and so ) is in the
domain of both h and h’. Then since h and h’ are continuous and k' is strictly positive on (0, c0), taking limits,
as in Henrici [16], on both sides gives X = X — h(X\)/h’(A) or h(X) = 0. By Corollary 3, A\* is the only zero of

h, and so, A = \*". &

4 Examples and Conclusions

The main result of this paper is to solve a relaxed minimum-cost redundancy allocation problem by showing
that Newton’s method finds the value of the optimal Lagrange multiplier.

Elsayed [10] posed a problem with n = 3, ¢; = ¢z = ¢3 = 1, minimum required system reliability, R = 0.82, and
component unreliabilities p; = 0.30, p2 = 0.25, and p3 = 0.15. Table 1 displays the solution to the Lagrange
multiplier problem, using Newton’s method.

Now, using A\* = 12.34505 and Equation (2), we calculate the unique optimal solution z* to the continuous
relaxation model to be (2.142314, 1.955049, 1.584455) and min z = I ¢;z; = 5.681819. Rounding up z,
we get a lower bound of 6 for optimal objective value of discrete model, and rounding up coordinates of the
optimal solutionto the relaxed model, we get (3, 2, 2) which is feasible for the discrete model, and the objective
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Table 1. Computing the Optimal Lagrange multiplier

k Ak [Abt+1 — Akl k Ak [Art1 — Axl
0 9.399742 3 | 12.34503257 0.03609972
1 11.665351 2.265609 4 | 12.34505203 | 1.946 x 10~°
2 | 12.30893285 | 0.64358185

value of this feasible solution is 7 which is an upper bound for the optimal objective value of the discrete model.
Note: In general, the feasible solution obtained by rounding up the coordinates of the optimal solution of the
relaxed model is not optimal. Using the reduction procedure in Nmah [18], we get (2, 2, 2) which yiels z = 6,
the lower bound for optimal of discrete model, and hence optimal solution for the discrete model.

We observe that Elsayed [10] achieved the same result but by a different method.

Next, Rice et al. [4] posed a problem with n = 3, R = 0.995, p1 = 0.1, p2 = 0.125, p3 = 0.09, ¢1 = 4, ¢z =
1, and c¢g = 3. Table 2 displays the results of the Lagrange multiplier problem, using Newton;s method.

Table 2. Computing the Optimal Lagrange multiplier

k Ak [ A1 — k| k Ak [Akt1 — Ak
0 | 289.0217848 4 | 693.7101289 9.1278919
1 | 457.8854805 168.8636957 5 | 693.8333318 0.1232029
2 | 613.6762507 | 155.74777026 6 | 693.8333537 | 2.19 x 107 °
3 684.582237 70.9059863

Now, using \* = 693.833 and Equation (2), we calculate the unique optimal solution z* to the continuous
relaxation model to be (2.600, 3.496, 2.624) min z = > | ¢;x; = 21.770. Rounding up z, we get 22, a lower
bound for optimal objective value of discrete model, and rounding up coordinates of the optimal solution to the
relaxed model, we get (3, 4, 3) which is feasible for the discrete model, and the objective value of this feasible
solution is 25 which is an upper bound for the optimal objective value of the discrete model.

Note: In general, the feasible solution obtained by rounding up the coordinates of the optimal solution of the
relaxed model is not optimal. Using the reduction procedure in Nmah [18], we get (3, 3, 3) which yields z = 24.

As in Nmah [18], we know that x; > xmin; for i =1, 2, 3, --- , n for any feasible solution. Particularly for our
case, zmin; = 3 for i = 1, 2, 3. So, (3, 3, 3) is optimal with z = 24.

Note: We observe that Rice et al [2] achieved the same result but by a different method.

5 Conclusion
The main result of this work is to solve a relaxed minimum-cost problem by showing that from an initial value

determined by the model’s parameters, Newton’s method finds the optimal value, A*, of the Lagrange multiplier.
In Section 2 we found upper and lower bounds for the roots, A\*, of equation (3), and proved that the optimal
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Lagrange multiplier \*, satisfies Amin < A" < Amaz. Nmah ([1] and [2]) proved that the vector z* and the
positive multiplier A\* that satisfy equations (2) and (3) are unique, and we showed in Section 3 that the optimal
Lagrange multiplier \* is the unique zero of the C?((0,00))—function h defined in Section 3. Also in Section
3 we showed how to approximate A\* by Newton’s method. Finally, in this Section we used two examples to
illustrate the method.
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