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Abstract 

 
In this work, we investigate how to optimize costs for a single-server queuing system operating in a fuzzy, 

unpredictable environment. Constructing the overall optimal cost and cost function of the queuing system 

under uncertainty in the fuzzy paradigm is the aim of the inquiry. The fuzzy analysis is carried out to offer a 

more practical answer to the issues at hand, as opposed to the model's usual crisp responses. The model's 

crisp and fuzzy systems have different theoretical advances that have been determined, and the estimated 

costs are easily verifiable and comparable. Lastly, sensitivity analysis has also been carried out utilising 

numerical analysis to evaluate the theoretical conclusions of the model that is being studied. 
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1 Introduction  
 

Decisions like whether the water is safe to drink, how terrible the accident was, or even if a grading system is in 

place, are frequently presented to us when we are unable to reach a solid conclusion. Fuzzy information gives us 

more specific knowledge, which aids in decision-making in many circumstances when there is ongoing 

ambiguity. Numerous authors have discussed fuzzy logic and fuzzy set theory, which are used in fuzzyness. The 

difficulties and solutions associated with making judgments in fuzzy settings have been thoroughly studied by 

Bellman and Zadeh [1], and Kaufmann [2] has given a summary of the theory of fuzzy subsets for a number of 

application fields. Additionally, Zimmermann [3] covered fuzzy set theory and its applications in a variety of 

real-world practical contexts. Zadeh [4] created and applied fuzzy set theory to the theory of possibility, arguing 

that it forms the foundation of possibility theory. Markovian queues have a significant role in queuing theory 

research. Mishra and Shukla [5] detailed the computational approach to the cost analysis of the machine 

interference model for the theory of queues, whereas Mishra and Yadav [6] created and discussed the 

computational approach to cost and profit analysis of timed queuing networks in queuing theory. While Sharma 

[7] went into great length about the ideal flow control of a multi-server time sharing queuing network with 

priority in queuing theory, Priya and Sudhesh [8] addressed the topic of transient analysis of a discrete-time 

infinite server queue with system disaster.  
 

The problem of employing an artificial neural network programme to simulate an M/M/1 queuing system was 

tackled by Sundari and Palaniammal [9], whereas Singh et al. [10] studied a finite queuing model with reneging 

for a single server using queuing theory. The literature has widely established the importance of Morkovian 

queues, and fuzzy queuing models seem to be far more useful in this context than normal crisp theory, providing 

more realistic solutions in a wide range of real-world applications. The arrival and service rates at the service 

station are fully probabilistic, but the mean arrival rate, the mean service rate, or both seem more possibilistic 

than probabilistic. Similarly, the numerical expressions are possibilistic. Conversely, fuzzy queuing models are 

more applicable and more grounded in reality than crisp queuing models in a wider range of domains. While 

Buckley [11] went into detail about the basic queuing theory based on possibility theory, Prado and Fuente [12] 

addressed the issues and applications of queuing theory in Markovian decision processes using fuzzy set theory.  

The analysis of fuzzy queues and their applications in a variety of fields were covered by Li and Lee [13]. 
 

In terms of queuing models, they fall into two categories: normative and descriptive. Normative type models are 

the most appropriate models for the given situation, while descriptive type queuing models are actual models 

that are observed in real-world scenarios. We optimise the arrival parameters, service, number of servers, queue 

discipline, controls, etc. for the specified queuing models in normative type models. As a result, normative 

models serve as an inspiration for queuing, whereas descriptive models represent queuing in actual situations. 

Queuing decision models or design and control models are other names for the descriptive kind of queuing 

models. Models in this category have parameters that are calculated in a way that should maximise model 

performance. These queuing models were developed by Negi and Lee [14] and examined in a fuzzy setting. Kao 

et al. [15] focused on the parametric programming of such queuing models and analysed them in a fuzzy 

environment, while Jo et al. [16] examined the performance evaluation of networks based on fuzzy queuing 

systems. In queuing theory, control models are crucial, and among them, the service control is dependent on a 

number of indicators. In queuing theory, control models play a crucial role. Among these models, service 

control is dependent on a number of different metrics, including service rate, server count, queue discipline, or a 

mix of these. In queuing theory, arrival control is also crucial and can be achieved by allocating arriving patrons 

to certain servers or by dispersing them among them. Arrivals can be managed by toll devices or workable 

restrictions, such as setting up parameters for physical space and working hours, among other things. In queuing 

theory, Buckley et al. Chen [17] described the bulk arrival queuing model with fuzzy parameters and varying 

batch sizes and given the solution through fuzzy set theory. Ke and Lin [18] used a nonlinear programming 

technique to work on the fuzzy analysis of queuing systems with an unreliable server [19] worked on defining 

these parameters in the context of queuing theory and offered a fuzzy expert system solution.  
 

Subsequently, an emerging paradigm in queuing models emerged, wherein the models are optimised using 

unreliable data inputs. By using a fuzzy expert system, the model is developed using this input data uncertainty. 

Fuzzy coefficients and parameters of the queuing models are optimised using fuzzy optimisation techniques in 

fuzzy expert systems. The single value simulation on fuzzy variables in queuing theory was worked on by 

Chanas and Nowakowski [20], while the economic study of the M/M/1/N queuing system cost model in a hazy 



 
 

 

 
Verma and Swarnakar; Asian J. Prob. Stat., vol. 26, no. 10, pp. 1-16, 2024; Article no.AJPAS.122948 

 

 

 
3 

 

environment was covered by Fazlollahtabar and Gholizadeh [21].While Palpandi and Geetharamani [22] worked 

on the evaluation of performance measures of bulk arrival queue with fuzzy parameters using a robust ranking 

technique, Prameela and Kumar [23] described the FM / FEk /1 queuing model with Erlang service under 

various types of fuzzy numbers, and Sanga et al. Using a parametric nonlinear programming technique, [24] 

worked on the FM/FM/1 double orbit retrial queue with customers' joining strategies. When cost coefficients, 

arrival, and service parameters are exact and known, a variety of techniques are used to derive the solutions of 

design and control models for performance measures. In contrast, the standard queuing decision models do not 

offer trustworthy estimates of the parameters of the models under consideration due to imprecision and 

ambiguity situations that are outside of human control if these parameters of these models are imprecise and 

vary over time, such as waiting cost per unit. In such a scenario, an intervention is required to determine the 

impact that could enable the system to function. These scenarios can be handled more skillfully by fuzzy 

queuing decision models, which may be investigated and explored. Fathi Vajargah and Ghasemalipour [25] 

worked on the simulation research of a random fuzzy queuing system with Barak and Fallahnezhad [26] 

discussing the cost analysis of fuzzy queuing systems.In such a scenario, an intervention is required to 

determine the impact that could enable the system to function. These scenarios can be handled more skillfully 

by fuzzy queuing decision models, which may be investigated and explored. While Fathi Vajargah and 

Ghasemalipour [25] worked on the simulation research of a random fuzzy queuing system with several servers, 

Barak and Fallahnezhad [26] talked about the cost analysis of fuzzy queuing systems. While Kannadasan and 

Sathiyamoorth [27] worked on the analysis of M/M/1 queue with working vacation in fuzzy environment, 

Enrique and Enrique [28] discussed the simulation of fuzzy queuing systems with a variable number of servers, 

arrival, and service rates, and Gou et al. [29] explained the alternate queuing technique for multiple criteria 

decision making as well as the hesitant fuzzy linguistic entropy and cross-entropy metrics. Ke and Lin [18] 

conducted a study on the fuzzy analysis of queuing systems with an unreliable server: A nonlinear programming 

approach, whereas Chen et al. [30] examined the analysis of strategic consumer behaviour in fuzzy queueing 

systems. While Qin et al. [7] focused on linguistic interval-valued intuitionistic fuzzy archimedean power 

muirhead mean operators for multiattribute group decision-making, Keith and Ahner [31] conducted a survey of 

decision making and optimisation under uncertainty. The Markovian arrival and service queuing model under 

fuzziness was optimised by Singh et al. [10]. Mishra et al. [32] have analysed the Markovian queueing model 

using neural networks and the signed distance approach. The current work employs a single server and both 

arrival and control queuing models in an unpredictable, fuzzy environment. The fuzzy environment of 

uncertainty produces better results for the queuing model with one or more uncertain parameters that need to be 

optimised for designing and controlling the queuing model under consideration because the fuzzy parameter 

estimates are more practical and realistic than the crisp model estimates. While fuzzy model FM/FM/1 reflects 

and discusses real scenarios of waiting lines and their outcomes, crisp model M/M/1 characterises ideal 

situations of waiting time analysis and its conclusions. It is also a well-known fact that there is never an optimal 

condition when there is a lineup or queue. As a key performance metric under the control design of arrival and 

service of FM/FM/1model and its optimisation, we aim to construct the total cost function of arrival and control 

queuing model with single server in fuzzy environment of uncertainty in the current inquiry. Here, we suggest 

fuzzifying the total cost function using a trapezoidal system of fuzzy numbers, and then defuzzifying the model 

FM/FM/1 using an effective signed distance method (SDM). The process of optimising the total cost function 

yields a system of nonlinear equations involving model parameters. These equations are solved using R software 

to determine the model's optimal performance measure. Here, the optimal total optimal cost of the queuing 

model FM/FM/1 under consideration serves as the optimal performance metric. Finally, the model's numerical 

demonstration has been used to do the sensitivity analysis. In comparison to earlier models, the FM/FM/1 model 

under examination is perhaps more economical and efficient. 
 

Notations: Following notations are used in the paper.  
 

TC= Optimal Total Cost (OTC), k = Service cost per unit (SC), c = Waiting cost per unit (WC),  = Arrival 

rate of customer (ARC), μ = Service rate. (SR), n = Number of customer (NC),  𝑘 ̃= Fuzzified Service cost per 

unit (FSC),  𝑐̃  = Fuzzified Waiting cost per unit (FWC), 
̃

 = Fuzzified Arrival Rate (FAR), 𝑛̃ = Fuzzified 

Number of customer (FNC) 
 

2 Arrival Control Model  
 

In general, the arrival control queuing model is a stochastic input-output system where the input process is 

controlled by whether entering consumers are accepted or rejected. These models incorporate as special 




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examples a number of popular queuing systems. These models take into account the form of both individually 

and socially optimal acceptance rules when there are incentives and waiting costs associated with accepted 

clients Johansen and Stidham [33]. 

 

Chen [17] proposed a solution for a bulk arrival queuing model with fuzzy parameters and variable batch sizes, 

while Johansen and Stidham [33] investigated the control of arrivals to a stochastic input-output system. Ke and 

others. Walker and Bright [34] went into great length on modelling arrival-to-departure sequence disorder in 

flow-controlled manufacturing systems, and [35] proposed a method for managing arrivals for a markovian 

queuing system with a second optional service. The solution for queue-based modelling of the aircraft arrival 

process at a single airport was presented by Itoh and Mitici [36], while Samanta [24] investigated the D-

BMAP/G/1 queuing system's waiting-time analysis. Below is a discussion of the arrival control system's 

mathematical formulations for both the fuzzy and crisp paradigms [37-40]. 

 

2.1 Arrival control model: crisp mathematical formulation 
 

The model's total cost function is specified as  

 

  TC = kμ + cE(n) 
 

This implies that TC = kμ +
c 

μ
  

 

In terms of service least cost, we have 

 

𝑑

𝑑𝜇
[𝑇𝐶] =

𝑑

𝑑𝜇
{TC = kμ +

c
μ

} 

 

For stationary values 
𝑑

𝑑𝜇
[𝑇𝐶]=0, this ultimately yields 

 

μ = (
c

μ
)
1
2 

Along with having satisfied  
𝑑2

𝑑𝜇2
[TC] =  

2𝑐
𝜇3

> 0  for minimum cost.  

 

2.2 Fuzzy mathematical model  
 

Further, we define a trapezoidal fuzzy number 𝐴̃ = (a,b,c,d)with membership function  

 

𝜇𝐴 (𝑋) =

{
 
 

 
 𝐿(𝑋) =

𝑥 − 𝑎

𝑎 − 𝑏  
, 𝑤ℎ𝑒𝑛 𝑎 ≤ 𝑥 ≤ 𝑏

1,𝑤ℎ𝑒𝑛 𝑏 ≤ 𝑥 ≤ 𝑐

𝑅(𝑋) =
𝑐 − 𝑥

𝑐 − 𝑑
,𝑤ℎ𝑒𝑛 𝑐 ≤ 𝑥 ≤ 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Now, we want to use trapezoidal fuzzy numbers
 
 𝑘,̃ 𝑐,̃

 
 to fuzzify cost coefficients and arrival rates k, c.

 .We've gone on as  

 

𝑘̃ = (k1,k2,k3,k4  ) , 𝑐̃=(c1,c2,c3,c4), 
̃

=(
1,


2,


3,


4
) 

 

Thus, fuzzified total cost turns out to be as T𝐶̃ = 𝑘̃𝜇 + 
𝑐̃ 
̃

𝜇
  which implies that  
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𝑇̃ C = { 𝑘1𝜇 +
𝑐1  1

𝜇
,  𝑘2𝜇 +

𝑐2  2

𝜇
, 𝑘3𝜇 +

𝑐3  3

𝜇
, 𝑘4𝜇 +

𝑐4  4

𝜇
 } 

 

Which is finally expressed as 𝑇̃ C= (W,X,Y,Z) 

 

W=𝑘1𝜇 +
𝑐1  1

𝜇
,    X = 𝑘2𝜇 +

𝑐2  2

𝜇
,  Y=𝑘3𝜇 +

𝑐3  3

𝜇
,  Z= 𝑘4𝜇 +

𝑐4  4

𝜇
  

 

Now, we define following as  

 

𝐶𝐿 (𝛼) = 𝑊 + (𝑋 −𝑊)𝛼  = 𝑘1 𝜇 +
𝑐1  1

𝜇
 + [𝑘2 𝜇 +

𝐶2  2

𝜇
 -(𝑘1 𝜇 +

𝐶1  1

𝜇
)]α          and 

 

𝐶𝑅 (𝛼) = 𝑌 − (𝑌 − 𝑍)𝛼    =  𝑘3𝜇 +
𝐶3  3

𝜇
 - [𝑘3𝜇 +

𝐶3  3

𝜇
 - (𝑘4𝜇 +

𝐶4  4

𝜇
)]𝛼 

 

Next, we define SDM and apply for present model. 

 

𝑇̃ 𝐶𝑑𝑠 = 
1

2
 ∫ [𝐶𝐿 (𝛼) + 𝐶𝑅 
1

0
(𝛼)]𝑑𝛼 

 

𝑇̃ 𝐶𝑑𝑠 = 
1  

4
[(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)𝜇 +

1

𝜇
 (𝐶1  1

+ 𝐶2  2
+ 𝐶3  3

+ 𝐶4  4
)] 

 

Given that we now have stationary value, the minimal fuzzified cost can be achieved. 

 
𝑑𝑇̃ 𝐶𝑑𝑠

𝑑𝜇
 =

1  

4
[(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4) −

1

𝜇2
 (𝐶1  1

+ 𝐶2  2
+ 𝐶3  3

+ 𝐶4  4
)]=0,  

 

Yielding result as  μ = (
𝐶1  1

+𝐶2  2
+𝐶3  3

+𝐶4  4

𝑘1 +𝑘2+𝑘3+𝑘4
)
1

2     having satisfied the condition as 

 

𝑑2𝑇̃ 𝐶𝑑𝑠

𝑑𝜇2
 =
1

2
 [
𝐶1  1

+𝐶2  2
+𝐶3  3

+𝐶4  4

μ3
] > 0 

 

2.3 Arrival control model: crisp computation 
 

Following Table 1 represents computation of cost function under crisp environment. 

 

Table 1. (Computation table for k, TC) 

 

k c    𝛍 TC 

11 7 5 1.78 39.24 

13 7 5 1.64 42.66 

15 7 5 1.526 45.82 

17 7 5 1.431 48.785 

19 7 5 1.357 51.57 

21 7 5 1.290 54.22 

23 7 5 1.233 56.739 

25 7 5 1.18 58.66 

 

2.4 Arrival control model: fuzzy computation 
 

Following tables from Table 2 represents computation of cost function under fuzzy environment 
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Fig. 1. Variation of optimal total cost and service cost per unit 
 

Table 2. (Computation table for 𝒌̃ ,𝑻̃ C) 

 

𝒌̃ 𝒄̃ 

𝐤𝟏, 𝐤𝟐, 𝐤𝟑, 𝐤𝟒   𝐜𝟏, 𝐜𝟐, 𝐜𝟑, 𝐜𝟒 

8 10 12 14 4 6 8 10 

10 12 14 16 4 6 8 10 

12 14 16 18 4 6 8 10 

14 16 18 20 4 6 8 10 

16 18 20 22 4 6 8 10 

18 20 22 24 4 6 8 10 

20 22 24 26 4 6 8 10 

22 24 26 28 4 6 8 10 


̃

 
𝛍 𝑻̃ C 


𝟏
 

𝟐
 

𝟑
 

𝟒
   

2 4 6 8 1.90 41.95 

2 4 6 8 1.75 45.60 

2 4 6 8 1.63 48.98 

2 4 6 8 1.53 52.15 

2 4 6 8 1.44 55.13 

2 4 6 8 1.37 57.96 

2 4 6 8 1.31 60.66 

2 4 6 8 1.26 63.24 
 

 
 

Fig. 2. Optimal total cost and fuzzified service 
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2.5 Service control model: crisp mathematical formulation 
 

This is the model's total cost function.  

 

TC = knμ + cE(n). 
 

This implies that   

    

  TC = knμ + c

μ

 

 

In terms of service least cost, we have 

 

𝑑 [𝑇𝐶]

𝑑𝜇
 =

d

dμ
(knμ +

C
μ
) 

 

For stationary values 
𝑑 [𝑇𝐶]

𝑑𝜇
 = 0, this ultimately yields  

 

μ = (
C
kn
)
1

2  

 

Along with having satisfied   

 

𝑑2[𝑇𝐶]

𝑑𝜇2
=
2𝑐

𝜇3 
> 0 

 

For minimum cost. 

 

2.6 Service control model: fuzzy mathematical model 
 

Now, we wish to fuzzify cost coefficients and arrival rates k, c,  , and n with the help of trapezoidal fuzzy 

numbers (defined by function A) as ,  𝑘,̃     𝑐̃   , 
̃

   and  𝑛̃       respectively depicted as 

 

𝑘̃ = (k1,k2,k3,k4  ) , 𝑐̃=(c1,c2,c3,c4), 
̃

=(
1,


2,


3,


4
)  𝑛̃ = (n1, n2, n3, n4) 

 

Now, we define fuzzified total cost as  

 

TC ̃ =𝑘̃𝑛̃ μ +
c̃
̃

μ
   , which implies that 

 

𝑇̃ C = { 𝑘1𝑛1𝜇 +
𝑐1  1

𝜇
,  𝑘2𝑛2𝜇 +

𝑐2  2

𝜇
, 𝑘3𝑛3𝜇 +

𝑐3  3

𝜇
, 𝑘4𝑛4𝜇 +

𝑐4  4

𝜇
 } 

 

This is further simplified as   𝑇̃ C= (W,X,Y,Z)  where 

 

Now, we define left and right cuts as 

𝐶𝐿 (𝛼) = 𝑊 + (𝑋 −𝑊)𝛼  = 𝑘1 𝑛1𝜇 +
𝑐1  1

𝜇
 + [𝑘2 𝑛2𝜇 +

𝐶2  2

𝜇
 -(𝑘1 𝑛1𝜇 +

𝐶1  1

𝜇
)]α          and 

 

𝐶𝑅 (𝛼) = 𝑌 − (𝑌 − 𝑍)𝛼    =  𝑘3𝑛3𝜇 +
𝐶3  3

𝜇−
3

 - [𝑘3𝑛3𝜇 +
𝐶3  3

𝜇−
3

 - (𝑘4𝑛4𝜇 +
𝐶4  4

𝜇
)]𝛼 
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Now, we apply SDM as 

 

𝑇̃ 𝐶𝑑𝑠 = 
1

2
 ∫ [𝐶𝐿 (𝛼) + 𝐶𝑅 
1

0
(𝛼)]𝑑𝛼 

 

𝑇̃ 𝐶𝑑𝑠 = 
1  

4
[(𝑘1 𝑛1 + 𝑘2𝑛2 + 𝑘3𝑛3 + 𝑘4 𝑛4)𝜇 +

1

𝜇
 (𝐶1  1

+ 𝐶2  2
+ 𝐶3  3

+ 𝐶4  4
)] 

 

Now, in order to attain minimum fuzzified cost, we have now stationary value 

 
𝑑𝑇̃ 𝐶𝑑𝑠

𝑑𝜇
 =

1  

4
[(𝑘1 𝑛1 + 𝑘2𝑛2 + 𝑘3𝑛3 + 𝑘4𝑛4) −

1

𝜇2
 (𝐶1  1

+ 𝐶2  2
+ 𝐶3  3

+ 𝐶4  4
)]=0,  

 

Yielding result as  

 

 μ = (
𝐶1  1

+𝐶2  2
+𝐶3  3

+𝐶4  4

𝑘1 𝑛1+𝑘2𝑛2+𝑘3𝑛3+𝑘4𝑛4
)
1

2 

 

Having satisfied the condition as 

 

𝑑2𝑇̃ 𝐶𝑑𝑠

𝑑𝜇2
 =
1

2
 [
𝐶1  1

+𝐶2  2
+𝐶3  3

+𝐶4  4

μ3
] > 0 

 

2.7 Service control model: crisp computation 
 

Following Tables 3 represents computation of different cost functions under crisp environment.  

 

Table 3. (Computation table for k, TC) 

 

k c   n 𝛍 TC 

6 8 6 10 0.89 107.33 

8 8 6 10 0.77 123.93 

10 8 6 10 0.69 138.56 

12 8 6 10 0.63 151.79 

14 8 6 10 0.58 163.95 

16 8 6 10 0.54 175.28 

18 8 6 10 0.50 186 

20 8 6 10 0.48 196 

 

 
 

Fig. 3. Variation of optimal total cost and service cost per unit 
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2.8 Service control model: fuzzy computation 
 

Following Tables 4 represents computation of different cost functions under fuzzy environment 

 

Table 4. (Computation table for 𝒌̃ ,𝑻̃ C) 

 


̃

 
𝒄̃ 


𝟏
 

𝟐
 

𝟑
 

𝟒
 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

5 7 9 11 7 9 11 13 

 

𝒌̃ 𝒏̃ 𝛍 𝑻̃C 

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒   

3 5 7 9 5 7 9 11 1.26 134.24 

5 7 9 11 5 7 9 11 1.109 153.17 

7 9 11 13 5 7 9 11 1.00 170 

9 11 13 15 5 7 9 11 0.91 185.31 

11 13 15 17 5 7 9 11 0.87 192.84 

13 15 17 19 5 7 9 11 0.79 212.66 

15 17 19 21 5 7 9 11 0.75 225.08 

17 19 21 23 5 7 9 11 0.71 236.86 

 

 
 

Fig. 4. Optimal total fuzzified cost and fuzzified service cost 

 

2.9 Arrival and service control model: crisp mathematical model 
 

The definition of the model's total cost function is  

 

TC = knμ +
c

μ − 
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In terms of service least cost, we have 

 

𝑑 [𝑇𝐶]

𝑑𝜇
 =

d

dμ
(knμ +

C

μ−
) 

 

For stationary values  
𝑑 [𝑇𝐶]

𝑑𝜇
 = 0,   

 

This ultimately yields        μ =  + (
C
kn
)
1

2  (for max service), along with satisfied 

 

𝑑2[𝑇𝐶]

𝑑𝜇2
=

2𝑐

(𝜇 −  )3 
> 0 

 

For minimum cost. 

 

3 Our Results 
 

3.1 Arrival and service control model: fuzzy mathematical model 
 

Claim 2.1 Assuming that TC ̃ represents the fuzzified total cost function demonstrate that  
1

2
[
𝐶3  3

(μ−
3
)3
] > 0 and 

hence deduce  μ = (
c3  3

(𝑘1 𝑛1+𝑘2𝑛2+𝑘3𝑛3+𝑘4𝑛4)
)
1

2  + 
3
. 

 

Proof: We construct fuzzified total cost function as   

 

TC ̃ =𝑘̃𝑛̃ μ +
c̃
̃

μ−
̃  

With the use of trapezoidal fuzzy numbers (specified by function A), 𝑘,̃     𝑐̃  , 
̃

   and  𝑛̃        

 we now want to fuzzify cost coefficients and arrival rates k, c,  , and n, respectively.  

 

k → k̃,     c → c̃ ,   
  

 → 

̃ ,     n → ñ
 

 

𝑘̃ = (k1,k2,k3,k4  ) , 𝑐̃=(c1,c2,c3,c4), 
̃

=(
1,


2,


3,


4
)  𝑛̃ = (n1, n2, n3, n4) 

 

Further, we have  

 

TC ̃ =𝑘̃𝑛̃ μ +
c̃
̃

μ−
̃  , which implies that 

 

𝑇̃𝐶 = ((k1,k2,k3,k4  )(n1, n2, n3, n4)μ+
(c1,c2,c3,c4)( 1

,
2
,

3
,

4
)

𝜇−(
1
,

2
,

3
,

4
)

 

 

This is expressed as 

 

   𝑇̃ C= (W,X,Y,Z),    where    
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W= 𝑘1𝑛1𝜇-𝑐1,      X= 𝑘2𝑛2𝜇-𝑐2,  Y= 𝑘3𝑛3𝜇 -
𝑐3  3

𝜇−
3

,  Z= 𝑘4𝑛4𝜇- 𝑐4 

 

We now define cuts to the left and right as 

 

𝐶𝐿 (𝛼) = 𝑊 + (𝑋 −𝑊)𝛼 = ( 𝑘1𝑛1𝜇-𝑐1) +[( 𝑘2𝑛2𝜇-𝑐2)-( 𝑘1𝑛1𝜇-𝑐1)]𝛼  and 

 

𝐶𝑅 (𝛼) = 𝑌 − (𝑌 − 𝑍)𝛼 = ( 𝑘3𝑛3𝜇 -
𝑐3  3

𝜇−
3

)- [( 𝑘3𝑛3𝜇 -
𝑐3  3

𝜇−
3

) - (𝑘4𝑛4𝜇- 𝑐4)]𝛼 

 

Next, we apply SDM as  

 

𝑇̃ 𝐶𝑑𝑠 = 
1

2
 ∫ [𝐶𝐿 (𝛼) + 𝐶𝑅 
1

0
(𝛼)]𝑑𝛼 

 

𝑇̃ 𝐶𝑑𝑠 = 
1  

4
[(𝑘1 𝑛1 + 𝑘2𝑛2 + 𝑘3𝑛3 + 𝑘4 𝑛4)𝜇 − (  𝑐1 +  𝑐2 +  𝑐4)+-

𝑐3  3

𝜇−
3

 

 

Now, for minimum cost with respect to μ 

 

𝑑𝑇̃ 𝐶𝑑𝑠

𝑑𝜇
 =

1  

4
[(𝑘1 𝑛1 + 𝑘2𝑛2 + 𝑘3𝑛3 + 𝑘4𝑛4)-

𝑐3  3

(𝜇−
3
)2

] = 0 

 

With sufficient condition  

 

𝑑2𝑇̃ 𝐶𝑑𝑠

𝑑𝜇2
 =
1

2
 [

𝐶3  3

(μ−
3
)3
] > 0 

 

Which ultimately gives us  

 

(𝑘1 𝑛1 + 𝑘2𝑛2 + 𝑘3𝑛3 + 𝑘4𝑛4)(𝜇 − 
3
)2- 𝑐3  3

  = 0 

 

μ = (
c3  3

(𝑘1 𝑛1+𝑘2𝑛2+𝑘3𝑛3+𝑘4𝑛4)
)
1

2  + 
3
 

 

3.2 Arrival and service control model: crisp computation  

 

In this section the cost function computation in a crisp environment is shown in Table-5 

below. Therefore, for given static values of c,  , and n, we compute the relationship between 

the total cost function TC for various values of k. 

 
Table 5. (Computation table for k, TC) 

 

k c   n 𝛍 TC 

8 10 6 4 7.36 279.63 

10 10 6 4 7.22 337.98 

12 10 6 4 7.11 395.33 

14 10 6 4 7.03 451.93 

16 10 6 4 6.96 507.94 

18 10 6 4 6.91 563.45 
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20 10 6 4 6.86 618.56 

22 10 6 4 6.82 673.33 

 

 
 

Fig. 5. Variation of optimal total cost and service cost per unit 

 

3.3 Arrival and service control model: fuzzy computation 
 

Following Tables 6 represents computation of different cost functions under fuzzy environment. 

 

Table 6. (Computation table for 𝒌̃ ,𝑻̃ C) 

 


̃

 
𝑐̃ 


1
 

2
 

3
 

4
 𝑐1 𝑐2 𝑐3 𝑐4 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

3 5 7 9 7 9 11 13 

 

𝑘̃ 𝑛̃ μ 𝑇̃C 

𝑘1 𝑘2 𝑘3 𝑘4 𝑛1 𝑛2 𝑛3 𝑛4   

5 7 9 11 1 3 5 7 7.72 305.12 

7 9 11 13 1 3 5 7 7.64 366.62 

9 11 13 15 1 3 5 7 7.6 430.55 

11 13 15 17 1 3 5 7 7.55 488.3 

13 15 17 19 1 3 5 7 7.51 548.68 

15 17 19 21 1 3 5 7 7.5 608.75 

17 19 21 23 1 3 5 7 7.46 668.69 

19 21 23 25 1 3 5 7 7.44 728.42 
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Fig. 6. Variation of optimal total fuzzified cost and fuzzified service cost/unit 

 

4 Conclusion 
              

For the current study, we constructed a queuing model in a fuzzy environment since it provides a more workable 

solution when human control over measurements is not feasible. The total optimal cost of the studied queuing 

model with a single server in a fuzzy environment has been found to offer a better solution than the queuing 

model in a crisp environment. The results may be seen to be readily comparable for both the fuzzy and the crisp 

surroundings. Numerous applications including uncertainty may result from the further extending of the studied 

queuing model to the fuzzy environment. The current work may provide strong results that are crucial for 

building queuing models for fuzzy environments, and it may be highly instructive for researchers in the field. 

These queuing models are crucial for creating a more effective waiting line system that will satisfy our 

workforce demands and address issues with pricing, settlement, arrival management, service quality, decreasing 

client wait times, and increasing the number of customers served. In addition, these models could be helpful in 

offering operational management techniques for scheduling and inventory control to improve customer service 

in businesses where there are naturally occurring lines. Six sigma practitioners should also be aware of the 

current Markovian queuing model strategies in order to improve customer service in various organisations. For 

additional research, fuzzy neuro and intuitionistic fuzzy techniques would be more practical for analysing such 

queuing models. 
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