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ABSTRACT
In this paper we present a comparison of supervised classifiers
and image features for crop row segmentation of aerial images
captured from an unmanned aerial vehicle (UAV). The main
goal is to investigate which methods are the most suitable to
solve this specific problem, as well as to test quantitatively how
well they perform for robust segmentation of row patterns. For
this purpose, we conducted a systematic literature review over
the recent methods specifically designed for aerial image crop
row segmentation, and for comparison purposes we imple-
mented the most prominent approaches. Most used Color-
texture features were faced against most used classifiers,
resulting into a total of 48 combinations, usually having their
construction concepts based on the following two step-
procedures: (i) supervised training step to build some model
over the selected color-texture feature space which is also
based upon user-selected samples from the input image; and
(ii) classification step, where each pixel of the input image is
classified employing the corresponding classifier. The obtained
results were compared against a Ground-Truth (GT) image,
performed by a human expert, using two distinct evaluation
metrics, indicating the most suitable combination of color-
texture descriptors and classifiers able to solve the segmenta-
tion problem of specific cultures obtained from UAV images.

Introduction

Precision agriculture is a relatively new application field characterized by the
use of technology to increase productivity and quality of cultures while
making use of policies to preserve the environment McBratney et al.
(2005). There are several examples of precision agriculture tools, varying
according to their application such as decision support systems for farm
management, data management, pesticide/nutrient use optimization, crop

CONTACT Paulo César Pereira Júnior paulocpj@incod.ufsc.br Computer Science Post-Graduate Program -
PPGCC, Federal University of Santa Catarina, Brasil

APPLIED ARTIFICIAL INTELLIGENCE
2020, VOL. 34, NO. 4, 271–291
https://doi.org/10.1080/08839514.2020.1720131

© 2020 Taylor & Francis

https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1720131&domain=pdf&date_stamp=2020-02-07


marketing, telematics services, unmanned aerial vehicles (UAV), and others
Reyns et al. (2002). Specifically, regarding UAVs, their use provides aerial
images that allow inspecting a wide monitoring area, offering high-resolution
imaging with varied multispectral channels (visible light and near, medium
and far infrared channels).

Aerial images can be used in the most varied fields in precision agriculture.
The identification of rows corresponding to the vegetation patterns in images
may facilitate the optimization of chemicals spreading. Further tasks such as
counting plants, rows length measurement, skips detection and weed man-
agement also provide relevant information that can be used to estimate the
relative productivity of specific plantation zones, estimating their vigor,
coverage, and density Torres-Sánchez, López-Granados, and Pen˜a (2015);
Torres-Sánchez et al. (2014). Additionally, autonomous navigation ground
vehicles such as tractors can be assisted by the row information gathered
through UAVs, combined with other geographical and topographical data.

In order to be able to support precision agriculture through aerial imaging,
precise and reliable quantitative analysis of agricultural images is necessary.
This is usually done through computerized methods based on Computer
Vision (CV) methods, employed as a toolbox of routines used for gathering
data for the decision making procedure.

The vegetation rows identification, for example, consists in a pixel-wise
classification problem (semantic segmentation), where each pixel is classified
into crop row or background (soil/inter-row) area, providing a segmented
image. Usually, when vegetation is confronted against soil, the high color
variances makes easier to differentiate those classes. However, when in the
presence of distinct evolutionary stages of a specific culture, or advanced
stages with very dense vegetation covering, providing an accurate classifica-
tion becomes a challenging problem.

Objectives

The objective of our work is to investigate the problem of vegetation row
segmentation on aerial images and address it employing supervised classifi-
cation methods. For this purpose, we:

● investigate which classifiers and features extractors are commonly used
in the literature;

● implement the most common or promising;
● apply them to an UAV-acquired sugar cane orthomosaic dataset, using
various combinations of information in their feature space;

● validate their performance against a ground truth produced by
a biologist.
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This paper is organized as follows: Section 2 provides an overview of the state of
the art. In Section 3 the data set, classifiers, features extractors and validation
methods used in our experiments are described. Results are presented in Section 4.
Finally, discussion, conclusions and further works are presented in Section 5.

State of the Art

In order to obtain a state of the art related to vegetation row segmentation
approaches, we performed a systematic literature review. The review was
performed accordingly to the method for systematic literature review pro-
posed in Kitchenham (2004).

The research main question asked in our approach is: Which methods of
image segmentation, specifically designed for crop rows in aerial images,
have already been proposed in scientific articles available over the literature?
The research was conducted in 2018, for articles written in English Language,
published between 2008 and 2018, which proposed some algorithm capable
of segmenting plants into aerial images. The databases used in the research
were Science Direct, IEEE and Springer. The search strings used, as well as
the number of articles returned, are shown in the Table 1.

To the 363 papers returned by our search strings, we applied the following
exclusion and inclusion criteria:

● exclusion criteria: simple application case studies or review articles that
did not propose any method or method modification tailored for the
problem in question;

● inclusion criteria: articles that proposed an algorithm or method, which,
at some stage, includes the segmentation of vegetation in aerial images
of plantations;

Only 22 papers met these criteria. They are listed and classified accord-
ingly to approach and method in Appendix A. Below we provide a summary
of what we identified in these works.

The precision agriculture application of the reviewed works varies between
the detection of vegetation row, skips in rows, crop rows center line, and

Table 1. Search string used on this systematic review.

Database Search String
Retrieved
Papers

Science Direct (“unmanned aerial vehicle”) AND (“agriculture”) AND ((“crop” AND “row”)
OR (“weed”) AND (“detection” OR “maping”))

103

IEEEXplore ((“unmanned aerial vehicle” AND “agriculture” AND “crop” AND “row”) OR
“unmanned aerial vehicle” AND “agriculture” AND “weed” AND
“mapping”)

121

Springer (“weed detection”) OR (“weed detection” AND “unmaned aerial vehicles”) 139
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weeds. For all of these applications, at some point, its solution method needs
to segment the image into crop and some other classes.

Additionally, it is possible to divide the reviewed works in two main
categories: (i) use object-based image analysis (OBIA) Torres-Sánchez,
López-Granados, and Pen˜a (2015); Pérez-Ortiz et al. (2016b); de Souza
et al. (2017); Gao et al. (2018), and (ii) the ones based on other approaches
not OBIA-based. The concept behind OBIA consist in utilize a general
segmentation algorithm to divide the image into several small partitions
(objects), and then classify each object instead of each pixel Hossain and
Chen (2019).

The principal computer vision difference between each work is the feature
space used to describe the elements on the image (pixels or objects). A large
amount of the founded works uses some kind of vegetation index as features.
These features consist of intensity values calculated from the spectral infor-
mation, representing the greenness of each pixel. The most common indexes
are the Excess Green Index (ExG) for visible spectrum cameras, and
Normalized Difference Vegetation Index (NDVI) for multispectral cameras
Torres-Sánchez, López-Granados, and Peña (2015); Pérez-Ortiz et al. (2015),
Pérez-Ortiz et al. (2016b)); de Souza et al. (2017); Comba et al. (2015); Gao
et al. (2018); Sa et al. (2018); David, Charlemagne, and Ballado (2016); Pérez-
Ortiz et al. (2016a); Lottes et al. (2017); Bah, Hafiane, and Canals (2017).
Works that focus on OBIA uses several features to describe data. Vegetation
indices represent color information, gray level co-occurrence matrices
(GLCM) are commonly used to capture texture, and object area/shape is
used to describe geometric information of detected objects.

In some works, the plantations covered contains quite spaced crop rows,
making possible to segment them with a simple Otsu threshold Torres-
Sánchez et al. (2014). These works usually use this threshold as a starting
seed point, to execute a more robust method. It is possible to use this strategy
to apply Hough transform Duda and Hart (1972); Rong-Chin and Tsai
(1995) to detect the center line of plantation rows, and use this information
as spacial features to detect inter-row weeds Pérez-Ortiz et al. (2015), Pérez-
Ortiz et al. (2016b)); Gao et al. (2018).

For the classification step, the majority of revised methods employ a well-
known supervised algorithm. Support vector machines, random forests and
K-nearest neighbors were used in some works Castillejo-González et al.
(2014); Pérez-Ortiz et al. (2015), Pérez-Ortiz et al. (2016b)); Dos Santos
Ferreira et al. (2017); Ishida et al. (2018); Gao et al. (2018).

More recent works are making use of newer machine learning techniques
(deep learning), like Convolutional Neural Network (CNN) Sa et al. (2018),
Dos Santos Ferreira et al. (2017). These networks have shown a great advance
in pattern recognition tasks. In addition to its good performance, they have
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the capability to automatically learn what features best describe the observed
data Zeiler and Fergus (2014).

Material and Methods

To investigate the problem of vegetation row segmentation in aerial images we
implemented the most used supervised classifications algorithms, and the most
used image features extractors. To compare the performance of those classifiers
with each possible feature described, we perform the following experiment.
A UAV image of a sugar cane field was segmented several times using each
classifier. Each classifier was tested with different combinations of features in
their feature vector.

Orthomosaic Image

The data set used in our experiments was build as follows. We employed a single
UAV-acquired sugar cane field orthomosaic as our dataset. The image was
captured from a Horus Aeronaves1 fixed-wing UAV with a camera model canon
G9X with a resolution of 20.4 megapixels. The UAV captured the data following
a flight altitude of 125 to 200 meters, resulting in a resolution of 5cm=pixel.

Ground Truth

From the data set, an expert biologist produced a human-made ground truth
(GT). The expert classified all pixels of the image manually, using the GNU
image manipulation program (GIMP),2 into two classes: crop row and back-
ground. Figure 1 presents the orthomosaic and the corresponding GT.3

Figure 1.: The left image shows the sugar cane Orthomosaic. The right image present the
ground truth, whereas green = crop row area, and red = background area.
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Classifiers

Our literature review showed that support vector machine (SVM), random forest
(RF),Mahalanobis classifier (MC) and K-nearest neighbors (KNN) are commonly
used supervised algorithms, for this kind of pixel classification problem.

K-Nearest Neighbors
Possibly the simplest supervised classification machine learning algorithm,
the KNN classifier is a type of instance-based learning, or lazy learning,
where the training data is simply recorded and no model is created based
on train data Cover and Hart (1967). The classification of unclassified data is
done by voting between the K nearest samples in the train data. The most
common distance function used to calculate the nearest samples is the
Euclidean distance. Hyperparameter K has to be chosen upon the data.
Larger values of K can be used to reduces the effect of noise on train data
but can make boundaries between classes less distinct.

The KNN classifier was used in this comparative study as a base method. It
was chosen because it is a classic and quite simple method. Two K values
were used, a small one and a larger one (three and eleven respectively).

Mahalanobis Distance
Mahalanobis distance is a distance metric based on the correlation between
the vector components of a data sample. Given two arbitrary vector coordi-
nates u and g, and a data sample of vector coordinates C with same
dimensionality as u and g, the Mahalanobis distance (MD) is computed by:

MDðu; gÞ ¼ u� gð ÞTA�1 u� gð Þ
� �1=2

¼k u� gkA (1)

where A�1 is the inverse of the co-variance matrix obtained from C. The MD
is a dual metric: if A is an identity matrix, MD is reduced to the L2-norm. As
a main characteristic, the statistical distance presents an elliptic topology
which surrounds the center of C.

An interesting variation of the MD is the Polynomial Mahalanobis
Distance (PMD). The PMD was proposed by Grudic and Mulligan (2006)
as a distance metric that has the ability to capture the non-linear character-
istics of a multivariate distribution as a global metric. The degree of the
polynomial (q-order) determines how rigorous the distance will be, based on
the samples of the input distribution. A first-order PMD has the same effect
as a simple MD.

The Mahalanobis distance, in both its linear and higher-order polynomial
variations, has been shown to produce better results than linear color-metric
approaches such as RGB or CIELab, when employed as a customized color-
metric in various segmentation algorithms Lopes et al. (2016); Carvalho et al.
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(2015), Carvalho et al. (2014)); Sobieranski et al. (2014a); Sobieranski,
Comunello, and von Wangenheim. (2011); Sobieranski et al. (2009a);
Sobieranski et al. (2009b).

The methodology using the Mahalanobis Classifier consists, in the training
step, to generate a different distance metrics (PMD) for each class present in
the training set. The classification step consists of finding the closest class
mean, using their respective distance metrics. We used the first three poly-
nomial orders on our experiments.

Support Vector Machines
Probably one of the most popular classifier algorithms, support vector
machines incrementally approximate a data classifier trying to create hyper-
planes that best separate the data set into their classes. The best hyperplane
must maximize the margin between the extreme points in each class. These
extreme points that define the hyperplane are called support vectors Jakkula
(2006). Since this method tries to separate the data employing hyperplanes, the
classification can only work on linearly separable data. To overcome this
limitation, a nonlinear kernel function is applied in the data set, transforming
the feature space in a nonlinear high-dimensional projection, where it is linearly
separable. The most popular kernels are the polynomial and the radial basis
function (RBF). In our experiments, we tested two kernels, a simple linear and
the RBF kernel. The RBF kernel is described in equation 2.

KðXi;YjÞ ¼ EXPð�γjjXi � Yjjj2Þ (2)

Random Forests
Random forest uses ensemble learning (bootstrap aggregating or bagging) on
multiples decision trees Breiman (2001). Each one of these trees contains
internal nodes (condition nodes) and leaf nodes (decision nodes). Each
condition node contains a simple rule using one feature from the feature
vector, and each decision node contains a class label. The classification of an
unlabeled data is done walking down the tree following each condition node
until a leaf node is reached, outputting a class label.

The bagging method is used in a slightly different way, de-correlating
the trees splitting the feature vector into random subsets of features. Each
tree in the forest considers only a small subset of features rather than all of
the features of the model (each subset has

ffiffiffi
n

p
features, where n is the total

number of features). This way, highly correlated trees are avoided.

Feature Space

For the features, we found that vegetation indices are almost unanimously
used as color information, and gray level co-occurrence matrices (GLCM) are
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frequently used for texture features extractor. Since texture is important
information to discriminate different objects with the same color (connected
parallel crop rows for example), we decided to include another well know
texture feature extractor in our experiments, Gabor filters.

Vegetation Indices
Since most crops present a green coloration, it is intuitive that color
information can be a useful feature for the segmentation. A vegetation
index (VI) consists of mathematical manipulation of the image spectral
channels (RGB), to measure the greenness of a pixel. Various VI’s were
proposed on the literature Wang, Zhang, and Wei (2019), the most present
ones in our review were the excess green index (ExG), for RGB cameras,
and the normalized difference vegetation index (NDVI), for cameras with
near-infrared spectrum. In this work, we only used VI for RGB cameras.
The ExG index is expressed by the Equation 3, where G, R, and B are the
intensity values of each channel normalized by the sum of the three.

ExG ¼ 2G� R� B (3)

Gabor Filters
Gabor filters are traditional texture descriptors proposed by Denis Gabor Gabor
(1946). The texture is extracted from the image by a set of base functions, which
can be employed to build aGabor filter bank. Each base function ismodulated by
a specific scale and orientation, and a process of convolution of the filters with an
image produces responses where the structure adapts with the scale and orienta-
tion analyzed. Gabor filters have been shown to help in performing texture-
based image segmentation through integrated color-texture descriptors Ilea and
Whelan (2011). Gabor filter-based segmentation approaches have also been
shown to be easy to parallelize, implement in GPUs and use to perform fast
color-texture-based image segmentation Sobieranski et al. (2014b). The Gabor
filter can be expressed by the Equation 4, where u0 andϕ respectively correspond
to frequency, and the phase offset (in degrees). The standard deviation σ
determines the size of the Gaussian filed.

hðx; yÞ ¼ exp � 1
2

x2

σ2x
þ y2

σ2y

" #( )
cosð2πu0xþ ϕÞ: (4)

Different orientations can be obtained employing a rigid rotation of the x-y
coordinate system with an angle value predefined by θ, as follows:

x ¼ x0cosðθÞ þ y0sinðθÞ; y ¼ y0cosðθÞ � x0sinðθÞ (5)

Figure 2 shows an example of processing an image I by a Gabor Filter Bank
G0:::G5 composed of kernels presenting all the same amplitude and six
different orientations.
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The Gabor filter bank used in our experiments was composed of 4 filters.
The guidelines proposed in Jain and Farrokhnia (1991) were used to chose
the Gabor features. We utilized frequencies values that generate kernels with
a size that matches a crop row width. Only two orientations were used (0°
and 90°) to reduce the feature vector size generated from the filter back.

Gray Level Co-Occurrence Matrix
Gray Level Co-Occurrence Matrix are second order statistic matrix used to
extract texture information from an image Haralick, Shanmugam, and
Dinstein (1973). This information is extracted from the image computing
several co-occurrence matrices. A Gray Level Co-Occurrence Matrix Pn� n,
where n is the number of gray levels of the image, is defined using the
neighborhood of pixels, where Pij is the probability of two neighbors pixels
have intensities of i and j. The neighborhood relationship is defined by an
offset from the reference pixel. Different offsets can be used, a vertical GLCM
can use ð1; 0Þ and ð�1; 0Þ offsets, and a horizontal one can use ð0; 1Þ and
ð0;�1Þ. From each GLCM P, different texture features can be extracted,
some of them are energy, entropy, contrast, dissimilarity, homogeneity,
mean, standard deviation, and correlation.

Figure 2.: Image decomposition with a filter bank composed of six Gabor Kernels.
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For the experiments, we downsampled the input image from 8 bits per
channel to 4 bits, so our GLCM’s have 16� 16 size. We used the most
referenced features on our review, so we used five features: contrast, energy,
mean, standard deviation, and correlation. Vertical and horizontal GLCM’s
are used as offsets, with a window size of 33 pixels.

Validation Procedure

The combinations of features tested were done in an incremental form. First,
feature vectors with only color information (RGB channels and vegetation
indices), then color plus texture information (Gabor Filters and GLCM).

The training and classification step ware performed as follows. We manu-
ally selected some pixels as samples for each class and computed the feature
vector (color and texture features) of each pixel. All the classifiers were then
trained with the same train data. Once all classifiers were trained, the
classification step was applied over the whole input images. Figure 3 shows
one of the samples selected for training in this experiment and the ground
truth of the corresponding portion of the image. For these images were
considered as background the soil and inter-row areas.

The validation of our results was performed through an automated quan-
titative comparison of our results against the GTs. The precision measures
employed in our experiments were:

● the Jaccard index Everingham et al. (2010), also known as intersection-
over-union index (IOU);

Figure 3. Details of training sugar cane crop images: left image shows some samples selected for
training, whereas green = crop row area, and red = soil/inter-row area. Right image illustrate the
corresponding ground truth.
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● the F1-score Van Rijsbergen (1979).

Results

The quantitative results obtained from the precision measures are demon-
strated on Table 2. A total of 48 results were obtained, one from each
combination of classifiers (with different parameters) and feature vectors.
For each classifier, the feature vector that presented the best result has his
result marked in bold. In the same way, for each feature vector, the best
classifier has his result underlined.

The best observed result was archived using linear SVM with
RGBþ EXGþ GABOR, reaching an F1 score precision of 0.88. This feature
vector was the most interesting one, presenting the best results with almost
every classifier. Both linear and RBF SVM had great results with little
differences, for feature vector of color and Gabor features combinations.
The RF classifier was the only one that was capable of make good use of
GLCM features, showing the best results for this kind of feature vector.

Figure 4 shows the result achieved on the entire field, with the linear SVM
classifier and feature vector composed of RGBþ EXGþ GABOR. A visibly
denser area can be noticed on the top part of the image, and a sparse one on
the bottom part.

Discussion

This work performs a comparison of supervised classification technique,
applied to the problem of crop row segmentation on aerial images.
A systematic literature review was performed to find what methods are

Table 2. Precision measures for each combination of classifier and feature vector. The underlined
values, in each column, represent the best result for the respective feature vector. The bold
values, in each row, represent the best result for the respective classifier.

RGB RGB+EXG RGB+GABOR RGB+EXG+GABOR RGB+GLCM RGB+EXG+GLCM

Order 1 IOU 0.698119 0.697408 0.703623 0.692624 0.634717 0.630541
F1 0.817026 0.816443 0.820750 0.812572 0.766440 0.762906

Order 2 IOU 0.701198 0.702799 0.712002 0.698958 0.527848 0.536951
F1 0.819304 0.820475 0.827032 0.817356 0.666899 0.676264

Order 3 IOU 0.695696 0.699051 0.691902 0.691966 0.487234 0.494376
F1 0.815242 0.817730 0.812188 0.812193 0.622772 0.630830

LSVM IOU 0.749118 0.751493 0.771953 0.788654 0.460858 0.552117
F1 0.853670 0.855305 0.869302 0.880129 0.624880 0.701774

SVMRBF IOU 0.749793 0.744385 0.775278 0.781153 0.618053 0.581793
F1 0.854297 0.850555 0.871527 0.875335 0.756181 0.724577

KNN3 IOU 0.736040 0.738847 0.760250 0.764573 0.561399 0.567494
F1 0.844844 0.846798 0.861466 0.864365 0.710523 0.715644

KNN11 IOU 0.734586 0.738951 0.757570 0.762214 0.559606 0.565582
F1 0.843771 0.846822 0.859617 0.862745 0.708793 0.713821

RF IOU 0.700687 0.732188 0.663252 0.743981 0.646504 0.724697
F1 0.819503 0.841898 0.791804 0.850180 0.779854 0.836857
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being used for this task. Four of the most common classifiers were selected
and used on experiments. All classifiers were tested using several combina-
tions of the most used features found on our review.

Our experiments were designed to measure, in a qualitative and quantita-
tive manner, the precision of each method. Ground truth was generated by
a biologist, that manually classified each pixel in sugar cane orthomosaic
images. We employed the Jaccard index and the F1-score for the quantitative
validation of the methods we tested because these are the most widely
employed quantitative GT comparison measures in the area of semantic
segmentation approaches that were published in the last years. This will
allow researchers using this database, in the future, to also compare these
approaches to CNN-based semantic segmentation approaches.

Classification Approaches and Decision Boundaries

One unexpected result was the poor performance of the segmentation
employing the Mahalanobis distance as a classifier. Previous works had
shown that the Mahalanobis distance, especially the non-linear higher
order polynomial Mahalanobis distance, outperforms many other approaches
when applied as a color-metric in different segmentation algorithms in the
segmentation of both natural outdoors scenes and a varied set of medical
imaging domains Lopes et al. (2016); Carvalho et al. (2015), Carvalho et al.
(2014)); Sobieranski et al. (2014a); Sobieranski, Comunello, and von
Wangenheim. (2011); Sobieranski et al. (2009a); Sobieranski et al. (2009b).
In the application scenario we explored in this work this was clearly not the
fall: both the linear and the polynomial Mahalanobis distances showed
poorer results as other methods in most situations, with a best F1 of 82.7%
and a best IoU of 71.2%, whereas LSVM obtained a F1 of 88.0% and an IoU
of 78.8%. This, however, can be explained in the manner the Mahalanobis
distance treats data: it is a statistic distance metric and relies on the mean

Figure 4. The left image shows the ground truth. The right image present the prediction
archived with linear svm using RGB channels, EXG index and gabor features in the feature vector.
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value of the distribution of its samples. This means that, if the distribution is
extremely convoluted, the mean can land outside the distribution and the
Mahalanobis distance will lead to a description of the decision (hyper-)
surfaces that can be even poorer as as a simple piece-wise linear kNN
classifier.

In order to illustrate the behavior of each classifier, we developed a simple
software tool that produces a picture of the decision boundaries for any bi-
dimensional hand generated data set and for any of the classifiers used in this
work. Figure 5 shows a distribution of four 2-dimensional variables, with
their samples depicted as data points. The colored surfaces are the decision
surfaces and their boundaries, as generated by each of the classifiers we
employed in this work. This tool was made freely available online, together
with segmentation tools that can be used in order to reproduce the results
described in this paper.4 The figure shows that linear and second-order
polynomial Mahalanobis, together with linear SVM (a,b and e) cannot
adequately represent the decision surfaces for these specific convoluted data
distributions.

This shows that the decision, which classifier to use, depends strongly on
the characteristics of the data. Since this sometimes is difficult to predict
beforehand, to test an application with different combinations of classifiers
and descriptors for the data seems to be indicated, as Table 2 indicates.

Conclusions

The quantitative results showed that the combination of RGB, EXG and
Gabor features generates the bests results, for the images used in our

Figure 5. Decision Boundaries of hand generated data. (a):MC1, (b): MC2, (c): MC3, (d): RF, (e):
SVM-Linear, (f): SVM-RBF, (g): KNN3, (h): KNN11.
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experiments, and the SVM methods outperformed the other ones when using
this feature vector. A pixel-wise F1-score of 88.0% and an IoU of 78.8%
indicate that classic color-texture-based image segmentation methods can
still be considered an option for this application field, even with the present
tendencies toward deep learning-based approaches. One of the advantages of
this approach is that only a very simple and fast training is necessary, which
can easily be achieved with a few manually generated examples, as shown in
Figure 3. A deep learning semantic segmentation approach would demand
the arduous creation of GTs similar to the ones we created for the validation
of this work for each new kind of crop.

Further works should include an extensive validation with a richer and
vast data set, containing other cultures besides sugar cane. Another state of
the art computer vision approaches, like newer deep learning approaches,
should be also included in future comparisons.

We made our dataset publicly available and the code used in our experi-
ments is also available for download.5

Notes

1. https://horusaeronaves.com/.
2. https://www.gimp.org/.
3. Dataset available for download at http://www.lapix.ufsc.br/crop-rows-sugar-cane.
4. https://codigos.ufsc.br/lapix/Tools-for-Supervised-Color-Texture-Segmentation-and-

Results-Analysis.
5. https://codigos.ufsc.br/lapix/Tools-for-Supervised-Color-Texture-Segmentation-and-

Results-Analysis.
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