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Real-Time Bird’s Eye Surround View System: An Embedded 
Perspective
Mo’taz Al-Hamia, Raul Casasb, Subhieh El Salhi a, Sari Awwadc, 
and Fairouz Husseina

aDepartment of Computer Information Systems, The Hashemite University, Zarqa, Jordan; bIP Group, 
Cadence Design Systems, San Jose, California, USA; cDepartment of Computer Science & Applications, 
The Hashemite University, Zarqa, Jordan

ABSTRACT
Bird’s-eye surround view is a new type of Advanced Driver 
Assistance System (ADASs) that provides drivers with a real- 
time 360� top-down view of their vehicle. This paper presents 
an architecture for a surround view system based on a Tensilica 
Vision P5 embedded DSP. Fish-eye cameras mounted on each 
side of a vehicle are employed in the proposed model. The 
cameras are able to cover the entire view around the vehicle 
with overlapping areas between neighboring cameras. We use 
a morphing approach for joint lens and perspective correction 
of each view. For stitching frames from different cameras, we 
assume a fixed geometry which permits off-line calculation of 
frame transformations, thereby reducing the real-time proces
sing load. To further reduce computational complexity, we 
employ lookup-tables in the view morphing and blending 
phases. The Vision P5 core combines the four frames with XGA 
resolution into a single XGA surround view at 30FPS.
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Introduction

Advanced Driver Assistance Systems (ADASs) are one of the fastest-growing 
segments of the automotive market described in several studies like Butakov 
and Ioannou (2014); Ziebinski et al. (2017); Ziebinski et al. (2016); 
Mosalikanti, Bandi, and Kim (2019). ADASs improve the driver’s control of 
the vehicle by providing real-time enhanced visualization and interaction with 
the surrounding environment. In ADASs project, the goal is to develop 
technologies that are able to enhance the awareness of the vehicle’s driver. 
Such technologies concern the driver and vehicle safety and work together 
toward autonomous driving. Several services are offered in ADASs proposed 
technologies including lane departure monitoring, adaptive cruise control, 
speed limit monitoring, emergency brake assistance, surround view monitor
ing, and many other services mentioned in Figure 1.
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Bird’s-eye Surround View (SV) is a type of ADASs which integrates multi
ple lateral cameras to produce a virtual bird’s-eye (i.e. top down) view in real 
time. While having a rearview camera, currently standard in many vehicles, 
can help a driver when moving in reverse or parking, adding cameras on all 
sides of the vehicle can dramatically improve awareness of surrounding 
objects, vehicles and pedestrians. Greater visibility of the area surrounding 
a vehicle improves the driving experience and overall safety.

SV is a sensor fusion problem whereby multiple sensors, in this case, 
cameras are combined and processed jointly to provide a complete picture 
of the environment around a vehicle and to help take fast decisions, either by 
a machine or human driver. Processing multiple sensors in real time can be 
a challenging computational problem, especially for high bandwidth applica
tions involving video or radar signals according to Ananthanarayanan et al. 
(2017). Some of the challenges include interfacing with multiple high-speed 
signals, efficiently managing memories to buffer only the minimum amount of 
data required, and executing complex algorithmic operations at speed, all 
while maintaining low power consumption and cost. With this in mind, our 
work addresses the problem of efficient implementation of SV in an 
embedded DSP.

Our system combines fish-eye cameras located on each side of a vehicle, 
with overlapping views into a single top-down view using image stitching 
techniques. Prior to SV systems, image stitching was a well-defined pro
blem with several approaches in the literature described in Kwatra et al. 
(2003); Szeliski (2006). In a simple stitching problem, we have two images 
where there is an overlap area between them. Since the overlap can provide 
two sources of pixels in the overlapped area, the question is how to find 

Figure 1. List of the available ADASs services. Adopted from Cadence Design Systems (2020).
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a path or cut that determines the boundary between the two original 
images and which minimizes the surrounding differences. In the SV sys
tem, the problem has more dimensions than the typical stitching process. 
First, there are more than two frames and these frames are produced at 
real-time. Second, the generated frames have to be projected onto a planar 
surface to achieve a top-down view. Our algorithm first corrects the lens 
distortion in each camera and modifies the perspective from a downwards, 
diagonal view away from the car to a top-down view in a single step. Next, 
the corrected frames from each camera are stitched together into one 
frame. We architect a system that partitions system memory and local 
memory on the processor so as to minimize cost and to avoid processing 
cycles wasted in the movement of data. The system is based on a Tensilica 
Vision P5 core that has an instruction set specialized for image processing 
and computer vision applications. Furthermore, the firmware running on 
the core leverages the Tensilica XI Library, a set of image processing and 
computer vision software functions that are optimized for the Vision P5 
core.

The paper is organized as follows: First, the related work is provided. Next, 
Lens correction and top down view projection are presented. Subsequently, 
the stitching process for the captured frames using Graph-Cut approach is 
explained, followed by the frame registration and blending approach. Next, 
Vision P5 DSP is reviewed. Then, results of experiments with a radio con
trolled (RC) car are presented and discussed. The concluding remarks reflect 
what this means for the discussion about the surround view system.

Related Work

Image Stitching

Several works like Brown and Lowe (2007); Kwatra et al. (2003); Levin et al. 
(2004); Szeliski (2006) propose different approaches to image stitching with 
varying complexity. The method in Kwatra et al. (2003) uses a graph-cut 
algorithm to stitch two images together. The cost of this approach is relatively 
high since preparing the adjacency matrix (i.e. the matrix that measures the 
pixels intensity differences cost between the images, so it could be used later 
for finding the optimal cut) is expensive. An alternative, simpler and less 
computationally complex approach uses blending. In alpha-blending 
approach, a pixel in the overlap region between adjacent cameras can be 
stitched and recovered seamlessly using a linear combination of weighted 
intensities for the same pixel location between these cameras. Other algo
rithms use the gradient domain like Levin et al. (2004). The approach focuses 
on minimizing the dissimilarity between the gradient of the input image, and 
the gradient of the stitched image.
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Surround View System

SV has been studied and discussed through many works like Palazzi et al. 
(2017); Zhang et al. (2014); Kim et al. (2018). The work of Zhang et al. (2014) 
focuses on embedded implementation of the surround view system based on 
the Texas Instruments TDAx SoC DSP. Using four calibrated fish-eye lenses, 
the system is able to generate a top-down view of 360� surround view with 
resolution 880� 1080 at a rate of 30 frames per second. By assuming fixed 
cameras that are used in the model, the system applies geometric alignment to 
correct the fish-eye lenses, followed by synthesis phase to generate one com
posite view from all cameras. Finally, photometric alignment is applied to 
assure a seamless composite view.

The work of Liu, Lin, and Chen (2008) focuses on the algorithmic aspects of 
the problem without any discussion on an embedded implementation. The 
work uses six fish-eye cameras mounted on the sides of the vehicle and 
generates a single composite view. Using a dynamic programming approach 
termed “dynamic image warping”, the model decides on the regions of the 
seam in the overlapped area. The work of Yu and Ma (2014) shows a typical 
approach to generate a composite SV for a parking guidance feature. Starting 
with fish-eye correction, the system uses the corrected and projected frames to 
stitch them using an alpha-blending approach.

Lens Correction and Top-Down View Projection

Our SV system employs fish-eye cameras to increase the field of view (i.e. 180�) 
allowing the system to capture the entire perimeter of the vehicle. The wide 
field of view yields areas of overlap between neighboring cameras. Fish-eye 
cameras suffer from lens distortion and require a correction process to convert 
the distorted frame into a corrected and projected one. To produce a top-down 
projected view from a fish-eye distorted frame, the typical method is to apply 
a traditional lens distortion algorithm like Gribbon, Johnston, and Bailey 
(2003) followed by frame direction adjustment on the planar surface. In this 
work, we use a morphing or view warping approach which removes lens 
distortion and applies view direction adjustment at the same time, as will be 
described next.

Morphing

The SV morphing process completes two tasks at once: (1) correct the dis
torted frame and (2) apply view direction adjustment. This is accomplished via 
a calibration phase for each camera using a square reference mesh as illu
strated by Figure 2. Pictures of the mesh are taken with the fish-eye cameras as 
inputs (see Figure 2(a)) and with a top-down view, Nikon 5100 DSLR 

768 M. AL-HAMI ET AL.



projected camera as reference outputs (see Figure 2(b)). Control points on the 
mesh are manually selected to define an inverse map from the target output 
frames back to the distorted input frames. Alternatively, control points could 
be selected automatically by machine detection of the calibration grid. Since 
the model assumes a fixed geometry (i.e. the cameras are mounted on the 
vehicle sides and never change viewing angles), the morphing function is 
estimated off-line, only once during the calibration phase. The rest of the 
video frames during operation of the vehicle are morphed in the same way.

The morphing method we have used finds an inverse mapping ðu; vÞ ¼
f ðx; yÞ from the reference frame control points ðx; yÞ back to the original 
distorted frame control points ðu; vÞ using Thin-plate Splines (TPS) to para
metrize the mapping f . TPS minimizes the energy required to bend the 
original frame into the corrected one as mentioned in Bookstein (1989) 

min
f

ðð

R2
ðð
@2f
@x2 Þ

2
þ 2ð

@2f
@x@y

Þ
2
þ ð

@2f
@y2Þ

2
Þ dx dy (1) 

For more details about the approach see Bookstein (1989).

Embedded Implementation

Once the parameters of the TPS are calculated from the control points, the TPS 
map is used to generate a table of input frame pixels corresponding to each 
output frame pixel. Each entry in the table is an integer vertical and horizontal 
input frame pixel coordinates plus fractional vertical and horizontal offsets 
from the integer positions. This representation facilitates bilinear interpola
tion to generate the output. The creation of the lookup tables is done off-line 
and the resulting tables are stored in the system memory. Each camera has its 
own morphing lookup-table.

The embedded implementation treats each input frame and corresponding 
lookup table as a set of dynamically sized tiles (see Figure 3(a)). The input 
frames and lookup tables are stored in the system memory. The DSP generates 
output frames one tile at a time according to the regular grid in Figure 3(b). 

Figure 2. Lens distortion correction and new view direction estimation approach. We remove fish- 
eye distortion and adjust the camera view using a morphing approach.
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Each tile in the distorted frame is loaded from the system memory into the 
DSPs local memory, along with the lookup table for the mapping, and is 
morphed into an output tile. For this reason, an additional tiling table that 
contains the address and dimensions of each input tile is used to load them 
precisely into the local memory. The size of the tile depends on its location in 
the distorted frame, as can be seen in Figure 4.

Images Stitching with Graph-Cut Approach

Graph-Cut approach is an optimization methodology that deals with 
graph problems. In the context of images stitching, the Graph-Cut algo
rithm is intended to find the optimal seam that combines two images 
smoothly. Precisely, the combination process focuses on the overlapping 
region between both images. In these overlapping areas, the Graph-Cut 
algorithm finds the optimal seam. Such seam minimizes the color differ
ences between both images as much as possible.

First, let us introduce the basic terminology of the images stitching problem. 
Assume there is a graph G ¼ ðV; EÞ, where V is a set of the graph nodes, and E

Figure 3. Map of tiles processed by embedded DSP.

Figure 4. Stitching process requires finding the optimal seam in the overlapping area. Graph-Cut is 
used to map the original images into a graph, the finds the optimal seam in the overlapping area 
which is marked by the red line.
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is a set of edges in the graph. Each node v in the graph G represents an image 
pixel, and each edge e corresponds to a neighboring pixel in an image. The 
nodes in the graph G are classified into two main categories: (1) Border nodes, 
which represent the safe area that entirely belongs to one of the images. (2) 
Internal nodes, which represent the candidate area for the cut process (i.e. 
overlapped area). For border nodes, fake nodes are added to connect all border 
nodes with costs on edges equal to 1. This high cost prevents the Graph-Cut 
algorithm to exceed the border nodes in the seam selection process.

Frames Registration and Blending

Frames Registration

After applying the morphing process, the view corrected frames for each camera 
are combined to generate a single composite frame. Our benefits are obtained 
from the overlapped areas between neighboring cameras to produce a new 
registered frame. The approach uses affine transformations to register frames 
together. We apply the registration process using affine transformations. In the 
affine transformation, we assume that there is an overlap area between moving 
and fixed frames which needs to be registered together. Since the used cameras are 
assumed to be fixed and never changed, a set of control points are selected 
manually and precisely (i.e. other approaches might be used to select them 
automatically like Sift algorithm; however, manual selection makes it more 
accurate). These control points represent the corresponding locations between 
moving and fixed frames. Based on these control points, the geometrical trans
formation (i.e., estimated transformation) fits the control points in the moving 
frame to the control points in the fixed frame. Such geometrical transformation 
minimizes the error between the corresponding control points as much as 
possible. The next step, is to apply the geometrical transformation on the moving 
frame to align it with the fixed frame.

The registration process is applied at three different levels. First, we 
register the front frame with the left frame (i.e. we call it level 1, see 
Figure 5(a, d)). Second, the result from level 1 is registered with the back 
frame (i.e. we call it level 2, see Figure 5(b, e)). Finally, the result from 
level 2 is registered with the right frame (i.e. we call it level 3, see Figure 5 
(c, f)). These levels of registrations produce the surrounding view around 
the vehicle; however, the overlapping areas have not yet been processed to 
determine the source of pixels in these areas. For efficient processing, 
lookup-tables were used to maintain the affine transformation for each 
level. The look-up tables allow the frames to be registered directly without 
selecting control points and finding the geometrical transformation for 
each upcoming frame.
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Frames Blending

The last stage in the frame stitching process is to manage the overlapping areas 
properly. The overlapping areas are a special consideration since the pixels in 
these areas are related to two sources of frames, and there should be some 
procedure which takes care of pixels in these areas. In blending, we try to 
reorganize the pixels in the overlap area such that the resulted frame should 
look consistent and seamless. To blend the two frames together, assume that 
there are a left frame L and right frame R. These frames were captured such 
that there is an overlap area between them. These frames are also registered to 
the same coordinate system using the affine transform, and both have the same 
size in the registered frames. The pixels in the non-overlapping area have no 
problem since they are related to one source of data. For pixels in the overlap 
area, we use a geometrical seam selection such that it minimizes the geome
trical differences between frame L and frame R (i.e. the spatial differences in 

Figure 5. The bird’s eye view algorithm implementation process. The upper row shows the 
abstract explanation of the algorithm, while the lower row shows an actual case (i.e., how the 
actual view is constructed).
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the constructed seam after applying the affine transform). The seam selection 
is constructed using the Graph-Cut algorithm as mentioned earlier.

The next step is to smooth the transition from the left side of the con
structed seam to the right side of the constructed seam. To apply the transi
tion, we build weighted masks, mask Ml and mask Mr which control the 
weighted transition around the seam (mask Mr is 1 – Ml). The masks initially 
started as a binary masks where Ml equals to ones in the region of non- 
overlap area and zeros otherwise. To make the transition smooth we recon
struct a Gaussian kernel, which applies low pass filter and apply this filter on 
the whole mask Ml. At this point the mask Ml is kept as a lookup table and 
applied as a smooth transition for the frame L. The other mask Mr is simply 
1 – L. We use alpha blending approach to smooth this transition such that the 
blended frame B equals to: 

B x; yð Þ ¼

Lðx; yÞ; if ðx; yÞ 2 L ðx; yÞ‚R
Lðx; yÞ; if ðx; yÞ 2 R ðx; yÞ‚L
½Lðx; yÞ �Mðx; yÞþ; if ðx; yÞ 2 L ðx; yÞ‚R
Rðx; yÞ �Mðx; yÞ�

8
>><

>>:

(2) 

Figure 6 shows the blending process, where the frames are linked with their 
related masks. For efficient processing, the blending masks were kept as 
a lookup-table for each level of the stitching process (i.e. level 1, level 2, and 
level 3).

Algorithm 1 Summarizes the main stages in the bird’s eye surround view 
system. At the beginning, all required lookup tables and the transformation 
parameters are estimated and kept in order to use them for the incoming 
frames. Since the geometry is fixed, these lookup tables and transformation 
parameters are fixed and never changed.

Algorithm 1 Bird’s Eye Surround View Algorithm

Figure 6. Blending process. The curved line in the left and right masks represents the selected 
seam that minimizes the geometrical differences along the cut.
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1: Input: Fishy eye distorted frames.
Lookup tables.
Fixed geometry parameters.
2: Output: Top-down view full frame.
3: corrected_frames = tps(distorted_frames)
4:. registered_frames = affine_trans(corrected_frames).
5: seam_selection = graph_cut(registered_frames).
6: level_one = blend (corrected_front + front_lookup, corrected_left + 

left_lookup).
7: level_two = blend (corrected_back + back_lookup, level_one + 

level_one_lookup).
8: level_three = blend (corrected_right + right_lookup, level_two + 

level_two_lookup).
Figure 7 shows how the proposed approach works. We performed an 

experiment where we used a toy car and we added four fish-eye cameras on 
the sides. The algorithm was run on a laptop mounted on top of a used toy car. 
In the experiment area, we drew several colored lines as landmarks, so the car 
will drive based on these lines. The upper row of Figure 7(a–c) shows the 
original car at different positions in the experimental area. The lower row of 

Figure 7. Several shots at different locations for the bird’s eye view system. The upper photos are 
related to the original settings where there are four side cameras mounted on the car, and the 
used algorithm are running on the used laptop. The lower photos are related the virtual generated 
top-down view.
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Figure 7(d–f) shows the generated stitched bird's-eye view for each image in 
the upper row.

Embedded Extension Using Vision P5 DSP

The Tensilica Vision P5 (VP5) is a high performance embedded DSP platform 
which provides N-way SIMD vector engine as described in Vision P5 DSP 
(2019). The use of instruction set with the supported memory system in the 
platform allows parallel processing which makes it efficient for many real-time 
applications like Vision P5 memory details. (2019). The used vector SIMD 
provides three levels of operations including 64-way 8 bits, 32-way 16 bits, and 
16-way 32 bits. In addition to the standard arithmetic and logical operations, 
VP5 supports rearranging data processing across data lanes by using data 
selection strategy. For more efficient vision and imaging-based operations, 
VP5 provides shuffling, shifting, interleaving patterns and data normalization.

The used architecture in VP5 is shown in Figure 8. Such architecture allows 
processing hundreds of pixel operations per cycle. The optimization used at 
the algorithmic level makes it efficient at energy consumption level, which 
makes it support both a high performance computing with efficient energy 
consumption as described in Vision P5 DSP (2019). Tensilica instruction set 
(TIE) has been integrated with the VP5 DSP, so a more customizable instruc
tions and operations for different kinds of applications as mentioned in 
Acevedo et al. (2018).

Figure 8. Vision P5 subsystem and core architecture. Adopted from Vision P5 DSP (2019).
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Complexity Analysis

Experiment

The generated bird's-eye view passes through several stages. At the beginning, 
the original fishy-eye distorted frames are downsampled and interpolated into 
a smaller size frames. Figure 9 explains the process characteristics.

The downsampling process requires ðnum of frames� frame height �
frame widthÞ=down sampling ratio� frame channels� frame rate=106Þ

operations [Mops/sec]. The total number of operations in the downsampling 
process is (ð4� 768� 1024Þ=2� 3� 30=106).

The morphing (interpolation) process is required to correct the frames 
into projected ones. The distorted frames are transformed into corrected 
ones (i.e., projected), so the fishy-eye frames are converted with the help 
of interpolation process into corrected and projected frames. Figure 9 
shows the interpolation process settings. During this process, scattered 
data (i.e., load/store operations) are read and then interpolation is 
applied. For reading data, the required number of operations is opera
tions [Mops/sec]. Applying the used parameters will result in 
ð4� 348� 512� 3� 2� 2� 30=106) [Mops/sec]. The same amount of 
operations is required to apply the interpolation process (i.e., multiply 
accumulate).

At this point, the generated frames are corrected. However, each frame has 
its own coordinate system. The next step is to align all frames to one global 
coordinate system. In the affine transform phase (Figure 10), there will be 
a mapping for each input frame to a one unified global coordinate system, 
which makes each frame aware of its location according to the global 

Figure 9. Frames correction process. Fishy-eye frames are interpolated into projected ones.
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coordinate system. Based on this affine transform, each pixel in the input 
images with local coordinate system has a specific and determined location in 
the new global coordinate system. One of the frames is considered as 
a reference frame, and the rest frames use affine transformation (i.e., each 
one alone) to align them to the new global coordinate system.

The required number of operations for the affine transformation phase is 
ðnum frames�morphed frame height �morphed frame width�
affine transform row� affine transform col� frame rate=106 ) operations 

[Mops/sec]. Applying the used parameters will produce 
(3� 348� 512� 3� 3� 30=106) [Mops/Sec]. Next, interpolation is required 
to be performed on the new aligned frames. In the interpolation process, there are 
[Mops/sec] for reading scattered data (i.e., load/store operations) which are equal 
to (4� 631� 768� 3� 30� 3� 3=106) [Mops/sec]. The same amount of 
operations is required for applying the actual interpolation (i.e., multiply 
accumulation).

The blending phase (see Figure 11) uses a predetermined masks (i.e., 
estimated using the Graph-Cut algorithm and processed with some low 
pass filter), and these masks are fixed for all incoming frames. These masks 
determine the origin of each pixel in the overlapping areas between neigh
boring frames. The result of the blending phase is one full frame describing 
the whole surrounding view. To estimate the required operations during the 
blending process, the blending process is executed at three different levels. 
First, the blending is applied between front and left frame and consumes 
ð2� blended frame height � blended frame width�
frame channels � B num mask filters� frame rate=106 ) [Mops/sec] which 

Figure 10. Applying affine transform, to make one global coordinate system for all frames.
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equal to (2� 533 � 490� 3� 2� 30=106) [Mops/sec]. Second, the resulted 
blended (fornLeft) frame is processed again in the same manner with the 
back frame. The number of required operations is estimated in the same 
manner as (frontLeft); however, the ðblended frame height �
blended frame widthÞ should be updated accordingly. Finally, the last level 
in the blending process is applied between the blended (frontLeftBack) frame 
and the right frame in same way as mentioned earlier. It is important to 
mention that the dimensions of the predetermined masks are fixed and never 
change since we are dealing with a fixed geometry.

The last phase of the approach is resizing (i.e., applying interpolation to 
upsample the blended frame). In this phase, we try to resize the blended 
frame to the target size (Figure 12). The resizing executes a rescaled 
locations and bilinear interpolation processes. The rescaling process 
requires 
ðblended frame height � blended frame width� affine transform row�

affine transform col=106Þ

which equals to (533� 490 � 2� 2=106) [Mops/sec]. The interpolation 
process consumes which equals to 
(2� 1920 � 1080 � 3� 30 � 2� 2=106) [Mops/sec].

Table 1 summarizes the main operations required for building the surround 
view system, and the required cycles to perform each operation.

Conclusion

Throughout this work, we present an approach to for building a virtual bird’s eye 
surround view system, which is a core unit in the future of car driving. The 

Figure 11. Blending phase, where input frames are transformed into one output frame.
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surround view system is part of ADAS project. To make the generated view real- 
time view, we used the Tensilica vision P5 DSP. The used DSP allows us to 
generate the virtual view at rate 30 frames per second. In the surrounding view 
system, the mounted cameras are fixed and never move, so the used geometry is 
fixed for all incoming frames. The benefit of fixed geometry appears clearly in the 
blending process, where the new location of each pixel in the input frame is 
estimated early and never changes. The Graph-Cut algorithm helps in the seam 
selection in the overlapping areas between neighboring frames, and this makes the 
cut lines seamless and smooth because the color differences are optimized to be 
minimal.

ORCID

Subhieh El Salhi http://orcid.org/0000-0002-9700-4862

Figure 12. The blended frame is resized and upsampled into a target size through using 
interpolation process.

Table 1. Cycles analysis for the SV system. For the morphing phase, and each level in the stitching 
process cycles shows the memory used cycles, and the core’s ones.

Input

Details
Library 

Function
Performance ops/ 

cycle
Cycles core Mops/ 

sec
Performance 

MHz

Downsampling Downsampling load/store 64 141.55776 2.21184
Morphing Read scattered 

data
Gather 64 283.11552 4.42368

Interpolation mula 64 283.11552 4.42368
Affine Transform transform mula 64 1610.3318 25.161435

Read scattered 
data

Gather 64 715.70304 11.18286

Interpolation mula 64 715.70304 11.18286
Blending Level 1 mula 64 94.0212 1.46908125

Level 2 mula 64 94.0212 1.46908125
Level 3 mula 64 94.0212 1.46908125

Resize/ 
Interpolation

Rescaled 
locations

64 17.892576 0.2795715

Interpolation mula 64 715.70304 11.18286
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