
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Real-Time Bird’s Eye Surround View System: An
Embedded Perspective

Mo’taz Al-Hami, Raul Casas, Subhieh El Salhi, Sari Awwad & Fairouz Hussein

To cite this article: Mo’taz Al-Hami, Raul Casas, Subhieh El Salhi, Sari Awwad & Fairouz Hussein
(2021) Real-Time Bird’s Eye Surround View System: An Embedded Perspective, Applied Artificial
Intelligence, 35:10, 765-781, DOI: 10.1080/08839514.2021.1935587

To link to this article: https://doi.org/10.1080/08839514.2021.1935587

Published online: 25 Jun 2021.

Submit your article to this journal

Article views: 2041

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1935587
https://doi.org/10.1080/08839514.2021.1935587
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1935587
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1935587
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1935587&domain=pdf&date_stamp=2021-06-25
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1935587&domain=pdf&date_stamp=2021-06-25

Real-Time Bird’s Eye Surround View System: An Embedded
Perspective
Mo’taz Al-Hamia, Raul Casasb, Subhieh El Salhi a, Sari Awwadc,
and Fairouz Husseina

aDepartment of Computer Information Systems, The Hashemite University, Zarqa, Jordan; bIP Group,
Cadence Design Systems, San Jose, California, USA; cDepartment of Computer Science & Applications,
The Hashemite University, Zarqa, Jordan

ABSTRACT
Bird’s-eye surround view is a new type of Advanced Driver
Assistance System (ADASs) that provides drivers with a real-
time 360� top-down view of their vehicle. This paper presents
an architecture for a surround view system based on a Tensilica
Vision P5 embedded DSP. Fish-eye cameras mounted on each
side of a vehicle are employed in the proposed model. The
cameras are able to cover the entire view around the vehicle
with overlapping areas between neighboring cameras. We use
a morphing approach for joint lens and perspective correction
of each view. For stitching frames from different cameras, we
assume a fixed geometry which permits off-line calculation of
frame transformations, thereby reducing the real-time proces
sing load. To further reduce computational complexity, we
employ lookup-tables in the view morphing and blending
phases. The Vision P5 core combines the four frames with XGA
resolution into a single XGA surround view at 30FPS.

ARTICLE HISTORY
Received 16 September 2020
Accepted 1 February 2021

Introduction

Advanced Driver Assistance Systems (ADASs) are one of the fastest-growing
segments of the automotive market described in several studies like Butakov
and Ioannou (2014); Ziebinski et al. (2017); Ziebinski et al. (2016);
Mosalikanti, Bandi, and Kim (2019). ADASs improve the driver’s control of
the vehicle by providing real-time enhanced visualization and interaction with
the surrounding environment. In ADASs project, the goal is to develop
technologies that are able to enhance the awareness of the vehicle’s driver.
Such technologies concern the driver and vehicle safety and work together
toward autonomous driving. Several services are offered in ADASs proposed
technologies including lane departure monitoring, adaptive cruise control,
speed limit monitoring, emergency brake assistance, surround view monitor
ing, and many other services mentioned in Figure 1.

CONTACT Mo’taz Al-Hami Department of Computer Information Systems, The Hashemite University, Zarqa 13115,
Jordan motaz@hu.edu.jo

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 10, 765–781
https://doi.org/10.1080/08839514.2021.1935587

© 2021 Taylor & Francis

http://orcid.org/0000-0002-9700-4862
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1935587&domain=pdf&date_stamp=2021-07-09

Bird’s-eye Surround View (SV) is a type of ADASs which integrates multi
ple lateral cameras to produce a virtual bird’s-eye (i.e. top down) view in real
time. While having a rearview camera, currently standard in many vehicles,
can help a driver when moving in reverse or parking, adding cameras on all
sides of the vehicle can dramatically improve awareness of surrounding
objects, vehicles and pedestrians. Greater visibility of the area surrounding
a vehicle improves the driving experience and overall safety.

SV is a sensor fusion problem whereby multiple sensors, in this case,
cameras are combined and processed jointly to provide a complete picture
of the environment around a vehicle and to help take fast decisions, either by
a machine or human driver. Processing multiple sensors in real time can be
a challenging computational problem, especially for high bandwidth applica
tions involving video or radar signals according to Ananthanarayanan et al.
(2017). Some of the challenges include interfacing with multiple high-speed
signals, efficiently managing memories to buffer only the minimum amount of
data required, and executing complex algorithmic operations at speed, all
while maintaining low power consumption and cost. With this in mind, our
work addresses the problem of efficient implementation of SV in an
embedded DSP.

Our system combines fish-eye cameras located on each side of a vehicle,
with overlapping views into a single top-down view using image stitching
techniques. Prior to SV systems, image stitching was a well-defined pro
blem with several approaches in the literature described in Kwatra et al.
(2003); Szeliski (2006). In a simple stitching problem, we have two images
where there is an overlap area between them. Since the overlap can provide
two sources of pixels in the overlapped area, the question is how to find

Figure 1. List of the available ADASs services. Adopted from Cadence Design Systems (2020).

766 M. AL-HAMI ET AL.

a path or cut that determines the boundary between the two original
images and which minimizes the surrounding differences. In the SV sys
tem, the problem has more dimensions than the typical stitching process.
First, there are more than two frames and these frames are produced at
real-time. Second, the generated frames have to be projected onto a planar
surface to achieve a top-down view. Our algorithm first corrects the lens
distortion in each camera and modifies the perspective from a downwards,
diagonal view away from the car to a top-down view in a single step. Next,
the corrected frames from each camera are stitched together into one
frame. We architect a system that partitions system memory and local
memory on the processor so as to minimize cost and to avoid processing
cycles wasted in the movement of data. The system is based on a Tensilica
Vision P5 core that has an instruction set specialized for image processing
and computer vision applications. Furthermore, the firmware running on
the core leverages the Tensilica XI Library, a set of image processing and
computer vision software functions that are optimized for the Vision P5
core.

The paper is organized as follows: First, the related work is provided. Next,
Lens correction and top down view projection are presented. Subsequently,
the stitching process for the captured frames using Graph-Cut approach is
explained, followed by the frame registration and blending approach. Next,
Vision P5 DSP is reviewed. Then, results of experiments with a radio con
trolled (RC) car are presented and discussed. The concluding remarks reflect
what this means for the discussion about the surround view system.

Related Work

Image Stitching

Several works like Brown and Lowe (2007); Kwatra et al. (2003); Levin et al.
(2004); Szeliski (2006) propose different approaches to image stitching with
varying complexity. The method in Kwatra et al. (2003) uses a graph-cut
algorithm to stitch two images together. The cost of this approach is relatively
high since preparing the adjacency matrix (i.e. the matrix that measures the
pixels intensity differences cost between the images, so it could be used later
for finding the optimal cut) is expensive. An alternative, simpler and less
computationally complex approach uses blending. In alpha-blending
approach, a pixel in the overlap region between adjacent cameras can be
stitched and recovered seamlessly using a linear combination of weighted
intensities for the same pixel location between these cameras. Other algo
rithms use the gradient domain like Levin et al. (2004). The approach focuses
on minimizing the dissimilarity between the gradient of the input image, and
the gradient of the stitched image.

APPLIED ARTIFICIAL INTELLIGENCE 767

Surround View System

SV has been studied and discussed through many works like Palazzi et al.
(2017); Zhang et al. (2014); Kim et al. (2018). The work of Zhang et al. (2014)
focuses on embedded implementation of the surround view system based on
the Texas Instruments TDAx SoC DSP. Using four calibrated fish-eye lenses,
the system is able to generate a top-down view of 360� surround view with
resolution 880� 1080 at a rate of 30 frames per second. By assuming fixed
cameras that are used in the model, the system applies geometric alignment to
correct the fish-eye lenses, followed by synthesis phase to generate one com
posite view from all cameras. Finally, photometric alignment is applied to
assure a seamless composite view.

The work of Liu, Lin, and Chen (2008) focuses on the algorithmic aspects of
the problem without any discussion on an embedded implementation. The
work uses six fish-eye cameras mounted on the sides of the vehicle and
generates a single composite view. Using a dynamic programming approach
termed “dynamic image warping”, the model decides on the regions of the
seam in the overlapped area. The work of Yu and Ma (2014) shows a typical
approach to generate a composite SV for a parking guidance feature. Starting
with fish-eye correction, the system uses the corrected and projected frames to
stitch them using an alpha-blending approach.

Lens Correction and Top-Down View Projection

Our SV system employs fish-eye cameras to increase the field of view (i.e. 180�)
allowing the system to capture the entire perimeter of the vehicle. The wide
field of view yields areas of overlap between neighboring cameras. Fish-eye
cameras suffer from lens distortion and require a correction process to convert
the distorted frame into a corrected and projected one. To produce a top-down
projected view from a fish-eye distorted frame, the typical method is to apply
a traditional lens distortion algorithm like Gribbon, Johnston, and Bailey
(2003) followed by frame direction adjustment on the planar surface. In this
work, we use a morphing or view warping approach which removes lens
distortion and applies view direction adjustment at the same time, as will be
described next.

Morphing

The SV morphing process completes two tasks at once: (1) correct the dis
torted frame and (2) apply view direction adjustment. This is accomplished via
a calibration phase for each camera using a square reference mesh as illu
strated by Figure 2. Pictures of the mesh are taken with the fish-eye cameras as
inputs (see Figure 2(a)) and with a top-down view, Nikon 5100 DSLR

768 M. AL-HAMI ET AL.

projected camera as reference outputs (see Figure 2(b)). Control points on the
mesh are manually selected to define an inverse map from the target output
frames back to the distorted input frames. Alternatively, control points could
be selected automatically by machine detection of the calibration grid. Since
the model assumes a fixed geometry (i.e. the cameras are mounted on the
vehicle sides and never change viewing angles), the morphing function is
estimated off-line, only once during the calibration phase. The rest of the
video frames during operation of the vehicle are morphed in the same way.

The morphing method we have used finds an inverse mapping ðu; vÞ ¼
f ðx; yÞ from the reference frame control points ðx; yÞ back to the original
distorted frame control points ðu; vÞ using Thin-plate Splines (TPS) to para
metrize the mapping f . TPS minimizes the energy required to bend the
original frame into the corrected one as mentioned in Bookstein (1989)

min
f

ðð

R2
ðð
@2f
@x2 Þ

2
þ 2ð

@2f
@x@y

Þ
2
þ ð

@2f
@y2Þ

2
Þ dx dy (1)

For more details about the approach see Bookstein (1989).

Embedded Implementation

Once the parameters of the TPS are calculated from the control points, the TPS
map is used to generate a table of input frame pixels corresponding to each
output frame pixel. Each entry in the table is an integer vertical and horizontal
input frame pixel coordinates plus fractional vertical and horizontal offsets
from the integer positions. This representation facilitates bilinear interpola
tion to generate the output. The creation of the lookup tables is done off-line
and the resulting tables are stored in the system memory. Each camera has its
own morphing lookup-table.

The embedded implementation treats each input frame and corresponding
lookup table as a set of dynamically sized tiles (see Figure 3(a)). The input
frames and lookup tables are stored in the system memory. The DSP generates
output frames one tile at a time according to the regular grid in Figure 3(b).

Figure 2. Lens distortion correction and new view direction estimation approach. We remove fish-
eye distortion and adjust the camera view using a morphing approach.

APPLIED ARTIFICIAL INTELLIGENCE 769

Each tile in the distorted frame is loaded from the system memory into the
DSPs local memory, along with the lookup table for the mapping, and is
morphed into an output tile. For this reason, an additional tiling table that
contains the address and dimensions of each input tile is used to load them
precisely into the local memory. The size of the tile depends on its location in
the distorted frame, as can be seen in Figure 4.

Images Stitching with Graph-Cut Approach

Graph-Cut approach is an optimization methodology that deals with
graph problems. In the context of images stitching, the Graph-Cut algo
rithm is intended to find the optimal seam that combines two images
smoothly. Precisely, the combination process focuses on the overlapping
region between both images. In these overlapping areas, the Graph-Cut
algorithm finds the optimal seam. Such seam minimizes the color differ
ences between both images as much as possible.

First, let us introduce the basic terminology of the images stitching problem.
Assume there is a graph G ¼ ðV; EÞ, where V is a set of the graph nodes, and E

Figure 3. Map of tiles processed by embedded DSP.

Figure 4. Stitching process requires finding the optimal seam in the overlapping area. Graph-Cut is
used to map the original images into a graph, the finds the optimal seam in the overlapping area
which is marked by the red line.

770 M. AL-HAMI ET AL.

is a set of edges in the graph. Each node v in the graph G represents an image
pixel, and each edge e corresponds to a neighboring pixel in an image. The
nodes in the graph G are classified into two main categories: (1) Border nodes,
which represent the safe area that entirely belongs to one of the images. (2)
Internal nodes, which represent the candidate area for the cut process (i.e.
overlapped area). For border nodes, fake nodes are added to connect all border
nodes with costs on edges equal to 1. This high cost prevents the Graph-Cut
algorithm to exceed the border nodes in the seam selection process.

Frames Registration and Blending

Frames Registration

After applying the morphing process, the view corrected frames for each camera
are combined to generate a single composite frame. Our benefits are obtained
from the overlapped areas between neighboring cameras to produce a new
registered frame. The approach uses affine transformations to register frames
together. We apply the registration process using affine transformations. In the
affine transformation, we assume that there is an overlap area between moving
and fixed frames which needs to be registered together. Since the used cameras are
assumed to be fixed and never changed, a set of control points are selected
manually and precisely (i.e. other approaches might be used to select them
automatically like Sift algorithm; however, manual selection makes it more
accurate). These control points represent the corresponding locations between
moving and fixed frames. Based on these control points, the geometrical trans
formation (i.e., estimated transformation) fits the control points in the moving
frame to the control points in the fixed frame. Such geometrical transformation
minimizes the error between the corresponding control points as much as
possible. The next step, is to apply the geometrical transformation on the moving
frame to align it with the fixed frame.

The registration process is applied at three different levels. First, we
register the front frame with the left frame (i.e. we call it level 1, see
Figure 5(a, d)). Second, the result from level 1 is registered with the back
frame (i.e. we call it level 2, see Figure 5(b, e)). Finally, the result from
level 2 is registered with the right frame (i.e. we call it level 3, see Figure 5
(c, f)). These levels of registrations produce the surrounding view around
the vehicle; however, the overlapping areas have not yet been processed to
determine the source of pixels in these areas. For efficient processing,
lookup-tables were used to maintain the affine transformation for each
level. The look-up tables allow the frames to be registered directly without
selecting control points and finding the geometrical transformation for
each upcoming frame.

APPLIED ARTIFICIAL INTELLIGENCE 771

Frames Blending

The last stage in the frame stitching process is to manage the overlapping areas
properly. The overlapping areas are a special consideration since the pixels in
these areas are related to two sources of frames, and there should be some
procedure which takes care of pixels in these areas. In blending, we try to
reorganize the pixels in the overlap area such that the resulted frame should
look consistent and seamless. To blend the two frames together, assume that
there are a left frame L and right frame R. These frames were captured such
that there is an overlap area between them. These frames are also registered to
the same coordinate system using the affine transform, and both have the same
size in the registered frames. The pixels in the non-overlapping area have no
problem since they are related to one source of data. For pixels in the overlap
area, we use a geometrical seam selection such that it minimizes the geome
trical differences between frame L and frame R (i.e. the spatial differences in

Figure 5. The bird’s eye view algorithm implementation process. The upper row shows the
abstract explanation of the algorithm, while the lower row shows an actual case (i.e., how the
actual view is constructed).

772 M. AL-HAMI ET AL.

the constructed seam after applying the affine transform). The seam selection
is constructed using the Graph-Cut algorithm as mentioned earlier.

The next step is to smooth the transition from the left side of the con
structed seam to the right side of the constructed seam. To apply the transi
tion, we build weighted masks, mask Ml and mask Mr which control the
weighted transition around the seam (mask Mr is 1 – Ml). The masks initially
started as a binary masks where Ml equals to ones in the region of non-
overlap area and zeros otherwise. To make the transition smooth we recon
struct a Gaussian kernel, which applies low pass filter and apply this filter on
the whole mask Ml. At this point the mask Ml is kept as a lookup table and
applied as a smooth transition for the frame L. The other mask Mr is simply
1 – L. We use alpha blending approach to smooth this transition such that the
blended frame B equals to:

B x; yð Þ ¼

Lðx; yÞ; if ðx; yÞ 2 L ðx; yÞ‚R
Lðx; yÞ; if ðx; yÞ 2 R ðx; yÞ‚L
½Lðx; yÞ �Mðx; yÞþ; if ðx; yÞ 2 L ðx; yÞ‚R
Rðx; yÞ �Mðx; yÞ�

8
>><

>>:

(2)

Figure 6 shows the blending process, where the frames are linked with their
related masks. For efficient processing, the blending masks were kept as
a lookup-table for each level of the stitching process (i.e. level 1, level 2, and
level 3).

Algorithm 1 Summarizes the main stages in the bird’s eye surround view
system. At the beginning, all required lookup tables and the transformation
parameters are estimated and kept in order to use them for the incoming
frames. Since the geometry is fixed, these lookup tables and transformation
parameters are fixed and never changed.

Algorithm 1 Bird’s Eye Surround View Algorithm

Figure 6. Blending process. The curved line in the left and right masks represents the selected
seam that minimizes the geometrical differences along the cut.

APPLIED ARTIFICIAL INTELLIGENCE 773

1: Input: Fishy eye distorted frames.
Lookup tables.
Fixed geometry parameters.
2: Output: Top-down view full frame.
3: corrected_frames = tps(distorted_frames)
4:. registered_frames = affine_trans(corrected_frames).
5: seam_selection = graph_cut(registered_frames).
6: level_one = blend (corrected_front + front_lookup, corrected_left +

left_lookup).
7: level_two = blend (corrected_back + back_lookup, level_one +

level_one_lookup).
8: level_three = blend (corrected_right + right_lookup, level_two +

level_two_lookup).
Figure 7 shows how the proposed approach works. We performed an

experiment where we used a toy car and we added four fish-eye cameras on
the sides. The algorithm was run on a laptop mounted on top of a used toy car.
In the experiment area, we drew several colored lines as landmarks, so the car
will drive based on these lines. The upper row of Figure 7(a–c) shows the
original car at different positions in the experimental area. The lower row of

Figure 7. Several shots at different locations for the bird’s eye view system. The upper photos are
related to the original settings where there are four side cameras mounted on the car, and the
used algorithm are running on the used laptop. The lower photos are related the virtual generated
top-down view.

774 M. AL-HAMI ET AL.

Figure 7(d–f) shows the generated stitched bird's-eye view for each image in
the upper row.

Embedded Extension Using Vision P5 DSP

The Tensilica Vision P5 (VP5) is a high performance embedded DSP platform
which provides N-way SIMD vector engine as described in Vision P5 DSP
(2019). The use of instruction set with the supported memory system in the
platform allows parallel processing which makes it efficient for many real-time
applications like Vision P5 memory details. (2019). The used vector SIMD
provides three levels of operations including 64-way 8 bits, 32-way 16 bits, and
16-way 32 bits. In addition to the standard arithmetic and logical operations,
VP5 supports rearranging data processing across data lanes by using data
selection strategy. For more efficient vision and imaging-based operations,
VP5 provides shuffling, shifting, interleaving patterns and data normalization.

The used architecture in VP5 is shown in Figure 8. Such architecture allows
processing hundreds of pixel operations per cycle. The optimization used at
the algorithmic level makes it efficient at energy consumption level, which
makes it support both a high performance computing with efficient energy
consumption as described in Vision P5 DSP (2019). Tensilica instruction set
(TIE) has been integrated with the VP5 DSP, so a more customizable instruc
tions and operations for different kinds of applications as mentioned in
Acevedo et al. (2018).

Figure 8. Vision P5 subsystem and core architecture. Adopted from Vision P5 DSP (2019).

APPLIED ARTIFICIAL INTELLIGENCE 775

Complexity Analysis

Experiment

The generated bird's-eye view passes through several stages. At the beginning,
the original fishy-eye distorted frames are downsampled and interpolated into
a smaller size frames. Figure 9 explains the process characteristics.

The downsampling process requires ðnum of frames� frame height �
frame widthÞ=down sampling ratio� frame channels� frame rate=106Þ

operations [Mops/sec]. The total number of operations in the downsampling
process is (ð4� 768� 1024Þ=2� 3� 30=106).

The morphing (interpolation) process is required to correct the frames
into projected ones. The distorted frames are transformed into corrected
ones (i.e., projected), so the fishy-eye frames are converted with the help
of interpolation process into corrected and projected frames. Figure 9
shows the interpolation process settings. During this process, scattered
data (i.e., load/store operations) are read and then interpolation is
applied. For reading data, the required number of operations is opera
tions [Mops/sec]. Applying the used parameters will result in
ð4� 348� 512� 3� 2� 2� 30=106) [Mops/sec]. The same amount of
operations is required to apply the interpolation process (i.e., multiply
accumulate).

At this point, the generated frames are corrected. However, each frame has
its own coordinate system. The next step is to align all frames to one global
coordinate system. In the affine transform phase (Figure 10), there will be
a mapping for each input frame to a one unified global coordinate system,
which makes each frame aware of its location according to the global

Figure 9. Frames correction process. Fishy-eye frames are interpolated into projected ones.

776 M. AL-HAMI ET AL.

coordinate system. Based on this affine transform, each pixel in the input
images with local coordinate system has a specific and determined location in
the new global coordinate system. One of the frames is considered as
a reference frame, and the rest frames use affine transformation (i.e., each
one alone) to align them to the new global coordinate system.

The required number of operations for the affine transformation phase is
ðnum frames�morphed frame height �morphed frame width�
affine transform row� affine transform col� frame rate=106) operations

[Mops/sec]. Applying the used parameters will produce
(3� 348� 512� 3� 3� 30=106) [Mops/Sec]. Next, interpolation is required
to be performed on the new aligned frames. In the interpolation process, there are
[Mops/sec] for reading scattered data (i.e., load/store operations) which are equal
to (4� 631� 768� 3� 30� 3� 3=106) [Mops/sec]. The same amount of
operations is required for applying the actual interpolation (i.e., multiply
accumulation).

The blending phase (see Figure 11) uses a predetermined masks (i.e.,
estimated using the Graph-Cut algorithm and processed with some low
pass filter), and these masks are fixed for all incoming frames. These masks
determine the origin of each pixel in the overlapping areas between neigh
boring frames. The result of the blending phase is one full frame describing
the whole surrounding view. To estimate the required operations during the
blending process, the blending process is executed at three different levels.
First, the blending is applied between front and left frame and consumes
ð2� blended frame height � blended frame width�
frame channels � B num mask filters� frame rate=106) [Mops/sec] which

Figure 10. Applying affine transform, to make one global coordinate system for all frames.

APPLIED ARTIFICIAL INTELLIGENCE 777

equal to (2� 533 � 490� 3� 2� 30=106) [Mops/sec]. Second, the resulted
blended (fornLeft) frame is processed again in the same manner with the
back frame. The number of required operations is estimated in the same
manner as (frontLeft); however, the ðblended frame height �
blended frame widthÞ should be updated accordingly. Finally, the last level
in the blending process is applied between the blended (frontLeftBack) frame
and the right frame in same way as mentioned earlier. It is important to
mention that the dimensions of the predetermined masks are fixed and never
change since we are dealing with a fixed geometry.

The last phase of the approach is resizing (i.e., applying interpolation to
upsample the blended frame). In this phase, we try to resize the blended
frame to the target size (Figure 12). The resizing executes a rescaled
locations and bilinear interpolation processes. The rescaling process
requires
ðblended frame height � blended frame width� affine transform row�

affine transform col=106Þ

which equals to (533� 490 � 2� 2=106) [Mops/sec]. The interpolation
process consumes which equals to
(2� 1920 � 1080 � 3� 30 � 2� 2=106) [Mops/sec].

Table 1 summarizes the main operations required for building the surround
view system, and the required cycles to perform each operation.

Conclusion

Throughout this work, we present an approach to for building a virtual bird’s eye
surround view system, which is a core unit in the future of car driving. The

Figure 11. Blending phase, where input frames are transformed into one output frame.

778 M. AL-HAMI ET AL.

surround view system is part of ADAS project. To make the generated view real-
time view, we used the Tensilica vision P5 DSP. The used DSP allows us to
generate the virtual view at rate 30 frames per second. In the surrounding view
system, the mounted cameras are fixed and never move, so the used geometry is
fixed for all incoming frames. The benefit of fixed geometry appears clearly in the
blending process, where the new location of each pixel in the input frame is
estimated early and never changes. The Graph-Cut algorithm helps in the seam
selection in the overlapping areas between neighboring frames, and this makes the
cut lines seamless and smooth because the color differences are optimized to be
minimal.

ORCID

Subhieh El Salhi http://orcid.org/0000-0002-9700-4862

Figure 12. The blended frame is resized and upsampled into a target size through using
interpolation process.

Table 1. Cycles analysis for the SV system. For the morphing phase, and each level in the stitching
process cycles shows the memory used cycles, and the core’s ones.

Input

Details
Library

Function
Performance ops/

cycle
Cycles core Mops/

sec
Performance

MHz

Downsampling Downsampling load/store 64 141.55776 2.21184
Morphing Read scattered

data
Gather 64 283.11552 4.42368

Interpolation mula 64 283.11552 4.42368
Affine Transform transform mula 64 1610.3318 25.161435

Read scattered
data

Gather 64 715.70304 11.18286

Interpolation mula 64 715.70304 11.18286
Blending Level 1 mula 64 94.0212 1.46908125

Level 2 mula 64 94.0212 1.46908125
Level 3 mula 64 94.0212 1.46908125

Resize/
Interpolation

Rescaled
locations

64 17.892576 0.2795715

Interpolation mula 64 715.70304 11.18286

APPLIED ARTIFICIAL INTELLIGENCE 779

References

Acevedo, J., R. Scheffel, S. Wunderlich, M. Hasler, S. Pandi, J. Cabrera, F. Fitzek, G. Fettweis,
and M. Reisslein. 2018. Hardware acceleration for RLNC: A case study based on the xtensa
processor with the tensilica instruction-set extension. Electronics 7:180. Multidisciplinary
Digital Publishing Institute. doi:10.3390/electronics7090180.

Ananthanarayanan, G., P. Bahl, P. Bodk, K. Chintalapudi, M. Philipose, L. Ravindranath, and
S. Sinha. 2017. Real-time video analytics: The killer app for edge computing. computer
50:58–67. IEEE. doi:10.1109/MC.2017.3641638.

Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Transactions on Pattern Analysis & Machine Intelligence 6:567–85.
doi:10.1109/34.24792.

Brown, M., and D. G. Lowe. 2007. Automatic panoramic image stitching using invariant
features. International Journal of computer Vision 74:59–73. Springer. doi:10.1007/s11263-
006-0002-3.

Butakov, V. A., and P. Ioannou. 2014. Personalized driver/vehicle lane change models for
ADAS. IEEE Transactions on Vehicular Technology 64:4422–31. doi:10.1109/
TVT.2014.2369522.

Cadence Design Systems. 2020. ADASs available services. Accessed May 28, 2020. https://www.
allaboutcircuits.com/industry-articles/developing-smarter-safer-cars-adas-automotive-
advanced-driver-assistance-ip/

Gribbon, K. T., C. T. Johnston, and D. G. Bailey. 2003. A real-time FPGA implementation of
a barrel distortion correction algorithm with bilinear interpolation. Image and Vision
Computing New Zealand 408–13.

Kim, J. H., S. K. Kim, T. M. Lee, Y. J. Lim, and J. Lim. 2018. Hemispherical 3D around view
monitoring algorithm using image synthesis of multi-channel cameras. 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV), 1466–71, Singapore:
IEEE.

Kwatra, V., A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut textures: Image and
video synthesis using graph cuts. ACM Transactions on Graphics (Tog) 7:277–86.
doi:10.1145/882262.882264.

Levin, A., A. Zomet, S. Peleg, and Y. Weiss. 2004. Seamless image stitching in the gradient
domain. Computer Vision-ECCV Vol 3024, 377–89. Springer.

Liu, Y. C., K. Y. Lin, and Y. S. Chen. 2008. Birds-eye view vision system for vehicle surrounding
monitoring. Robot Vision Lecture Notes in Computer Science, vol 4931, 207–18. Springer.

Mosalikanti, A., P. Bandi, and S. H. Kim. 2019. Evaluation of different ADAS features in vehicle
displays. SAE Technical Paper.

Palazzi, A., G. Borghi, D. Abati, S. Calderara, and R. Cucchiara. 2017. Learning to map vehicles
into birds eye view. International Conference on Image Analysis and Processing, 233–43,
Catania, Italy: Springer.

Szeliski, R. 2006. Image alignment and stitching: A tutorial. Foundations and Trends in
Computer Graphics and Vision 2:1–104. Now Publishers Inc. doi:10.1561/0600000009.

Vision P5 DSP. 2019. Vision P5 DSP architecture and features. San Francisco, CA. Accessed
May 18, 2020. https://www.prnewswire.com/news-releases/new-cadence-tensilica-vision-p5
-dsp-enables-4k-mobile-imaging-with-13x-performance-boost-and-5x-lower-energy
-300154540.html

Yu, M., and G. Ma. 2014. 360 surround view system with parking guidance. SAE International
Journal of Commercial Vehicles 7:19–24. doi:10.4271/2014-01-0157.

780 M. AL-HAMI ET AL.

https://doi.org/10.3390/electronics7090180
https://doi.org/10.1109/MC.2017.3641638
https://doi.org/10.1109/34.24792
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1109/TVT.2014.2369522
https://doi.org/10.1109/TVT.2014.2369522
https://www.allaboutcircuits.com/industry-articles/developing-smarter-safer-cars-adas-automotive-advanced-driver-assistance-ip/
https://www.allaboutcircuits.com/industry-articles/developing-smarter-safer-cars-adas-automotive-advanced-driver-assistance-ip/
https://www.allaboutcircuits.com/industry-articles/developing-smarter-safer-cars-adas-automotive-advanced-driver-assistance-ip/
https://doi.org/10.1145/882262.882264
https://doi.org/10.1561/0600000009
https://www.prnewswire.com/news-releases/new-cadence-tensilica-vision-p5-dsp-enables-4k-mobile-imaging-with-13x-performance-boost-and-5x-lower-energy-300154540.html
https://www.prnewswire.com/news-releases/new-cadence-tensilica-vision-p5-dsp-enables-4k-mobile-imaging-with-13x-performance-boost-and-5x-lower-energy-300154540.html
https://www.prnewswire.com/news-releases/new-cadence-tensilica-vision-p5-dsp-enables-4k-mobile-imaging-with-13x-performance-boost-and-5x-lower-energy-300154540.html
https://doi.org/10.4271/2014-01-0157

Zhang, B., V. Appia, I. Pekkucuksen, A. U. Batur, P. Shastry, S. Liu, S. Sivasankaran, K. Chitnis,
and Y. Liu. 2014. A surround view camera solution for embedded systems. IEEE Conference
on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 676–81.

Ziebinski, A., R. Cupek, D. Grzechca, and L. Chruszczyk. 2017. Review of advanced driver
assistance systems (ADAS). AIP Conference Proceedings Vol. 1906, No. 1, p. 120002. AIP
Publishing.

Ziebinski, A., R. Cupek, H. Erdogan, and S. Waechter. 2016. A survey of ADAS technologies for
the future perspective of sensor fusion. International Conference on Computational
Collective Intelligence, 135–46, Halkidiki, Greece: Springer.

APPLIED ARTIFICIAL INTELLIGENCE 781

	Abstract
	Introduction
	Related Work
	Image Stitching
	Surround View System

	Lens Correction and Top-Down View Projection
	Morphing
	Embedded Implementation

	Images Stitching with Graph-Cut Approach
	Frames Registration and Blending
	Frames Registration
	Frames Blending

	Embedded Extension Using Vision P5 DSP
	Complexity Analysis
	Experiment
	Conclusion
	ORCID
	References

