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Dr Tahar Moulay De Saida, Saïda, Algeria

ABSTRACT
The increasing number of vehicles on the road produces nega
tive effects for health, the environment, quality of life, and the 
economy, among other areas. To address this problem, an 
important key is carpooling private vehicles from different 
homes to a common destination. This paper specifically 
addresses the long-term carpooling problem, which is an NP- 
complete problem. The proposed approach is a modified bio
geography-based optimization metaheuristic, which is hybri
dized with a variable neighborhood search. Comparisons with 
efficient known approaches indicate the effectiveness of the 
proposed approach for large-scale long-term carpooling 
problems.
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Introduction

Vehicle use has increased, which has caused negative effects such as traffic 
congestion, air and noise pollution, insufficient parking places, and general 
degradation of quality of life. As a result, human health, the environment, and 
the economy are negatively affected. Although public transportation is an 
adequate response to this problem, it is not a sufficient response. Therefore, 
carpooling should be established through carpooling incentive policies.

Carpooling exists in two forms, the daily carpooling problem (DCPP) and 
the long-term carpooling problem (LTCPP). In the DCPP, a set of users or 
servers is declared each day. Each server picks up its colleagues or clients for 
the particular day. The problem is to generate for each server a set of clients 
that fits car capacities and time windows constraints. The DCPP objective is to 
minimize the total traveled distance. The DCPP is a particular case of the dial- 
a-ride problem (Ho et al. 2018). In the LTCPP, however, the objective is to 
connect each user to a subgroup called a pool for a long time. In the pool, each 
user, in turn, acts as a server and picks up the other users or clients of its pool 
from their homes and carries them to a common destination. The user then 
performs the inverse route under car capacities and time windows constraints. 
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In the LTCPP, the pools are more stable than in the DCPP, and the objective is 
to reduce the number of pools and the total traveled distance. The LTCPP is 
a multi-objective problem; it was proven to be NP-complete (Varrentrapp, 
Maniezzo, and Stützle 2002).

Moreover, the LTCPP was tackled by exact and approximate methods. 
Baldacci, Maniezzo, and Mingozzi (2004) addressed LTCPP with an exact 
method. They have exposed two formulations of the LTCPP, one with the 
clustering approach and one with the partitioning approach of set partitioning. 
The dual problem of the second formulation, dual set partitioning, was 
resolved with the column generation method. The benchmark was composed 
of 35 instances with a maximum size of 250 employees.

Given that the LTCPP is an NP-complete problem, approximate methods 
are more appropriate to resolve it, especially when the problem is large. Thus, 
the LTCPP has been addressed using specific heuristics and metaheuristics. 
The heuristics include the saving functions heuristic (Ferrari et al. 2003), the 
simulation-based algorithm (Correia and Viegas 2008), and the multi- 
matching system (Shangyao, Yan, Chen, and Lin 2011). More specifically, 
the saving functions heuristic is based on a matching preference of two users 
to be pooled together; this preference corresponds to the saved cost, two users 
by two. The authors of the simulation-based algorithm adopted a divide and 
conquer approach. As such, the first stage of the algorithm is based on 
a k-means clustering algorithm. This clustering is based on minimizing the 
sum of square distances between the users and the centroid of each corre
sponding cluster. The second phase is treated by an optimization programme 
that searches to combine pools in order to obtain the smallest number of 
groups with high numbers of users. The authors of the multi-matching system 
treated a different problem, the long-term carpooling many-to-many carpool
ing problem. In this case, a derived Lagrangian problem is constructed and 
resolved to produce a lower bound. The upper bound is computed by using 
a Lagrangian heuristic. The sub-gradient method is used to adjust the 
Lagrangian multipliers. An iterative process is performed until an acceptable 
convergent solution is obtained or until a fixed maximum number of iterations 
is reached. This approach is time consuming, especially for large-scale 
problems.

A number of metaheuristics were utilized to address the LTCPP. Maniezzo 
et al. (2004) have examined the LTCPP with two metaheuristics inspired from 
ant colony optimization algorithm (ACO). For one metaheuristic, the solution 
is constructed completely. In the other, ants construct component solutions as 
pools that are later combined through an integer solver programme. Guo, 
Goncalves, and Hsu (2012) have proposed an approach based on the trans
formation of ACO to a clustering approach. They named this approach the 
clustering ant colony (CAC). Each ant in the CAC constructs the pools guided 
by preference information during their tour. When all ants have accomplished 
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their tours, the obtained solutions are improved by a variable neighborhood 
search (VNS) (Mladenovic and Hansen 1997). Guo, Goncalves, and Hsu 
(2011) also developed an approach known as the guided genetic algorithm 
(GGA). In this algorithm, the initial population is generated by a sweep 
heuristic (Gillett and Miller 1974). The crossover and mutation operators 
are guided by preference information, which is constituted from the best fits, 
and the local search is performed by mutation. The preference information is 
updated at each iteration, and it accomplishes two important roles: it avoids 
infeasible solutions which helps repair them, and it guides crossover and 
mutation GGA operators. Mlayah, Boudali, and Tagina (2018) have suggested 
an approach based on VNS hybridizing with Tabu search (TS) (Glover 1977) 
that they named HVNTS. In this approach, the initial population is generated 
by using a sweep heuristic. Then VNS is used as the diversification process, 
while TS acts as the intensification process. Su, Zhou, and Yu (2019) have 
treated the LTCPP problem different from the one treated by the aforemen
tioned authors. In the model of Su, Zhou, and Yu, not all users have cars. 
Additionally, the model considers other parameters, including the number of 
days and the number of servers for each day. The authors have suggested the 
hybrid metaheuristic approach of artificial bee colony (ABC) with a VNS TL 
(VNSTL). They named this approach the ABC-VNSTL. The VNSTL performs 
the employee and onlooker phases, while the scout phase is conducted through 
an approach known as the scout diversity protection. Instead of modifying one 
dimension at each step, as in classical ABC, the ABC-VNSTL modifies several 
dimensions at the same time. As a result, its convergence is accelerated.

This paper contributes to the field by proposing an efficient modified 
biogeography-based optimization (BBO) to resolve large-scale LTCPPs. The 
rest of this paper is organized in five sections. The problem is defined in the six 
section. The second section explains the mathematical model. The classical 
BBO metaheuristic (Simon 2008) is introduced in the third section. The new 
approach of a modified BBO is detailed in the fourth section. The fifth section 
provides a comparison of this approach with other efficient approaches, while, 
the sixth section presents the conclusion.

Problem Definition

In the LTCPP, users must reach their common destination by sharing their 
cars. Each user within a pool, in turn, picks up the other members of the same 
pool in route toward the common destination. Each user has the following 
specified constraints:

● A limited car capacity when the user plays the server role
● A maximum driving time when the user plays the server role
● An earliest leaving time from home
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● A maximum arriving time at work
● A penalty cost when a user travels alone

The LTCPP is a multi-objective problem that first clusters users in sub
groups called pools such that the sum of traveled routes must be the 
shortest; second, the number of pools must be the fewest. The objective of 
the LTCPP is to minimize the total traveled distance by all users and to 
minimize the number of used cars under car capacities and time window 
constraints.

Mathematical Model

The mathematical model of the LTCPP is presented below (Guo, Goncalves, 
and Hsu 2012). The LTCPP can be modeled by means of a directed graph 
G ¼ U[ 0f g;A

� �
, where U is the set of users, {0} is the common destination, 

and A is the set of arcs between each user and the others and between each user 
and the common destination. The mean shortest paths of a pool k is defined by 
equation (1). 

cost kð Þ ¼

P

i2k

cost min path i;kð Þð Þ

kj j ; if kj j> 1;
P

i2k
costi0 þ pi; ; otherwise:

8
><

>:
(1) 

Where i is the user that acts as a server, cost min path i; kð Þð Þ is the cost of the 
shortest path starting from i and ending at 0 by connecting all users of the pool 
k, kj jis the size of the pool k, costi0 is the cost of the direct travel of the server i 
to the common destination. When a user i travels alone, a penalty pi is added 
to the travel cost.

Since an LTCPP solution is composed from K pools, the total cost of 
a solution is the sum of the costs of K pools. The LTCPP mathematical 
model notations are defined as follows:

● xhk
ij : A binary variable that equals 1 if the arc i; jð Þ is traveled by a server h 

of a pool k; it equals 0 otherwise.
● yik: A binary variable that equals 1 if the user i belongs to a pool k; it equals 

0 otherwise.
● �ij: A binary variable that equals 1 if a user i travels alone.
● sh

i : A positive variable indicating the pickup time of a user i by a server h.
● f h

i : A positive variable denoting the arrival time at the common destina
tion of a user i when picked up by the server h.

● costij: A positive variable indicating the travel cost between two users i and 
j.

● tij: A positive variable indicating the travel time between two users i and j.
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● Qk: A positive variable indicating the minimum car capacity of a pool k.
● Ti: A positive variable indicating the maximum driving time a user i can 

accept.
● ei: A positive variable indicating the earliest leaving time accepted by 

a user i.
● ri: A positive variable indicating the latest arriving time at the common 

destination for a user i.
● pi: A positive variable indicating the penalty for a user i when traveling 

alone.
● K: Index set of pools.
● U: Index set of users.
● A: Index set of arcs.

The objective function is: 

fLTCPP ¼ min
X

k2K

P
h2U

P
i;jð Þ2A costijxhk

ij
P

i2U yik
þ
X

i2U
pi�i

 !

(2) 

Subject to the following constraints: 
X

j2U= hf g
xhk

ij ¼ yiki; h 2 U; k 2 K (3) 

X

j2U
xhk

ji ¼ yiki; h 2 U; k 2 K (4) 

X

j2U
xhk

ij ¼
X

j2U
xhk

ji i; h 2 U; k 2 K (5) 

X

k2K
yik þ �i ¼

X

j2U
xhk

ji i;2 U (6) 

X

i;jð Þ2A
xhk

ij � Qkh 2 U; k 2 K (7) 

X

i;jð Þ2A
xhk

ij tij � Thh 2 U; k 2 K (8) 

sh
i � eii; h 2 U (9) 

sh
j � sh

i � tij � M 1 �
X

k2U
xhk

ij

 !

i; jð Þ 2 A; h 2 U (10) 
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f h
i � sh

i þ ti0 � M 1 �
X

k2U
xhk

i0

 !

i; h 2 U (11) 

f h
i � ri þM 1 �

X

k2K

X

j2U
xhk

ij

 !

i; h 2 U (12) 

Equations (3) and (4) require user i to be affiliated with pool k, and if a path 
begins with user h, only one of the arcs i; jð Þ or j; ið Þ can be traveled. Equation 
(5) guarantees the continuity constraint. Equation (6) assumes that each user i 
traveling alone is penalized, thus privileging user i being pooled with other 
users. Equations (7) and (8) are car capacity and maximum accepted travel 
time, respectively. The feasible pickup times are guaranteed by equations (9) 
and (10), while the minimum and maximum values of arrival times are assured 
by equations (11) and (12), respectively.

Biogeography-Based Optimization (BBO)

Biogeography is the study of the distribution of species on earth, their migra
tions between habitats, and their extinctions. Dan Simon (2008) has proposed 
BBO as a population-based metaheuristic for global optimization based on this 
phenomenon. To carry out the equilibrium principal (MacArthur and Wilson 
1967) and optimization process (Ma 2010; Volk 2003), BBO uses 
a mathematical model where:

● Each habitat represents a solution;
● Each habitat has a habitat suitability index (HSI) to represents its quality 

and, thus, the fitness of a solution;
● Each habitat is characterized by m suitable index variables (SIV), which 

represent variables of the addressed problem;
● Each habitat i has an immigration rate λi and an emigration rate μi;
● The two migration rates are functions relevant to the number of species;
● The species, which are SIV(s), migrate from one habitat to another 

according to migration rate probabilities;
● Each habitat (solution) is subject to mutation on its SIV(s).

After generating an initial population of habitats, BBO uses three operators, 
migration, mutation, and elitism. The migration operator performs informa
tion exchange between habitats. Rather than producing new individuals as 
evolutionary algorithms with a crossover operator, BBO modifies the existing 
individuals by using a migration operator (Simon 2008). The mutation opera
tor perturbs the individuals to diversify the population and escape the local 
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optima traps. The elitism mechanism guides the intensification process. The 
pseudo code of the BBO algorithm is as follows:

Algorithm 1: BBO algorithm
Initialization
While stop criteria not verified
Evaluate the quality (HSI) of each solution
Memorize the K solutions having best quality (having the higher level 

of HSI)
Migration: migrate randomly the habitats (solutions) by using the rates λ 

and μ
Mutation: mutate the solutions which don’t belong to elite
Replace the population of solutions by the descendants
Implementing elitism: replace worst habitats by the bests known
End While
The BBO migration process is relevant to the immigration and emigration 

rates, which are computed by equations (13) and (14), respectively. These two 
equations define the linear model represented by Figure 1. 

λs ¼ I 1 �
S

Smax

� �

(13) 

μs ¼ E
S

Smax

� �

(14) 

Figure 1. Correlation between migration rates and species number.
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Where I and E are the initial immigration and emigration rates, S is the 
number of species of habitat S, and Smax is the maximum number of species. 
The linear model was compared with other models, including constant, 
trapezoidal migration models among others (Ma 2010).

Algorithm 2: BBO migration algorithm
Select Hiwith a probability αλi
If Hiis selected then
For j ¼ 1ton do
Select Hjwith probability αμj
If Hjis selected then
Select randomly SIVafrom Hj
Replace a random SIV in Hi by SIVa
End if
End for
End if 

m Sð Þ ¼ mmax
1 � Ps

Pmax

� �

(15) 

Where mmax is a user parameter, Ps the probability that a habitat has S species, 
and Pmaxis the probability that a habitat has the maximum number of species.

Algorithm 3: BBO mutation algorithm
For i = 1 to N do
Compute from λi and μi the probability Pi
Compute the mutation rate mi with equation (15)
// Browse SIV(s) of the solution to mutate
Forj ¼ 1toD do
If rand 0; 1ð Þ<mi alors
Generate randomly a feasible SIVa
// Replace the SIV of the solution to mutate
Si jð Þ ¼ SIVa

Figure 2. A habitat and its SIV(s) in BBO representation of an LTCPP solution.
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End If
End for
End for
BBO is a performant metaheuristic. Therefore, it has been widely used in 

different areas of transport, such as VRP problems (Berghida 2015), image 
processing (Zheng et al. 2016), power and electricity (Chatterjee et al. 2012), 
robotics (Zhang, Wang, and Chen 2019), wireless networks (Zhang et al. 
2015), data mining (Zhao et al. 2019), economics and social sciences (Du 
and Simon 2013), and the internet of things (Cao, Wang, and Li 2014), among 
other domains.

Hybrid Modified Mutation BBO

Solution Encoding

A habitat (solution) can be implemented by an indirect (binary) or direct (real) 
representation; in this case, the direct representation was chosen. The direct or 
real representation is advantageous given that it does not require an inter
pretation of intermediate solutions or a translation of the final solution. In 
addition, Guo, Goncalves, and Hsu (2012) as well as Mlayah, Boudali, and 
Tagina (2018) have used this representation.

Two levels of information emerge from the problem: the clustering of users 
into independent pools and within each pool, and the route that each user 
browses when they play the role of server. To address the LTCPP by using 
BBO, the following correspondences were conducted (Figure 2):

● A habitat represents a solution;
● The total cost of a solution is equal to the HSI of a habitat;
● A pool represents a species and, thus, an SIV;
● In turn, each user in a pool plays the role of server, who picks up the rest 

of the pool users.

The Hybrid Modified Mutation BBO Algorithm

The difficulty of using any metaheuristic is balancing diversification and 
intensification; this balancing is an open problem (Yang 2014). Therefore, 
the BBO algorithm structure was modified to address the balance problem and 
the LTCPP problem. The new algorithm was named the hybrid modified 
mutation BBO (HMMBBO). The global idea of HMMBBO is to use as an 
intensification process migration combined with elitism and to allow 
a modified mutation operator to aid the diversification process. Instead of 
mutating a large number of species, as in the BBO, the mutation is applied to 
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a reduced number of pools (species). The HMMBBO performs small and large 
mutations in the beginning of the process and only small mutations at the end. 
This strategy favors diversification at the beginning and intensification at the 
end. After the mutation, a migration combined with an improvement that is 
performed through a VNSTL of a randomly selected habitat. In VNSTL, two 
TLs were used. The first TL was used to avoid selecting the same solution 
twice, while the second was used to list the pools that could not be improved. 
As in nature, mutated species migrate, interact, and attempt to improve 
themselves; the latter phenomenon is simulated by implementing VNSTL. 
The HMMBBO algorithm is defined in algorithm (4).

Important differences exist between a classical BBO and the HMMBBO. 
First, elitism is not applied when a mutation is performed. In other words, 
elitism is only used in the intensification phase. The aim of this modification is 
to allow mutated individuals to interact among themselves and with the rest of 
the individuals. Another difference is the use of the mutation operator only 
after a number of fails and not at each iteration, as in classical BBO. The third 
difference is the use of migration as a propagator of new information provided 
by mutation in the diversification phase. The last difference is the hybridiza
tion with VNSTL to improve the new habitats and their interactions. In the 
next section, useful reduce functions are defined before detailing migration 
and mutation operations.

Algorithm 4: HMMBBO algorithm for LTCPP
Load instance data
Initiate the table of allowed and not allowed user pairs to be pooled one with 

each other
Initiate BBO parameters: population size N, migration rates λ and μ, elite 

size K
Generate Initial population composed from structured and ran

dom Hi; i ¼ 1; . . . ;N
While stop criteria not verified
Evaluate the quality (HSI) of each solution
Memorize the K solutions having best quality (having the lowest HSI)
Compute the rates of immigration (λ) and emigration (μ) for each solution
Compute the probability for each number of species P
Migration satisfying problem constraints
If (nbfails > m and rand (0,1) < α)
If ((|Hk � H0|/H0) < ω) and (iter/nbTotIter) < r and nbMutation > C1 and 

nbRenew < C2)
//Mutation: used as a renew of population (LM: Large Mutation)
Modified Mutation (minLM, maxLM)
nbRenew = nbRenew + 1
nbMutation = 0
Else
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//Mutation: mutate a reduced number of species
Modified Mutation (minRM, maxRM)
nbMutation = nbMutation + 1
nbRenew = Max (0,nbRenew – 1)
End if
// Propagation of information
Migration
//Improve m solutions randomly
VNSTL
nbfails = 0
Else
Replace the worst solutions by the elite solutions of precedent generation
End if
If (|Hk � H0|/H0<ω)
nbfails = nbfails + 1
Else
nbfails = 0
End if
iter ¼ iter þ 1
End While

Useful Reduce Functions
The search space of LTCPP is large and contains many infeasible solutions. 
Avoiding such solutions maximizes the amount of computing time spent 
exploring more feasible solutions. Therefore, useful reduce functions 
(Baldacci, Maniezzo, and Mingozzi 2004) were used. These functions were 
used for the following purposes:

● To construct a table of potentially allowed users to be pooled together 
when equation (16) is satisfied; they are not allowed to be pooled together 
otherwise;

● To identify users that must be alone if equation (17) is violated;
● To control during the resolution process if the addition of a user to a pool 

violates time window constraints before controlling them for each route; 
this control is performed with equations (18) and (19).

ei þ tij þ tj0 <minðri; rjÞ (16) 

ei þ ti0 < ri (17) 

min tipoolk
� �

þ shortTimepoolk � Ti (18) 
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Where min tipoolk
� �

is the shortest time route from a user i to all users of the 
pool k, and shortTimepoolk is the shortest time route between traveled routes by 
all users of pool k. 

max ei þmin tipoolk
� �

;min epoolk
� �� �

þ shortTimepoolk � min ri;min rpoolk
� �� �

(19) 

Where min epoolk
� �

is the earliest leaving time of all users of pool k, 
max ei þmin tipoolk

� �
;min epoolk

� �� �
is the potential earliest leaving time of 

user i when playing the role of server and if added to pool k. Therefore, the 
first term of equation (19) added to the shortest travel time of pool k must be 
less than or equal to the minimal last arrival time of user i and of all users of 
pool k.

Initial Population
An initial population of habitats is generated from structured and randomized 
individuals. The generation of the structured individuals is based on 
a modified version of the heuristic used by Guo (2012). The heuristic has 
been modified by merging pools with one user when feasible. The goal of the 
modified heuristic is to provide, from the beginning of the research process, 
a heterogeneous population and hence a diversity in terms of pool 
composition.

Migration
The migration operator has an important function in BBO. It is the operator 
through which the exchange of information between habitats is performed. 
First, a habitat Hi receiving species, which are pools containing information, is 
selected according to a probability based on the immigration rate λi. Then, 
each habitat Hj from which a species or pool emigrates is selected according to 
a probability based on the emigration rate μj. One pool emigrates from each 
selected habitat. This process does not create a new descendant but modifies 
existing ones, as illustrated in Figure 3. The migration operator is implemen
ted in algorithm (5).

The migration of a poolk from a habitat Hj to a habitat Hi causes user 
redundancy in the pool of Hi. Therefore, the solution Hi becomes inconsistent. 

Figure 3. Migration of pools.
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The response to this situation is to remove these users from their pools. After 
doing so, some affected pools may contain one user, which penalizes the pool 
cost and, consequently, the entire solution. As a result, the algorithm attempts 
to merge the penalized pools. Figure 4 provides an example of the migration of 
one pool according to the following description.

● Step 1: Select a habitat Hi to receive a pool from a habitat Hj.
● Step 2: Select the pool containing users 8, 12, 10, and 6 from the habitat 

Hj.
● Step 3: Migrate the selected pool to habitat Hi and remove redundant 

users from other pools of Hi.
● Step 4: Merge user 19, who is alone due to migration operation.

Algorithm 5: HMMBBO migration algorithm for LTCPP
Select Hiwith a probability αλi
If Hiis selected then
For j ¼ 1ton do
Select Hjwith probability αμj
If Hjis selected then
Select randomly poolk with a size greater than 1 from Hj
If poolknotexistinHithen
Add poolk to Hi
Remove from other pools of Hi users having the same users of poolk
Attempt to merge affected pools of Hi which their sizes = 1
End if
End if
End for
End if

Figure 4. BBO migration example for LTCPP.
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Mutation
In any metaheuristic the diversification process is an important process. On 
the one hand, it allows escape from local optima traps and encourages 
exploration of new areas. On the other hand, it could prevent the improve
ment of local optima if used prematurely or frequently. Therefore, the mod
ified mutation operator is performed only under the conditions defined in 
algorithm (4). Moreover, in HMMBBO mutation is modified to control the 
size of mutation by two parameters that indicate the range of mutations by 
habitat. As a result, the number of species to mutate depends on the two 
parameters in a random manner. The aim of this modification is to define the 
move size to another search space and, therefore, attempt to escape local 
optima traps and to explore other areas.

In BBO, the mutation operator guaranteed the diversification process and 
had to be used for this purpose. In the modified mutation operator of 
HMMBBO, different operators were used to address the LTCPP. The opera
tors ‘swap,’ ‘merge,’ ‘move,’ and ‘divide’ were used in the intensification 
process to improve the existing solutions in the CAC and GGA approaches 
of Guo, Goncalves, and Hsu (2012, 2011) as well as the HVNTS approach of 
Mlayah, Boudali, and Tagina (2018). In contrast, the operators in the proposed 
approach were used for diversification regardless of the improvement of 
existing solutions. The operators were defined and used as follows:

● Swap: A number of pools with more than one user are randomly selected. 
For each selected pool, the swap is performed with another pool of the 
same habitat; the last pool is selected randomly and can have any size. 
This operation is repeated until all pools are visited or until a valid swap is 
identified.

● Merge: A portion of unfilled pools are randomly selected. Each pool is 
merged with another of the same habitat, and the last pool is selected 
randomly. Similar to the swap operator, this operation ends at the first 
valid merge.

● Move: A pool with more than one user is randomly selected. Then, 
another unfilled pool of the same habitat is randomly selected. The 
operator moves one user of the first pool into the second pool, and the 
operation is repeated until a valid move is reached or until all pools are 
visited. This operator is applied to a portion of pools.

● Divide: A full pool is randomly selected and divided into two pools; each 
must contain more than two users. This condition avoids the penalty over 
cost in the case of a pool with one user.

● Divide-Merge: This creates a new pool with two users from two different 
pools. First, one pool containing more than two users is randomly 
selected. Then, the pools of the same habitat are sorted according to the 
gravity center of the first selected pool. This operator associates one user 
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from the first selected pool with another user of the other pools, in the 
above-mentioned order.

● MoveAll: The goal of this operator is to move each user of a selected pool 
to another pool of the same habitat. If one user of the concerned pool is 
not successfully moved, the operation fails. This operator is applied to 
a portion of pools.

● BrokeAloneUser: This operator is applied to pools with one user. It first 
attempts to merge the pool; if the merge fails, it attempts to move a user 
from another pool with more than one user. If both of these operations 
fail, a swap is attempted.

These neighborhood operators are used as described by algorithm (6). The 
operators ‘divide’ and ‘divide-merge’ are used less frequently than the others in 
the mutation. Their less-frequent use is attributed to the fact that these two 
operators increase the number of pools that can degrade a number of solu
tions. As such, they could result in the intensification process being penalized.

Algorithm 6: HMMBBO mutation algorithm for LTCPP
Mutation (int minMutations, int maxMutations)
For i = 1 to N do
Compute the mutation rate mi with equation (15)
// define the max number of iterations between minMutations 

and maxMutations
F ¼ random minMutationstomaxMutationsð Þ

For j ¼ 1toF do
If rand 0; 1ð Þ<mi then
// l 2 Neighbourhoodoperators 1; ::; nð Þ

For l ¼ 1ton do
//Select randomly m distinct pools between m1 and m2
// according operator l
For k ¼ 1tom do
// Apply a neighborhood operator l on each selected pool
Operatorl(Hi; poolk)
End for
End For
End If
End For
End for
Information contained in the mutated habitats is propagated by the migra

tion operator and improved by the VNSTL, as described in the section 
dedicated to the HMMBBO algorithm. The VNSTL uses the same operators 
as mutation, although in this case they are used to improve and not to 
diversify. Therefore, each neighborhood operator succeeds if it enhances the 
quality of the habitat to which it is applied. Two user parameters are defined 
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for VNSTL, the number of solutions for enhancement and the number of 
authorized successive fails for each neighborhood operator.

Results and Comparisons

Experiments have been conducted by using the new approach based on an 
improved BBO algorithm. The objects of these experiments have included 
those derived by Guo (2012) and from VRP hard instances (Baldacci, 
Maniezzo, and Mingozzi 2004). The results of HMMBBO were compared to 
those obtained by Guo (2012). The instances are composed from two types, 
clustered and randomized. Each type is then composed of nine instances 
divided into three groups of three instances of 100, 200, and 400 users. The 
HMMBBO was implemented in Java, and experiments were conducted on 
a laptop equipped with an Intel processor Core™ i5-4210 U 1.7 Mhz CPU. All 
results were obtained after 30 runs.

The results from the new approach were compared with those obtained by 
Guo (2012) and the approaches multi-agent self-adaptive genetic algorithm 
(AGA), GGA, and CAC. Two versions of HMMBBO were performed, 
HMMBBO1 and HMMBBO2. These versions are different on the VNSTL 
parameters. For HMMBBO1, the number of modified solutions by VNTSL 
for each iteration is one, and the number of authorized fails for each neighbor
hood operator is one. The values of these two parameters for HMMBBO2 are 
a random number between one and two, and five respectively.

In addition, HMMBBO1 outperforms the three other approaches on five 
clustered instances, and it is outperformed only by AGA in the instances of 
C202, C203, and C402. In contrast, HMMBBO1 is outperformed by all the 
approaches in C201. With HMMBBO2, the obtained results from 
HMMBBO1 are improved in all clustered instances. In fact, HMMBBO2 
outperforms AGA on C202 and C402. On the other hand, AGA outper
forms HMMBBO2 in C201 and C203, yet the latter is closest to CAC for 
this instance. Table 1 provides the results for clustered instances. 
Furthermore, HMMBBO1 and HMMBBO2 are more efficient for random 
instances, as HMMBBO1 outperforms AGA, GGA, and CAC in all 

Table 1. Results for clustered instances.
HMMBBO1 HMMBBO2 AGA GGA CAC

Instance Size Best Avg Best Avg Best Avg Best Avg Best Avg
C101 100 1150.2 1164.3 1148.4 1159.3 1585.5 1585.5 1585.5 1599.3 1585.5 1593.4
C102 100 1334.8 1350.9 1330.6 1345.9 1701.9 1704.1 1701.9 1712.0 1706.8 1728.2
C103 100 1312.3 1331.7 1316.8 1331.1 1508.6 1511.6 1513.7 1543.9 1508.6 1527.5
C201 200 2749.9 2824.2 2734.4 2787.3 2626.8 2671.5 2672.2 2749.4 2703.1 2717.7
C202 200 2761.5 2822.4 2749.7 2792.1 2806.7 2811.9 2836.7 2876.5 2879.2 2892.9
C203 200 2794.2 2868.8 2780.5 2832.3 2716.0 2724.6 2716.0 2891.8 2769.3 2834.1
C401 400 4947.1 5007.7 4838.3 4912.2 5425.9 5448.9 5489.4 5690.6 5533.3 5618.6
C402 400 4492.7 4573.9 4418.7 4509.6 4518.2 4538.0 4548.3 4786.4 4518.2 4760.3
C403 400 5327.6 5429.2 5306.3 5364.2 5725.9 5796.2 5909.6 6085.2 5930.7 6046.4
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instances except R402, for which HMMBBO1 and AGA demonstrate the 
best result. However, HMMBBO2 outperforms HMMBBO1, AGA, GGA, 
and CAC in all random instances. The result comparisons for randomized 
instances are reported in Table 2. On the other hand, HMMBBO1 and 
HMMBBO2 are less time consuming than the other approaches. While the 
CPU time increases quickly for the three other approaches, HMMBBO1 
and HMMBBO2 are less time consuming. Figures 5 and 6 illustrate the 
CPU time progression for clustered and randomized instances.

Conclusion

This paper proposes the HMMBBO approach to address the LTCPP by using 
migration and elitism as intensification processes and performing the diversi
fication process with a modified mutation operator. Moreover, the diversifica
tion phase has been combined with a propagation phase based on the use of 
a migration operator and an improvement with VNSTL, without using elitism. 
As a result of these two phases and the absence of elitism, HMMBBO avoids 
losing new information provided by the mutation operator. Consequently, 

Table 2. Results for randomized instances.
HMMBBO1 HMMBBO2 AGA GGA CAC

Instance Size Best Avg Best Avg Best Avg Best Avg Best Avg
R101 100 1781.3 1793.9 1778.2 1788.3 2207.1 2214.7 2207.1 2235.9 2223.1 2283.2
R102 100 1443.6 1463.4 1443.6 1453.2 1824.5 1835.7 1824.5 1867.5 1841.4 1874.3
R103 100 2130.9 2146.7 2130.9 2145.6 2200.3 2226.9 2209.1 2286.0 2235.9 2313.4
R201 200 3810.3 3909.0 3790.7 3864.0 3966.2 4117.1 4034.8 4188.3 4156.1 4231.8
R202 200 3311.3 3404.1 3292.1 3364.2 3646.8 3666.7 3646.8 3751.7 3717.2 3824.2
R203 200 3329.4 3388.6 3292.7 3342.8 3923.2 3982.1 3923.2 4158.4 4164.7 4304.6
R401 400 7226.1 7327.8 7047.2 7176.6 7354.2 7405.1 7514.9 7799.5 7891.4 8033.7
R402 400 6158.4 6232.2 6060.5 6127.8 6172.7 6222.5 6172.7 6254.0 6365.2 6559.7
R403 400 7481.8 7587.3 7330.1 7425.1 7602.0 7695.0 7670.2 7872.9 8023.4 8129.5

Figure 5. CPU time progression for clustered instances.
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HMMBBO has the advantages of BBO, thus escaping local optima traps by 
disabling the negative effects of elitism.

In fact, HMMBBO has been demonstrated to be more efficient than the 
well-known approaches of AGA, GGA, and CAC in 16 instances and in 18 for 
its second version, HMMBBO2. In the other instances, HMMBBO provides 
promising and competing results compared to those obtained by AGA, GGA, 
and CAC. These results have been achieved with the two HMMBBO versions 
in less time than with AGA, GGA, and CAC.

However, the HMMBBO results from two instances have been outper
formed by the results provided by AGA. Therefore, the results for these two 
instances should be improved, in addition to improving HMMBBO in general. 
Any future research must be extended to include other metaheuristics that 
address the LTCPP.
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