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ABSTRACT 
 

Cloud is specifically known to have difficulty in managing resource usage during task scheduling, 
this is an innate from distributed computing and virtualization. The common issue in cloud is load 
balancing management. This issue is more prominent in virtualization technology and it affects 
cloud providers in term of resource utilization and cost and to the users in term of Quality of Service 
(QoS). Efficient procedures are therefore necessary to achieve maximum resource utilization at a 
minimized cost. This study implemented a load balancing scheme called Improved Resource 
Aware Scheduling Algorithm (I-RASA) for resource provisioning to cloud users on a pay-as-you-go 
basis using CloudSim 3.0.3 package tool. I-RASA was compared with recent load balancing 
algorithms and the result shown in performance evaluation section of this paper is better than Max-
min and RASA load balancing techniques. However, it sometimes outperforms or on equal balance 
with Improved Max-Min load balancing technique when using makespan, flow time, throughput, and 
resource utilization as the performance metrics. 
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1. INTRODUCTION 
 
Cloud Computing consists of a network of 
infrastructure which allows enterprises to achieve 
more efficient use of their IT hardware, software, 
and other services investments. These 
infrastructures are available to users as a utility 
on an on-demand basis and are charged 
proportionally to the amount of resources 
consumed by the users. Cloud is a 
heterogeneous pool of resources, and to enable 
one to have access to these resources; there 
must be a Service Level Agreement (SLA) from 
the Cloud Provider [1]. Efficient resource 
utilization can be optimized by the Cloud Service 
Providers (CSP) via a better scheduling 
algorithm in cloud computing [2]. Better 
scheduling could be achieved by breaking down 
the physical barrier that is essential to isolated 
system and automate it as a single entity [3]. 
 

In Cloud Computing, effective task scheduling 
needs an infrastructure from the cloud provider. 
The scheduling of task, jobs are mapped on 
available resources and submitted to a cloud 
environment in such a way that the total 
response time and the makespan are minimized 
[4]. Makespan is the maximum time taken by any 
of the computing resources assigned a set of 
tasks to complete execution. Efficient resource 
utilization can only be guaranteed when the 
workload was efficiently shared among the 
resources [5]. As the cloud computing 
environment continues to enjoy massive 
migration by enterprises, it would be important to 
improve the distribution of tasks among 
resources. Cloud service providers are greatly 
concerned about addressing the challenge of 
ensuring that Virtual Machines (VMs) are not 
overloaded or underloaded. This optimization 
problem has been gaining attention in recent 
times. 
 

This research therefore, focused on improving 
RASA algorithm to give a better performance on 
load-balancing in cloud computing, and compare 
its performance with other existing model for load 
balancing. The reason is towards improving the 
virtualization technology in cloud environment. 
 

2. BACKGROUND OF THE STUDY 
 

A lot of research had been done in this area, few 
studies with their contributions were discussed 
as follows: 
 

Muthusamy and Chandran [6] proposed an 
artificial bee foraging optimization for load 

balancing in the cloud. The study adopted a 
preemptive task scheduling approach to 
minimize the response and execution time. This 
showed a significant improvement in QoS metric 
in comparison to the Honey Bee Based (HBB) 
load balancing. 
 
In a bid to enhance machine performance for 
balanced sharing of load, maximize virtual 
machine throughput and optimize the waiting 
time of tasks, Jena, Das, and Kabat [7] 
hybridized Modified Particle Swarm Optimization 
(MPSO) and improved Q-learning. The 
experimental analysis results showed that the 
hybrid QMPSO outperformed MPSO and Q-
learning. 
 
In [8], an adaptive Starvation Threshold Load 
Balancing (STLB) algorithm was proposed for 
load balancing. The objectives of the study were 
to minimize response time and migration cost, 
and maximize server utilization rate. The key 
feature used in the algorithm was not invoked 
until at least one of the VM is close to starvation; 
this lowers the number of migration. The 
proposed algorithm was compared to the HBB 
load balancing algorithm in terms of makespan, 
average response time, average idle time, and 
number of tasks migrated, the STLB showed 
significant improvement. 
 
In [9], a hybrid algorithm that integrated the 
Elephant Herding Optimization (EHO) into the 
Grey Wolf Optimizer (GWO) was proposed and 
its performance was compared to some existing 
load balancing algorithms such as Constraint 
Measure (CMBLB), Fractional Dragonfly, EHO, 
and GWO load balancing algorithms using 
makespan and minimum load as metrics. The 
makespan of EHGWO algorithm was better than 
EHO and GWO, and it has the lowest minimum 
load value compared with CMBLB and Fractional 
Dragonfly algorithms. 
 
Quadri and Ravi [10] developed a new algorithm 
to reduce the overall time taken to complete a set 
of assigned tasks and ensure a balanced 
distribution of tasks to computing resources. The 
two objectives (minimize makespan and 
maximize utility) were achieved by applying the 
Weighted Sum Method (WSM), which was one of 
the multi-criterion decision-making methods. The 
percentage deviation (Coefficient of Variation) of 
the resources with maximum and minimum 
execution time of all tasks from the mean were 
measured. The result showed that the proposed 
algorithm has lower makespan than scheduling 
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algorithms such as NHTBS, Opportunistic Load 
Balancing (OLB), MET and RASA. In terms of 
utilization only max-min scheduling technique 
could equal its performance. 
 
According to [11], many algorithms have been 
used in the past; amongst them are Max-min, 
Min-min, and RASA, which are very popular 
during scheduling of tasks on resources. The 
study focused on max-min algorithm, based on 
completion time of processed tasks. This 
algorithm was improved upon using expected 
execution time [11]. The results showed that 
Improved Max–min (I-MM) performed better by          
2% in completion time than RASA. 
 
Our proposed improved RASA algorithm gives a 
better performance on load-balancing in cloud 
computing and especially in virtualization 
environment. 
 

2.1 Overview of Past load-balancing 
Techniques in a Scheduling 
Environment 

 

Different techniques have been used to improve 
the performance and resource usage on task 
scheduling, quality of service, load balancing, 
and resource utilization. In [12], it was suggested 
that load balancing in cloud avoids 
overloading/under-loading of virtual machines, 
which itself is an obstacle in cloud computing, 
thereby making it a requisite for researchers to 
develop a suitable load balancer for parallel and 
distributed cloud environments. 
 
Load balancing is a method that enables 
frameworks on resources by giving a Maximum 
throughput with the least response time [7]. In 
cloud computing, the burden (overloading/ 
underloading) could occur in the resources used 
in the datacentres. The altering of this burden 

was a way to divide the action between all 
servers (in the case of more than one datacentre) 
or resources (say, virtual machines), so that job 
could be sent and response got quickly while the 
stack was on modification. 
 

Various load balancing algorithms that give 
better throughput with quick response time in 
cloud condition do exist [13], but, each of them 
has favourable circumstance [14, 15, 16]. These 
include: 
 

2.1.1 Static Algorithm (SA) 
 

Static Algorithms, as shown in Fig. 1, are used 
where the load was of low variations. This 
algorithm needs a prior knowledge of server 
resources for the processors to perform better 
and this was determined at the beginning of the 
implementation [17]. The major limitation of 
Static Load Balancing Algorithm is that the load 
balancing tasks only work after being created. 
 
2.1.2 Dynamic Algorithm (DA) 
 
Dynamic Algorithm searches the lightest server 
resource, and gives it a preference for load 
balancing [17]. The current state of the machine 
was used to control the load. This was explained 
in Fig 2. 
 
2.2.3 Round Robin Algorithm (RRA) 
 

This algorithm assigns tasks to server resources. 
Its mode of operation uses the FCFS algorithm 
when the quantum time is high firstly, but once it 
reduces, tasks were assigned on a random basis 
in round- robin [18]. The round-robin method 
circularly assigned tasks without defining any 
priority. All the processes have different loading 
times. Some resources might be heavily loaded, 
while others remain under-utilized. The algorithm 
was shown in Fig 3. 

 

 
 

Fig. 1. Load balancing static algorithm 

Start 

create different classes of job 

assign next job to the belong class  

Sort the class tasks based on weight of the execution time 

for all classes  

   for all task in selected class 

      Assign task with min-weight to the next resource for processing  

       remove the task from the selected class list 

      next task 

   end 

   next class 

end 

End 

 



 
 
 
 

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722 
 

 

 
55 

 

 
 

Fig. 2. Load balancing dynamic algorithm 
 

 
 

Fig. 3. Round-robin algorithm 
 

 
 

Fig. 4. Opportunistic load balancing algorithm 
 
 

Start 

create different classes of job 

assign next job to the belong class  

Sort the class tasks based on weight of the execution time 

 

         
 

   
     

Counter=0; 

Do  

i = Random (1, |C|) 

for all tasks in selected class Ci 

      Assign task with min-weight to the next resource for processing  

       remove the task from the selected class list 

  Counter++; 

      next task 

   end 

 While (Counter < N) 

End 

 

Start 

create different classes of job , C 

assign next job to the belong class  

Sort the class tasks based on weight of the execution time 

For all Resource, R 

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

             if(task with min-weight in Ci <quantum_time) 

  Assign the task in Ci on R 

       remove the task from the selected class list 

            else 

  Process the task for based on quantum_time 

       Update the task burst_time 

  Relocate the task to the end of the class list 

 Next class 

end 

 Next Resource 

 end 

 End 

Start 

create different classes of job , C 

assign next job to the belong class  

Sort the class tasks based on weight of the execution time 

For all Resource, R 

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

 Assign task with min-weight in Ci on R 

      remove the task from the selected class list 

 Next class 

end 

 Next Resource 

end 

End 
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2.2.4 Opportunistic Load Balancing (OLB) 
algorithm 

 
This algorithm keeps each server resource busy, 
as shown in Fig 4, without considering machines’ 
current workload. Irrespective of the current 
workload on each of the resources, OLB 
distributes all the unfinished tasks to them 
randomly [19]. 
 

2.2.5 Minimum to Minimum (Min-Min) 
algorithm 

 

The concept of Min-min algorithms in Load 
Balancing is to assign tasks with minimum 
completion time first for execution on resource 
with minimum execution time [20]. This 
procedure continues until all were mapped. This 
algorithm, as shown in Fig 5, seems to be the 
fastest in a situation where many smaller tasks 
are more than larger ones. 
 

2.2.6 Maximum to Minimum (Max-Min) 
Algorithm 

 

Maximum-Min Load Balancing Algorithm is 
similar to Min-min load balancing algorithm, still 
the difference is that the task with maximum 
completion time was selected after searching 
and assigned to the machine (resource) with 

minimum execution time [21]. The execution time 
of all tasks were updated, and the assigned task 
was removed from the list. Fig 6 shows the 
detailed code. 
 
2.2.7 Resource Aware Scheduling Algorithm 

(RASA) 
 
This is a combination of both Max-min and Min-
min algorithms. In RASA, the appraisal of the 
completion time for each task on available 
resources was calculated, after which the Max-
min and Min-min algorithms were applied 
alternatively, as shown in Fig 7, thereby making 
use of the advantage of both algorithms and 
avoiding their drawbacks [4]. RASA executes 
small tasks to avoid delays in large ones. It also 
supports simultaneous executions of large and 
small tasks. 
 
2.2.8 Improved Max-Min 
 
The basic operations of improved Max-min (I-
Max-Min) was to assign task with maximum 
execution time to a resource that has minimum 
completion time as shown in Fig 8. The original 
Max-min assigned task with maximum 
completion time to resources with minimum 
execution time [22]. 

 

 
 

Fig. 5. Opportunistic load balancing algorithm 

 

 
 

Fig. 6. Opportunistic load balancing algorithm 

Start 

Create different classes of job, C 

Assign next job to the belong class  

Sort the class tasks based on Max-weight of the execution time 

//R is the resources    

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

   Assign task with Max-weight in Ci on                      
                    

  resource 

Remove the task from the selected class list 

Next class 

             end 

           End 

 

Start 

Create different classes of job, C 

Assign next job to the belong class  

Sort the class tasks based on weight of the execution time 

//R is the resources    

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

    Assign task with min-weight in Ci on                      
                    

  resource 

    Remove the task from the selected class list 

    Next class 

end 

End 
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Fig. 7. Resource aware scheduling algorithm 
 

 
 

Fig. 8. Improved max-min algorithm 
 

3. META-TASK 
 

The concept of Meta-task is simply to transform 
complex processes going through multiple 
resources into simple lists of tasks sorted out in 
batches for higher throughput during scheduling 
computation. This concept was implemented in 
Linux operating system by way of using 
Complete Fair Queuing (CFQ) scheduler, also 
known as modified anticipatory scheduler. CFQ 
are currently in use because aside that tasks 
were put in batches, it also overcomes deceptive 
idleness [23]. Report also shows that Apache 
web server achieved up to 71% more throughput 
from using this modified anticipatory scheduler 
[24]. 
 

Scheduling algorithms are with many policies but 
could be subdivided into immediate and batch 
scheduling, preemptive and non-preemptive 
scheduling, static and dynamic scheduling, and 
so on [25, 26,27]. In Immediate mode, tasks 
were  scheduled using First Come First Serve 
(FCFS) in the computing environment, while in 
the batch mode, tasks were grouped into a batch; 
which means that, a set of meta-tasks would be 
assigned at a mapped out time depending on the 

scheduler’s algorithm [26]. It is the algorithm that 
determines how the load balancing of the 
resource usage for this task. In a nutshell, meta-
task is a way of assigning a mapped tasks to 
different entities in cloud for resource provisioning. 

 
4. RESOURCE PROVISIONING 
 
The task of mapping resources to different 
entities in cloud on-demand that is pay-as-you-go 
basis is known as resource provisioning. 
Resources were allocated in cloud so that the 
processing elements (resources) are not 
overloaded and that none is undergoing wastage 
either. Resources mapping in cloud entities were 
done in two levels: 

 
4.1 Host 
 
Host, in cloud computing, can contain more 
instances of VM. The VM were mapped to a 
single host subject for availability and capabilities. 
The Host then assigns processing cores to VM 
based on the provisioning policy, and this defines 
the basis of allocating processing cores to VM. 
The allocation policy ensures that the critical 

Start 

Create different classes of job, C 

Assign next job to the belong class  

Sort the class tasks based on Max-weight of the execution time 

//R is the resources    

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

 Assign next task in Ci on                       
                     

  resource 

 Remove the task from the selected class list 

 Next class 

 end 
 End 

 

Start 

Create different classes of job, C 

Assign next job to the belong class  

Sort the class tasks based on Max-weight, Min-Weight of the execution time interchangeably 

//R is the resources    

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

 Assign next task in Ci on                       
                     

  resource 

 Remove the task from the selected class list 

 Next class 

 end 

End 
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characteristics of the Host and VM do not 
mismatch. 

4.2 Cloudlet or Task Mapping onto VM 
 
Cloudlets were executed on VM, and each 
requires a certain amount of processing power 
for their completion. VM provides this processing 
power to the task(s) mapped on it. These tasks 
were mapped on VM based on their configuration 
and availability. 

 
4.3 Task Scheduling Policy 
 
Tasks were scheduled after the resources had 
been allocated to the cloud entities. These 
activities allow multiprogramming capabilities in a 
cloud environment and were enabled in two 
modes: Space shared and Time shared policies. 
In Space Shared policy at VM level, one task can 
be scheduled to a virtual machine at a time and 
when it was completed, another task is 
scheduled to the virtual machine. This policy 
behaves same as the First Come First Serve 
(FCFS) scheduling algorithm [28]. The algorithm 
of space shared policy is as follows: 

 
Step 1: Tasks are arranged in a queue. 

 
Step 2: First task is scheduled on the given 
virtual machine. 

 
Step 3: When first task is completed it assigns 
the next task from the queue. 

 
Step 4: If queue is empty it checks for new tasks.  

 
Step 5: Then repeat Step 1. 

 
Step 6: End. 

 
Same algorithm is applicable for both Host level 
and VM level scheduling. 

 
In Time Shared policy at Host level, virtual 
machines are scheduled on the CPU cores 
simultaneously amongst the VM, while at VM 
level, the scheduling policy schedules all the 
tasks on the VM at the same time, and this is 
done among all tasks. This algorithm is the same 
like the Round Robin (RR) scheduling algorithm 
[29]. The algorithm of time shared policy can be 
represented as follows: 

 
Step 1: All the tasks are arranged in a queue. 

 

Step 2: Then schedule the tasks simultaneously 
on the virtual machine. 
Step 3: When queue is empty it checks for new 
tasks. 
 
Step 4: If new task arrives it schedules similarly 
as in Step 2. 
Step 5: End. 
 

The algorithm can be applied for both Host level 
and VM level of scheduling. 
 

This study implements resource mapping at both 
host and VM levels via load balancing using 
CloudSim 3.0.3 package.  Load balancing in 
cloud provides an efficient solution to various 
issues applicable to cloud computing set-ups and 
usage. However, this does not necessarily result 
in shorting makespan [11]. Hence, we proposed 
a new load balancer called I-RASA. 
 

5. PROPOSED METHOD FOR LOAD 
BALANCING 

 

In this section, an improved Resource Aware 
Scheduling Algorithm (I-RASA) as a load 
balancer for both small and large distributed 
system has been developed. This method as 
shown in Fig 9, calculates the expected 
completion time of the submitted tasks on each 
resource. The max-min algorithm is applied on 
the tasks length for the resources used first while, 
the min-min algorithm is then applied for same 
length of resources used.  The max-min 
algorithm is recalled again on the remaining 
tasks with the overall minimum expected 
execution time assigned to the resource that had 
the minimum overall completion time. After 
scheduling, the task is removed from meta-tasks 
and all calculated times are updated and the 
processing is repeated until all submitted tasks 
are executed. This method helps in minimizing 
the total makespan which is the total complete 
time in both small and large distributed system. 
The proposed method is compared with the last 
two discussed algorithms in section II of this 
paper. 
 

The flowchart processing was shown in Fig. 10. 
A procedure is created which performs the work 
of sorting based on execution time of each 
cloudlets (tasks) and completion time of each 
virtual machine installed on the host. Once the 
procedure (function/module) is called, the 
highlighted steps were executed and a test is 
done to know if more task remains. If   Yes, the 
procedure recalled. In other words, the 
procedural flowchart symbol used here is a 
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recursive one which keeps recalling itself as long 
as the meta-task is not empty. 

5.1 Simulation configuration and tools 
 
The implementation was done using CloudSim 
3.0.3 as a framework in the scalable simulator 
environment. The simulation was performed on 
core i3 processor with 6GB Ram and 500GB disk 
space, performed on Window 7 Ultimate Edition 
operating system. The experiment was written in 
java language on Jcreator IDE. The study 

considered two Datacenters, VM, host and 
cloudlet components from CloudSim for 
execution analysis on I-RASA, RASA and I-Max-
Min algorithms. The simulation process 
comprises of different requests by the user to be 
processed. The total number of cloudlets or 
request is 50 and it ranges from 300 MB to 
23000 MB. The range value was adopted from 
[30]. Table 1 shows the configuration of the 
datacenters which consist of four (4) virtual 
machines with the same configurations. 

 

 
 

Fig. 9. Pseudo-code for I-RASA 
 

 
 
 

N 

Start 

1. Sort class’ Meta tasks based on resource 

length using Max-weight first. 

2. Sort class’ next Meta-task based on 

resource length using Min-weight and 

assign such task to resource that has the 

minimum overall completion time. 

3. Sort other class’ Meta-task using Max-

weight and assign such task to resource 

that has the minimum overall completion 

time. 

4. Delete the selected task from Class’ 

Meta-tasks 

5. Update the ready time of resource 

6. Update Completion time 

Is Meta-tasks 

empty? 

Y 

End 

Start 

Create different classes of Metatask, C 

Assign next Metatask to its class //This is done as request (Metatask) comes in 

 

//After all the Metatasks has been assigned to each class then 

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

    First arrange Metatasks with Max-weight of execution time based on number of resources 

    Arrange the next Metatasks with Min-weight of execution time still based on number of resources 

    Arrange the remaining Metatasks based on Max-weight of execution time  

   Next class 

end 

//R is the resources    

for (i = 0; i<|C|; i++) // |C| is the total number of classes 

       Assign next task in Ci on                       
                     

  resource 

       Remove the task from the selected class list 

      Next class 

 end 

 End 

 

Fig. 10. Flowchart for I-RASA 
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Table 1. VM Configuration 
 

Parameter Value 

Size (MB) 10000 
Ram (MB) 512 
Processing Speed 
(MIPS) 

1000 

Bandwidth (MBBS) 1000 
VM Name “Xen” 
PesNumber 1 

 

6. PERFORMANCE METRIC USED FOR 
THE EXPERIMENT 

 
The results of the performance of the algorithms 
I-RASA, I-Max-Min and RASA were evaluated 
using the following metrics tested in CloudSim 
toolkit. 
 

6.1 Makespan 
 
Makespan is the finishing time of the last task 
and in scheduling of task, one of the optimization 
criterions is minimization of makespan as most of 
the users desire fastest execution of their 
application. Equation 1 shows its mathematical 
representation. 
 

                                                 (1) 
 

where    denotes the finishing time of the last 
task. 
 

6.2 Economic Cost 
 
It indicates the total amount the user needs to 
pay to service provider for resource utilization. 

The mathematical representation is shown in 
equation 2. 
 

                                            (2) 
 
where    denotes the cost of resources i per unit 

time and Ti denotes the time for which resource   
utilized. From the CloudSim 3.0.3 version a pre-
defined cost value for resources used is as 
follows: 
 
the cost of using processing in VM resource is 
3.0 
 
the cost of using memory in VM resource is 0.05 
 
the cost of using storage in VM resource is 0.001 
 
The cost in total is 3.051 
 

6.3 Flow Time 
 
This indicates the total sum of finishing times of 
all the tasks. And to minimize this, tasks should 
be executed in ascending order of their 
processing time. 
 

                      
 

where    denotes the finishing time of task i. 
 

6.4 Resource Utilization 
 
This helps in understanding how busy the 
resources are. This is very important as service 
providers would like to earn maximum profit by 
renting limited number of resources. Equation 3 
shows how it can be implemented 
mathematically. 

 

                              
                                             

   
                 

     (3) 
 
where   is the number of resources. 
 

6.5 Throughput 
 
This can be defined, as shown in equation 4, as the total number of jobs completing execution per unit 
time. 
 

                                                (4) 
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7. PERFORMANCE EVALUATION 
 
Table 2 shows the output of 20 processed 
cloudlets using I-Max-Min algorithm. The Gantt 
chart for the flow of process is represented in Fig. 
10. From Fig. 10, the makespan of the last 
finished task is 59. 
 

Table 3 shows the output of 20 processed 
cloudlets using Resource Aware Scheduling 
Algorithm. The Gantt chart for the flow of process 
in this algorithm is shown in Fig. 11. The 

makespan from Fig. 11 is 65. This is higher 
compare with the makespan in improved max-
min. 
 
Table 4 shows the output of 20 processed 
cloudlets using our proposed algorithm called 
Improved Resource Aware Scheduling Algorithm. 
The Gantt chart for the flow of process in this 
algorithm is shown in Fig. 12. The makespan is 
53. This is low when compared with the 
makespan in the two previous algorithms. 

 
Table 2. Simulation result of four virtual machines using improved max-min 

 

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time 

3 3 19 19259 0 19 

2 2 20 20332 0 20 

1 1 21 20581 0 21 

0 0 23 22726 0 23 

6 1 16 16377 21 37 

4 3 19 19132 19 38 

7 0 16 16010 23 39 

5 2 19 18811 20 39 

11 2 10 9895 39 49 

10 0 11 10502 39 50 

9 3 12 11666 38 50 

8 1 14 13765 37 51 

15 1 4 3960 51 55 

13 0 7 7060 50 57 

14 3 6 6455 50 56 

12 2 8 7725 49 57 

16 1 4 3843 55 59 

19 2 2 2103 57 59 

17 0 4 3535 57 61 

18 3 3 3421 56 59 
 

 
 

Fig. 11. Gant-chart of I-max-min 
 
 
 
 

 

R0   T0(23) T7(16) T10(11) T13(7) T17(4) 

                                                                  23                       39                       50                        57                      61 

 

R1 T1(21) T6(16) T8(14) T15(4) T16(4) 

                    21                       37                       51                       55                      59 

 

R2 
 

T2(20) T5(19) T11(10) T12(8) T19(2) 

                   20                       39                       49                       57                      59 

 

R3 T3(19) T4(19) T9(12) T14(6) T18(3) 

                   19                       38                       50                       56                      59 
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Table 3. Simulation result of four virtual machines using RASA 
 

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time 

1 1 2 2103 0 2 
3 3 3 3421 0 3 
5 3 4 3535 3 7 
2 2 21 20581 0 21 
4 1 20 20332 2 23 
0 0 23 22726 0 23 
7 2 4 3843 21 25 
6 3 19 19259 7 26 
9 0 4 3960 23 27 
11 3 6 6455 26 32 
13 3 7 7060 32 39 
8 1 19 19132 23 42 
12 0 16 16377 27 43 
10 2 19 18811 25 44 
15 1 8 7725 42 49 
17 2 10 9895 44 54 
14 3 16 16010 39 55 
16 0 14 13765 43 57 
18 1 12 11666 49 61 
19 2 11 10502 54 65 

 
Table 4. Simulation result of four virtual machines using I-RASA 

 

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time 

6 3 19 19259 0 19 
4 2 20 20332 0 20 
2 1 21 20581 0 21 
1 3 2 2103 19 21 
0 0 23 22726 0 23 
3 2 3 3421 20 23 
5 1 4 3535 21 25 
7 3 4 3843 21 25 
12 1 16 16377 25 41 
14 3 16 16010 25 41 
8 0 19 19132 23 42 
10 2 19 18811 23 42 
19 0 11 10502 42 53 
17 2 10 9895 42 52 
18 3 12 11666 41 53 
16 1 14 13765 41 55 
9 1 4 3960 55 59 
11 3 6 6455 53 59 
13 2 7 7060 52 59 
15 0 8 7725 53 61 

 
Table 5. Comparison table of the algorithms 

 

Metrics/Algorithms RASA Improved Max-Min Proposed (I-RASA) 

Makespan 65 59 53 
Economic Cost 726.14 726.14 726.14 
Flowtime 696 899 794 
Throughput (%) 31 34 38 
Resource Utilization (%) 92 100 100 
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Fig. 12. Gant-Chart of RASA 
 

 
 

Fig. 13. Gant-Chart of I-RASA 
 
Following the report from Table 5 and the graph 
shown in Fig. 14, our proposed algorithm, I-
RASA out-perform improved max-min and 
resource aware scheduling algorithms in terms of 
low makespan, high throughput and on the same 
merge with the improved max-min in the 
resource utilization. Although the flow time of 

RASA is lower compared with our proposed 
algorithm and that of improved max-min, 
however, the flow time of I-RASA still outperform 
improved max-min algorithm. Fig. 15 shows the 
load balancing on the four (4) virtual machines 
used with respect to the completion time of each. 

 

 
 

Fig. 14. Performance metric chart for the simulation 

 

R0   T0(23) T8(19) T19(11) T15(8) 

                                                                      23                       42                        53                      61 

 

R1 T2(21) T5(4) T12(16) T16(14) T9(4) 

                   21                       25                       41                       55                      59 

 

R2 
 

T4(20) T3(3) T10(19) T17(10) T13(7) 

                   20                        23                       42                       52                      59 

 

R3 T6(19) T1(2) T7(4) T14(16) T18(12) T11(6) 

               19                     21                     25                      41                     53                  59 

 

R0   T0(23) T9(4) T12(16) T16(14) 

                                                                      23                       27                       43                        57 

 

R1 T1(2) T4(20) T8(19) T15(8) T18(12) 

                    2                        22                       41                       49                       61 

 

R2 
 

T2(21) T7(4) T10(19) T17(10) T19(11) 

                   21                       25                        44                      54                      65 

 

R3 T3(3) T5(4) T6(19) T11(6) T13(7) T14(16) 

              3                        7                        26                     32                      39                  55 
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Fig. 15. Load-balancing Chart for the simulation 
 

Table 6. Makespan of 20 processed cloudlets on 10 different iterations 
 

Makespan 

Iteration Improved Max-Min RASA Proposed(I-RASA) 

1 57 63 51 
2 53 59 48 
3 50 54 44 
4 45 50 41 
5 55 59 47 
6 58 65 52 
7 72 78 61 
8 55 62 50 
9 59 65 53 
10 61 66 54 

 

 
 

Fig. 16. Makespan chart of 20 processed cloudlets on 10 different iterations 
 
The performance evaluation of the proposed I-
RASA was shown in Table 6 where the 
makespan of 20 processed cloudlets were taken 

alongside with two other algorithms for 
comparism. It was shown that from ten (10) 
different iterations, the makespan of the 
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proposed algorithm is still the lowest, followed by 
improved max-min and lastly RASA. Fig 16 
shows the bar-chart of the makespan difference 
for the ten iterations. 
 

8. CONCLUSION 
 

Cloud controls the lifting of computing-intensive 
jobs in cloud computing thereby placing 
enormous amounts of data on the platform 
especially in mobile cloud computing. Both the 
data processing and data storage are done in the 
cloud external of the mobile devices. As mobile 
applications increase, the leverage on the 
computing power of the cloud tends to increase 
as well, it therefore becomes imperative to 
efficiently manage computing resources for these 
applications for improving the performance. One 
of the criterions to improve the performance is by 
achieving a minimized makespan during load 
balancing.  The study proposed a new load 
balancing technique, which is an improvement 
over RASA. The makespan is reduced compared 
with RASA and Improved Max-Min. The 
proposed algorithm is however, having flow time 
more than the RASA, further research can be 
done on this in the future. The performance 
analysis from the presented results proved that 
our proposed approach is efficient in optimizing 
task scheduling and load balancing. 
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