
*Corresponding author: E-mail: ezekny@gmail.com, e.oyekanmi@achievers.edu.ng;

Asian Journal of Research in Computer Science

12(4): 52-66, 2021; Article no.AJRCOS.77722
ISSN: 2581-8260

An Improved Rasa for Load Balancing in Cloud
Computing

Oyekanmi Ezekiel Olufunminiyi a*, Oladoja Ilobekemen Perpetual b

and Omotehinwa Temidayo Oluwatosin a

a
 Department of Mathematical Sciences, Achievers University, Owo, Nigeria.

b
 Department of Computer Science, Federal University of Technology, Akure, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v12i430294
Editor(s):

(1) Dr. G. Sudheer, GVP College of Engineering for Women, India.
Reviewers:

(1) Norizan Mat Diah, Malaysia.
(2) Syed Shameem, Kl University, India.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here:
https://www.sdiarticle5.com/review-history/77722

Received 06 October 2021
Accepted 13 December 2021
Published 14 December 2021

ABSTRACT

Cloud is specifically known to have difficulty in managing resource usage during task scheduling,
this is an innate from distributed computing and virtualization. The common issue in cloud is load
balancing management. This issue is more prominent in virtualization technology and it affects
cloud providers in term of resource utilization and cost and to the users in term of Quality of Service
(QoS). Efficient procedures are therefore necessary to achieve maximum resource utilization at a
minimized cost. This study implemented a load balancing scheme called Improved Resource
Aware Scheduling Algorithm (I-RASA) for resource provisioning to cloud users on a pay-as-you-go
basis using CloudSim 3.0.3 package tool. I-RASA was compared with recent load balancing
algorithms and the result shown in performance evaluation section of this paper is better than Max-
min and RASA load balancing techniques. However, it sometimes outperforms or on equal balance
with Improved Max-Min load balancing technique when using makespan, flow time, throughput, and
resource utilization as the performance metrics.

Keywords: Improved RASA; load balancing; cloud computing; and resource utilization.

Original Research Article

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

53

1. INTRODUCTION

Cloud Computing consists of a network of
infrastructure which allows enterprises to achieve
more efficient use of their IT hardware, software,
and other services investments. These
infrastructures are available to users as a utility
on an on-demand basis and are charged
proportionally to the amount of resources
consumed by the users. Cloud is a
heterogeneous pool of resources, and to enable
one to have access to these resources; there
must be a Service Level Agreement (SLA) from
the Cloud Provider [1]. Efficient resource
utilization can be optimized by the Cloud Service
Providers (CSP) via a better scheduling
algorithm in cloud computing [2]. Better
scheduling could be achieved by breaking down
the physical barrier that is essential to isolated
system and automate it as a single entity [3].

In Cloud Computing, effective task scheduling
needs an infrastructure from the cloud provider.
The scheduling of task, jobs are mapped on
available resources and submitted to a cloud
environment in such a way that the total
response time and the makespan are minimized
[4]. Makespan is the maximum time taken by any
of the computing resources assigned a set of
tasks to complete execution. Efficient resource
utilization can only be guaranteed when the
workload was efficiently shared among the
resources [5]. As the cloud computing
environment continues to enjoy massive
migration by enterprises, it would be important to
improve the distribution of tasks among
resources. Cloud service providers are greatly
concerned about addressing the challenge of
ensuring that Virtual Machines (VMs) are not
overloaded or underloaded. This optimization
problem has been gaining attention in recent
times.

This research therefore, focused on improving
RASA algorithm to give a better performance on
load-balancing in cloud computing, and compare
its performance with other existing model for load
balancing. The reason is towards improving the
virtualization technology in cloud environment.

2. BACKGROUND OF THE STUDY

A lot of research had been done in this area, few
studies with their contributions were discussed
as follows:

Muthusamy and Chandran [6] proposed an
artificial bee foraging optimization for load

balancing in the cloud. The study adopted a
preemptive task scheduling approach to
minimize the response and execution time. This
showed a significant improvement in QoS metric
in comparison to the Honey Bee Based (HBB)
load balancing.

In a bid to enhance machine performance for
balanced sharing of load, maximize virtual
machine throughput and optimize the waiting
time of tasks, Jena, Das, and Kabat [7]
hybridized Modified Particle Swarm Optimization
(MPSO) and improved Q-learning. The
experimental analysis results showed that the
hybrid QMPSO outperformed MPSO and Q-
learning.

In [8], an adaptive Starvation Threshold Load
Balancing (STLB) algorithm was proposed for
load balancing. The objectives of the study were
to minimize response time and migration cost,
and maximize server utilization rate. The key
feature used in the algorithm was not invoked
until at least one of the VM is close to starvation;
this lowers the number of migration. The
proposed algorithm was compared to the HBB
load balancing algorithm in terms of makespan,
average response time, average idle time, and
number of tasks migrated, the STLB showed
significant improvement.

In [9], a hybrid algorithm that integrated the
Elephant Herding Optimization (EHO) into the
Grey Wolf Optimizer (GWO) was proposed and
its performance was compared to some existing
load balancing algorithms such as Constraint
Measure (CMBLB), Fractional Dragonfly, EHO,
and GWO load balancing algorithms using
makespan and minimum load as metrics. The
makespan of EHGWO algorithm was better than
EHO and GWO, and it has the lowest minimum
load value compared with CMBLB and Fractional
Dragonfly algorithms.

Quadri and Ravi [10] developed a new algorithm
to reduce the overall time taken to complete a set
of assigned tasks and ensure a balanced
distribution of tasks to computing resources. The
two objectives (minimize makespan and
maximize utility) were achieved by applying the
Weighted Sum Method (WSM), which was one of
the multi-criterion decision-making methods. The
percentage deviation (Coefficient of Variation) of
the resources with maximum and minimum
execution time of all tasks from the mean were
measured. The result showed that the proposed
algorithm has lower makespan than scheduling

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

54

algorithms such as NHTBS, Opportunistic Load
Balancing (OLB), MET and RASA. In terms of
utilization only max-min scheduling technique
could equal its performance.

According to [11], many algorithms have been
used in the past; amongst them are Max-min,
Min-min, and RASA, which are very popular
during scheduling of tasks on resources. The
study focused on max-min algorithm, based on
completion time of processed tasks. This
algorithm was improved upon using expected
execution time [11]. The results showed that
Improved Max–min (I-MM) performed better by
2% in completion time than RASA.

Our proposed improved RASA algorithm gives a
better performance on load-balancing in cloud
computing and especially in virtualization
environment.

2.1 Overview of Past load-balancing
Techniques in a Scheduling
Environment

Different techniques have been used to improve
the performance and resource usage on task
scheduling, quality of service, load balancing,
and resource utilization. In [12], it was suggested
that load balancing in cloud avoids
overloading/under-loading of virtual machines,
which itself is an obstacle in cloud computing,
thereby making it a requisite for researchers to
develop a suitable load balancer for parallel and
distributed cloud environments.

Load balancing is a method that enables
frameworks on resources by giving a Maximum
throughput with the least response time [7]. In
cloud computing, the burden (overloading/
underloading) could occur in the resources used
in the datacentres. The altering of this burden

was a way to divide the action between all
servers (in the case of more than one datacentre)
or resources (say, virtual machines), so that job
could be sent and response got quickly while the
stack was on modification.

Various load balancing algorithms that give
better throughput with quick response time in
cloud condition do exist [13], but, each of them
has favourable circumstance [14, 15, 16]. These
include:

2.1.1 Static Algorithm (SA)

Static Algorithms, as shown in Fig. 1, are used
where the load was of low variations. This
algorithm needs a prior knowledge of server
resources for the processors to perform better
and this was determined at the beginning of the
implementation [17]. The major limitation of
Static Load Balancing Algorithm is that the load
balancing tasks only work after being created.

2.1.2 Dynamic Algorithm (DA)

Dynamic Algorithm searches the lightest server
resource, and gives it a preference for load
balancing [17]. The current state of the machine
was used to control the load. This was explained
in Fig 2.

2.2.3 Round Robin Algorithm (RRA)

This algorithm assigns tasks to server resources.
Its mode of operation uses the FCFS algorithm
when the quantum time is high firstly, but once it
reduces, tasks were assigned on a random basis
in round- robin [18]. The round-robin method
circularly assigned tasks without defining any
priority. All the processes have different loading
times. Some resources might be heavily loaded,
while others remain under-utilized. The algorithm
was shown in Fig 3.

Fig. 1. Load balancing static algorithm

Start

create different classes of job

assign next job to the belong class

Sort the class tasks based on weight of the execution time

for all classes

 for all task in selected class

 Assign task with min-weight to the next resource for processing

 remove the task from the selected class list

 next task

 end

 next class

end

End

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

55

Fig. 2. Load balancing dynamic algorithm

Fig. 3. Round-robin algorithm

Fig. 4. Opportunistic load balancing algorithm

Start

create different classes of job

assign next job to the belong class

Sort the class tasks based on weight of the execution time

Counter=0;

Do

i = Random (1, |C|)

for all tasks in selected class Ci

 Assign task with min-weight to the next resource for processing

 remove the task from the selected class list

 Counter++;

 next task

 end

 While (Counter < N)

End

Start

create different classes of job , C

assign next job to the belong class

Sort the class tasks based on weight of the execution time

For all Resource, R

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 if(task with min-weight in Ci <quantum_time)

 Assign the task in Ci on R

 remove the task from the selected class list

 else

 Process the task for based on quantum_time

 Update the task burst_time

 Relocate the task to the end of the class list

 Next class

end

 Next Resource

 end

 End

Start

create different classes of job , C

assign next job to the belong class

Sort the class tasks based on weight of the execution time

For all Resource, R

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign task with min-weight in Ci on R

 remove the task from the selected class list

 Next class

end

 Next Resource

end

End

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

56

2.2.4 Opportunistic Load Balancing (OLB)
algorithm

This algorithm keeps each server resource busy,
as shown in Fig 4, without considering machines’
current workload. Irrespective of the current
workload on each of the resources, OLB
distributes all the unfinished tasks to them
randomly [19].

2.2.5 Minimum to Minimum (Min-Min)
algorithm

The concept of Min-min algorithms in Load
Balancing is to assign tasks with minimum
completion time first for execution on resource
with minimum execution time [20]. This
procedure continues until all were mapped. This
algorithm, as shown in Fig 5, seems to be the
fastest in a situation where many smaller tasks
are more than larger ones.

2.2.6 Maximum to Minimum (Max-Min)
Algorithm

Maximum-Min Load Balancing Algorithm is
similar to Min-min load balancing algorithm, still
the difference is that the task with maximum
completion time was selected after searching
and assigned to the machine (resource) with

minimum execution time [21]. The execution time
of all tasks were updated, and the assigned task
was removed from the list. Fig 6 shows the
detailed code.

2.2.7 Resource Aware Scheduling Algorithm

(RASA)

This is a combination of both Max-min and Min-
min algorithms. In RASA, the appraisal of the
completion time for each task on available
resources was calculated, after which the Max-
min and Min-min algorithms were applied
alternatively, as shown in Fig 7, thereby making
use of the advantage of both algorithms and
avoiding their drawbacks [4]. RASA executes
small tasks to avoid delays in large ones. It also
supports simultaneous executions of large and
small tasks.

2.2.8 Improved Max-Min

The basic operations of improved Max-min (I-
Max-Min) was to assign task with maximum
execution time to a resource that has minimum
completion time as shown in Fig 8. The original
Max-min assigned task with maximum
completion time to resources with minimum
execution time [22].

Fig. 5. Opportunistic load balancing algorithm

Fig. 6. Opportunistic load balancing algorithm

Start

Create different classes of job, C

Assign next job to the belong class

Sort the class tasks based on Max-weight of the execution time

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign task with Max-weight in Ci on

 resource

Remove the task from the selected class list

Next class

 end

 End

Start

Create different classes of job, C

Assign next job to the belong class

Sort the class tasks based on weight of the execution time

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign task with min-weight in Ci on

 resource

 Remove the task from the selected class list

 Next class

end

End

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

57

Fig. 7. Resource aware scheduling algorithm

Fig. 8. Improved max-min algorithm

3. META-TASK

The concept of Meta-task is simply to transform
complex processes going through multiple
resources into simple lists of tasks sorted out in
batches for higher throughput during scheduling
computation. This concept was implemented in
Linux operating system by way of using
Complete Fair Queuing (CFQ) scheduler, also
known as modified anticipatory scheduler. CFQ
are currently in use because aside that tasks
were put in batches, it also overcomes deceptive
idleness [23]. Report also shows that Apache
web server achieved up to 71% more throughput
from using this modified anticipatory scheduler
[24].

Scheduling algorithms are with many policies but
could be subdivided into immediate and batch
scheduling, preemptive and non-preemptive
scheduling, static and dynamic scheduling, and
so on [25, 26,27]. In Immediate mode, tasks
were scheduled using First Come First Serve
(FCFS) in the computing environment, while in
the batch mode, tasks were grouped into a batch;
which means that, a set of meta-tasks would be
assigned at a mapped out time depending on the

scheduler’s algorithm [26]. It is the algorithm that
determines how the load balancing of the
resource usage for this task. In a nutshell, meta-
task is a way of assigning a mapped tasks to
different entities in cloud for resource provisioning.

4. RESOURCE PROVISIONING

The task of mapping resources to different
entities in cloud on-demand that is pay-as-you-go
basis is known as resource provisioning.
Resources were allocated in cloud so that the
processing elements (resources) are not
overloaded and that none is undergoing wastage
either. Resources mapping in cloud entities were
done in two levels:

4.1 Host

Host, in cloud computing, can contain more
instances of VM. The VM were mapped to a
single host subject for availability and capabilities.
The Host then assigns processing cores to VM
based on the provisioning policy, and this defines
the basis of allocating processing cores to VM.
The allocation policy ensures that the critical

Start

Create different classes of job, C

Assign next job to the belong class

Sort the class tasks based on Max-weight of the execution time

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign next task in Ci on

 resource

 Remove the task from the selected class list

 Next class

 end
 End

Start

Create different classes of job, C

Assign next job to the belong class

Sort the class tasks based on Max-weight, Min-Weight of the execution time interchangeably

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign next task in Ci on

 resource

 Remove the task from the selected class list

 Next class

 end

End

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

58

characteristics of the Host and VM do not
mismatch.

4.2 Cloudlet or Task Mapping onto VM

Cloudlets were executed on VM, and each
requires a certain amount of processing power
for their completion. VM provides this processing
power to the task(s) mapped on it. These tasks
were mapped on VM based on their configuration
and availability.

4.3 Task Scheduling Policy

Tasks were scheduled after the resources had
been allocated to the cloud entities. These
activities allow multiprogramming capabilities in a
cloud environment and were enabled in two
modes: Space shared and Time shared policies.
In Space Shared policy at VM level, one task can
be scheduled to a virtual machine at a time and
when it was completed, another task is
scheduled to the virtual machine. This policy
behaves same as the First Come First Serve
(FCFS) scheduling algorithm [28]. The algorithm
of space shared policy is as follows:

Step 1: Tasks are arranged in a queue.

Step 2: First task is scheduled on the given
virtual machine.

Step 3: When first task is completed it assigns
the next task from the queue.

Step 4: If queue is empty it checks for new tasks.

Step 5: Then repeat Step 1.

Step 6: End.

Same algorithm is applicable for both Host level
and VM level scheduling.

In Time Shared policy at Host level, virtual
machines are scheduled on the CPU cores
simultaneously amongst the VM, while at VM
level, the scheduling policy schedules all the
tasks on the VM at the same time, and this is
done among all tasks. This algorithm is the same
like the Round Robin (RR) scheduling algorithm
[29]. The algorithm of time shared policy can be
represented as follows:

Step 1: All the tasks are arranged in a queue.

Step 2: Then schedule the tasks simultaneously
on the virtual machine.
Step 3: When queue is empty it checks for new
tasks.

Step 4: If new task arrives it schedules similarly
as in Step 2.
Step 5: End.

The algorithm can be applied for both Host level
and VM level of scheduling.

This study implements resource mapping at both
host and VM levels via load balancing using
CloudSim 3.0.3 package. Load balancing in
cloud provides an efficient solution to various
issues applicable to cloud computing set-ups and
usage. However, this does not necessarily result
in shorting makespan [11]. Hence, we proposed
a new load balancer called I-RASA.

5. PROPOSED METHOD FOR LOAD
BALANCING

In this section, an improved Resource Aware
Scheduling Algorithm (I-RASA) as a load
balancer for both small and large distributed
system has been developed. This method as
shown in Fig 9, calculates the expected
completion time of the submitted tasks on each
resource. The max-min algorithm is applied on
the tasks length for the resources used first while,
the min-min algorithm is then applied for same
length of resources used. The max-min
algorithm is recalled again on the remaining
tasks with the overall minimum expected
execution time assigned to the resource that had
the minimum overall completion time. After
scheduling, the task is removed from meta-tasks
and all calculated times are updated and the
processing is repeated until all submitted tasks
are executed. This method helps in minimizing
the total makespan which is the total complete
time in both small and large distributed system.
The proposed method is compared with the last
two discussed algorithms in section II of this
paper.

The flowchart processing was shown in Fig. 10.
A procedure is created which performs the work
of sorting based on execution time of each
cloudlets (tasks) and completion time of each
virtual machine installed on the host. Once the
procedure (function/module) is called, the
highlighted steps were executed and a test is
done to know if more task remains. If Yes, the
procedure recalled. In other words, the
procedural flowchart symbol used here is a

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

59

recursive one which keeps recalling itself as long
as the meta-task is not empty.

5.1 Simulation configuration and tools

The implementation was done using CloudSim
3.0.3 as a framework in the scalable simulator
environment. The simulation was performed on
core i3 processor with 6GB Ram and 500GB disk
space, performed on Window 7 Ultimate Edition
operating system. The experiment was written in
java language on Jcreator IDE. The study

considered two Datacenters, VM, host and
cloudlet components from CloudSim for
execution analysis on I-RASA, RASA and I-Max-
Min algorithms. The simulation process
comprises of different requests by the user to be
processed. The total number of cloudlets or
request is 50 and it ranges from 300 MB to
23000 MB. The range value was adopted from
[30]. Table 1 shows the configuration of the
datacenters which consist of four (4) virtual
machines with the same configurations.

Fig. 9. Pseudo-code for I-RASA

N

Start

1. Sort class’ Meta tasks based on resource

length using Max-weight first.

2. Sort class’ next Meta-task based on

resource length using Min-weight and

assign such task to resource that has the

minimum overall completion time.

3. Sort other class’ Meta-task using Max-

weight and assign such task to resource

that has the minimum overall completion

time.

4. Delete the selected task from Class’

Meta-tasks

5. Update the ready time of resource

6. Update Completion time

Is Meta-tasks

empty?

Y

End

Start

Create different classes of Metatask, C

Assign next Metatask to its class //This is done as request (Metatask) comes in

//After all the Metatasks has been assigned to each class then

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 First arrange Metatasks with Max-weight of execution time based on number of resources

 Arrange the next Metatasks with Min-weight of execution time still based on number of resources

 Arrange the remaining Metatasks based on Max-weight of execution time

 Next class

end

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total number of classes

 Assign next task in Ci on

 resource

 Remove the task from the selected class list

 Next class

 end

 End

Fig. 10. Flowchart for I-RASA

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

60

Table 1. VM Configuration

Parameter Value

Size (MB) 10000
Ram (MB) 512
Processing Speed
(MIPS)

1000

Bandwidth (MBBS) 1000
VM Name “Xen”
PesNumber 1

6. PERFORMANCE METRIC USED FOR
THE EXPERIMENT

The results of the performance of the algorithms
I-RASA, I-Max-Min and RASA were evaluated
using the following metrics tested in CloudSim
toolkit.

6.1 Makespan

Makespan is the finishing time of the last task
and in scheduling of task, one of the optimization
criterions is minimization of makespan as most of
the users desire fastest execution of their
application. Equation 1 shows its mathematical
representation.

 (1)

where denotes the finishing time of the last
task.

6.2 Economic Cost

It indicates the total amount the user needs to
pay to service provider for resource utilization.

The mathematical representation is shown in
equation 2.

 (2)

where denotes the cost of resources i per unit

time and Ti denotes the time for which resource
utilized. From the CloudSim 3.0.3 version a pre-
defined cost value for resources used is as
follows:

the cost of using processing in VM resource is
3.0

the cost of using memory in VM resource is 0.05

the cost of using storage in VM resource is 0.001

The cost in total is 3.051

6.3 Flow Time

This indicates the total sum of finishing times of
all the tasks. And to minimize this, tasks should
be executed in ascending order of their
processing time.

where denotes the finishing time of task i.

6.4 Resource Utilization

This helps in understanding how busy the
resources are. This is very important as service
providers would like to earn maximum profit by
renting limited number of resources. Equation 3
shows how it can be implemented
mathematically.

 (3)

where is the number of resources.

6.5 Throughput

This can be defined, as shown in equation 4, as the total number of jobs completing execution per unit
time.

 (4)

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

61

7. PERFORMANCE EVALUATION

Table 2 shows the output of 20 processed
cloudlets using I-Max-Min algorithm. The Gantt
chart for the flow of process is represented in Fig.
10. From Fig. 10, the makespan of the last
finished task is 59.

Table 3 shows the output of 20 processed
cloudlets using Resource Aware Scheduling
Algorithm. The Gantt chart for the flow of process
in this algorithm is shown in Fig. 11. The

makespan from Fig. 11 is 65. This is higher
compare with the makespan in improved max-
min.

Table 4 shows the output of 20 processed
cloudlets using our proposed algorithm called
Improved Resource Aware Scheduling Algorithm.
The Gantt chart for the flow of process in this
algorithm is shown in Fig. 12. The makespan is
53. This is low when compared with the
makespan in the two previous algorithms.

Table 2. Simulation result of four virtual machines using improved max-min

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time

3 3 19 19259 0 19

2 2 20 20332 0 20

1 1 21 20581 0 21

0 0 23 22726 0 23

6 1 16 16377 21 37

4 3 19 19132 19 38

7 0 16 16010 23 39

5 2 19 18811 20 39

11 2 10 9895 39 49

10 0 11 10502 39 50

9 3 12 11666 38 50

8 1 14 13765 37 51

15 1 4 3960 51 55

13 0 7 7060 50 57

14 3 6 6455 50 56

12 2 8 7725 49 57

16 1 4 3843 55 59

19 2 2 2103 57 59

17 0 4 3535 57 61

18 3 3 3421 56 59

Fig. 11. Gant-chart of I-max-min

R0 T0(23) T7(16) T10(11) T13(7) T17(4)

 23 39 50 57 61

R1 T1(21) T6(16) T8(14) T15(4) T16(4)

 21 37 51 55 59

R2

T2(20) T5(19) T11(10) T12(8) T19(2)

 20 39 49 57 59

R3 T3(19) T4(19) T9(12) T14(6) T18(3)

 19 38 50 56 59

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

62

Table 3. Simulation result of four virtual machines using RASA

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time

1 1 2 2103 0 2
3 3 3 3421 0 3
5 3 4 3535 3 7
2 2 21 20581 0 21
4 1 20 20332 2 23
0 0 23 22726 0 23
7 2 4 3843 21 25
6 3 19 19259 7 26
9 0 4 3960 23 27
11 3 6 6455 26 32
13 3 7 7060 32 39
8 1 19 19132 23 42
12 0 16 16377 27 43
10 2 19 18811 25 44
15 1 8 7725 42 49
17 2 10 9895 44 54
14 3 16 16010 39 55
16 0 14 13765 43 57
18 1 12 11666 49 61
19 2 11 10502 54 65

Table 4. Simulation result of four virtual machines using I-RASA

Cloudlet ID VM ID Time Cloudlet Length Start Time Finish Time

6 3 19 19259 0 19
4 2 20 20332 0 20
2 1 21 20581 0 21
1 3 2 2103 19 21
0 0 23 22726 0 23
3 2 3 3421 20 23
5 1 4 3535 21 25
7 3 4 3843 21 25
12 1 16 16377 25 41
14 3 16 16010 25 41
8 0 19 19132 23 42
10 2 19 18811 23 42
19 0 11 10502 42 53
17 2 10 9895 42 52
18 3 12 11666 41 53
16 1 14 13765 41 55
9 1 4 3960 55 59
11 3 6 6455 53 59
13 2 7 7060 52 59
15 0 8 7725 53 61

Table 5. Comparison table of the algorithms

Metrics/Algorithms RASA Improved Max-Min Proposed (I-RASA)

Makespan 65 59 53
Economic Cost 726.14 726.14 726.14
Flowtime 696 899 794
Throughput (%) 31 34 38
Resource Utilization (%) 92 100 100

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

63

Fig. 12. Gant-Chart of RASA

Fig. 13. Gant-Chart of I-RASA

Following the report from Table 5 and the graph
shown in Fig. 14, our proposed algorithm, I-
RASA out-perform improved max-min and
resource aware scheduling algorithms in terms of
low makespan, high throughput and on the same
merge with the improved max-min in the
resource utilization. Although the flow time of

RASA is lower compared with our proposed
algorithm and that of improved max-min,
however, the flow time of I-RASA still outperform
improved max-min algorithm. Fig. 15 shows the
load balancing on the four (4) virtual machines
used with respect to the completion time of each.

Fig. 14. Performance metric chart for the simulation

R0 T0(23) T8(19) T19(11) T15(8)

 23 42 53 61

R1 T2(21) T5(4) T12(16) T16(14) T9(4)

 21 25 41 55 59

R2

T4(20) T3(3) T10(19) T17(10) T13(7)

 20 23 42 52 59

R3 T6(19) T1(2) T7(4) T14(16) T18(12) T11(6)

 19 21 25 41 53 59

R0 T0(23) T9(4) T12(16) T16(14)

 23 27 43 57

R1 T1(2) T4(20) T8(19) T15(8) T18(12)

 2 22 41 49 61

R2

T2(21) T7(4) T10(19) T17(10) T19(11)

 21 25 44 54 65

R3 T3(3) T5(4) T6(19) T11(6) T13(7) T14(16)

 3 7 26 32 39 55

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

64

Fig. 15. Load-balancing Chart for the simulation

Table 6. Makespan of 20 processed cloudlets on 10 different iterations

Makespan

Iteration Improved Max-Min RASA Proposed(I-RASA)

1 57 63 51
2 53 59 48
3 50 54 44
4 45 50 41
5 55 59 47
6 58 65 52
7 72 78 61
8 55 62 50
9 59 65 53
10 61 66 54

Fig. 16. Makespan chart of 20 processed cloudlets on 10 different iterations

The performance evaluation of the proposed I-
RASA was shown in Table 6 where the
makespan of 20 processed cloudlets were taken

alongside with two other algorithms for
comparism. It was shown that from ten (10)
different iterations, the makespan of the

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

65

proposed algorithm is still the lowest, followed by
improved max-min and lastly RASA. Fig 16
shows the bar-chart of the makespan difference
for the ten iterations.

8. CONCLUSION

Cloud controls the lifting of computing-intensive
jobs in cloud computing thereby placing
enormous amounts of data on the platform
especially in mobile cloud computing. Both the
data processing and data storage are done in the
cloud external of the mobile devices. As mobile
applications increase, the leverage on the
computing power of the cloud tends to increase
as well, it therefore becomes imperative to
efficiently manage computing resources for these
applications for improving the performance. One
of the criterions to improve the performance is by
achieving a minimized makespan during load
balancing. The study proposed a new load
balancing technique, which is an improvement
over RASA. The makespan is reduced compared
with RASA and Improved Max-Min. The
proposed algorithm is however, having flow time
more than the RASA, further research can be
done on this in the future. The performance
analysis from the presented results proved that
our proposed approach is efficient in optimizing
task scheduling and load balancing.

DISCLAIMER

The products used for this research are
commonly and predominantly use products in our
area of research and country. There is absolutely
no conflict of interest between the authors and
producers of the products because we do not
intend to use these products as an avenue for
any litigation but for the advancement of
knowledge. Also, the research was not funded by
the producing company rather it was funded by
personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Proshikshya M, Prasant K, Tanmaya S,
Amlan D. Task scheduling algorithm based
on multi criteria decision making method
for cloud computing environment:
TSABMCDMCCE, Open Comput. Sci.;
2019,9:279–291.

2. Nayak S, Parida S, Tripathy C. Modeling of
task scheduling algorithm using petri-net in
cloud computing, progress in advanced
computing and intelligent engineering.
Advances in Intelligent Systems and
Computing, Springer, Singapore. 2018;563:
633–643.

3. Sumanpreet K, Navtej S. Review on
dynamic resource allocation based on
lease types in cloud environment,
International Journal of Computers &
Technology. 2017;16:7581-7585.

4. Saeed P, Reza E. RASA: A new grid task
scheduling algorithm, International Journal
of Digital Content Technology and its
applications. 2009;3:91-99.

5. Neelima P, Reddy ARM. An efficient load
balancing system using adaptive dragonfly
algorithm in cloud computing. Cluster
Computing. 2020;23(1):2891-2899.

6. Muthusamy G, Chandran SR. Task
scheduling using artificial bee foraging
optimization for load balancing in cloud
data centers. Comput Appl Eng Educ.
2020;28:769– 778.

7. Jena UK, Das PK, Kabat MR. Hybridization
of meta-heuristic algorithm for load
balancing in cloud computing environment.
Journal of King Saud University –
Computer and Information Sciences; 2020.
Available:https://doi.org/10.1016/j.jksuci20
20.01.012

8. Semmoud A, Hakem M, Benmammar B,

and Charr J‐C. Load balancing in cloud
computing environments based on
adaptive starvation threshold. Concurrency
and Computation: Practice and Experience.
2020;32(11):259-277.

9. Arora P, Dixit A. An elephant herd grey
wolf optimization (EHGWO) algorithm for
load balancing in cloud. International
Journal of Pervasive Computing and
Communications. 2020;16(3):259-277.

10. Abdulquadri OS, Ravi G. Dual objective
task scheduling algorithm in cloud
environment. International Journal in
Advanced Trends in Computer Science
and Engineering. 2020;9(3):2527-2534.

11. Elzeki O, Reshad M, Elsoud M. Improved
max-min algorithm in cloud computing.
International Journal of Computer
Applications. 2012;50(12):22-27.

12. Pawan K, Rakesh R. Issues and
challenges of load balancing techniques in
cloud computing: A survey. ACM
Computing Surveys (CSUR) Volume
2019;51(6).

https://doi.org/10.1016/j.jksuci2020.01.012
https://doi.org/10.1016/j.jksuci2020.01.012

Oyekanmi et al.; AJRCOS, 12(4): 52-66, 2021; Article no.AJRCOS.77722

66

13. Udayraj P, Hemant G. Review of load
balancing technique in cloud computing,
IJRAR- International Journal of Research
and Analytical Reviews, 2019;6(2):826-833.

14. Wang S, Yan K, Chen C. A three-phases
scheduling in a hierarchical cloud
computing network, in: Communications
and Mobile Computing (CMC), 2011 Third
International Conference on IEEE. 2011;
114–117.

15. Neetesh K, Deo P. A green SLA
constrained scheduling algorithm for
parallel/scientific applications in hetero-
geneous cluster systems. ELSEVIER,
Sustainable Computing: Informatics and
Systems. 2019;22:107-119.

16. Bhoi U, Ramanuj P. Enhanced max-min
task scheduling algorithm in cloud
computing. International Journal of
Application or Innovation in Engineering
and Management (IJAIEM). 2013;2319—
4847.

17. Venubabu K. Dynamic load balancing for
the cloud. International Journal of
Computer Science and Electrical
Engineering; 2012.

18. Danuta S, Ignacio C, Deepak M, Barry O.
On energy- and cooling-aware data centre
workload management. IEEE. 2015;1111-
1114.

19. Che-Lun H, Hsiao-hsi W, Yu-Chen H.
Efficient load balancing algorithm for cloud
computing network. IEEE. 2012;9: 70-
78.

20. Zhi Z, Fangming L, Ruolan Z, Jiangchuan
L, Hong X, Hai J. Carbon-aware online
control of geo-distributed cloud services.
IEEE. 2015;1-14.

21. Mao Y, Chen X, Li X. Max-min task
scheduling algorithm for load balance in
cloud computing. Proceedings of
International Conference on Computer
Science and Information Technology;
Springer; 2014.

22. Li X, Mao Y, Xiao X, Zhuang Y. An
improved max-min task-scheduling
algorithm for elastic cloud. Computer,
Consumer and Control (IS3C), 2014
International Symposium on; 2014: IEEE.

23. Morton A. IO scheduler benchmarking.
linux-kernel (Mailing list). Archived from the
original on 2 June 2007; 2003. Retrieved
23rd May 2007.

24. Iyer S, Druschel P. Anticipatory scheduling:
A disk scheduling framework to overcome
deceptive idleness in synchronous I/O.
18th ACM Symposium on Operating
Systems Principles; 2001.
Retrieved 20th April, 2010.

25. George D. Amalarethinam, Muthulakshmi
P. An overview of the scheduling policies
and algorithms in grid computing. Inter-
national Journal of Research and Reviews
in Computer Science. 2011;2(2):280-294.

26. Fatos Xhafa, Ajith A. Computational
models and heuristics methods for grid
scheduling problems. Future Generation
Computer systems. 2010;26:608-621.

27. Casavant T, Kuhl J. A taxonomy of
scheduling in general purpose distributed
computing systems. IEEE Trans on
Software Engineering. 1988;14(2):141-154.

28. Buyya R, Ranjan R, Calheiros R. Modeling
and simulation of scalable cloud computing
environments and the CloudSim Toolkit:
Challenges and opportunities. In Inter-
national Conference on High Performance
Computing and Simulation (HPCS); 2009.

29. Singh A, Goyal P, Batra S. Optimized
round robin scheduling algorithm for CPU
scheduling. International Journal on
Computer Science and Engineering. 2010;
02(07):2383-2385.

30. Neha G, Parminder S. Load balancing
using genetic algorithm in mobile cloud
computing. International Journal of
Innovations in Engineering and
Technology (IJIET). 2014;1(4).

© 2021 Oyekanmi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/77722

http://creativecommons.org/licenses/by/4.0

