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Abstract

In this paper, we consider the output feedback stabilization of a 1-D conserv-
ative wave equation, where the boundary velocity observation is subjected to
a general disturbance. We first consider using only the output of the system
to online estimate the disturbance by active disturbance rejection control
(ADRC). The observer is designed in terms of the disturbance estimator. Then
we present an observer-based output feedback law to achieve stabilization.
The estimated disturbance is proved to be convergent to the unknown dis-
turbance and the velocity signal can be asymptotically recovered when time
tends to infinity. At the same time, the asymptotic stability of the closed-loop
system can be verified. Finally, some simulations are given to illustrate the
theoretical conclusions.
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1. Introduction

The stabilization of strings and flexible beams is always an important research
direction in recent decades, see [1] [2] [3] [4], to name just a few. When actua-
tors and sensors are collocated, system can be stabilized by utilizing passive
principle [5] [6]. Compared with the collocated case, the non-collocated stabili-
zation problem is more difficult because the passivity principle can not be used.
However, non-collocated case is more widely used than collocated case in engi-
neering (see, e.g., [7] [8]). With the proposal of the backstepping approach, this

method has been extensively used in stabilization problem for parabolic equa-
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tions [9] [10] [11], first-order hyperbolic equations [12] [13] [14], wave equa-
tions [15] [16] [17] and other partial differential equations [18] [19] [20]. In [21],
in order to stabilize an unstable wave equation, using the backstepping method,
not only the collocated Dirichlet boundary control but also the non-collocated
Neumann boundary control is considered. The strong stabilization of unstable
wave equation by using non-collocated boundary displacement can be found in
[22]. Then in [23], the stabilization of unstable wave equation with Neumann
boundary control can be achieved by using only collocated boundary displace-
ment. Good progress has been made in [24], where the finite-time stabilization
of 1-D wave equation by using only non-collocated boundary displacement is
considered.

When there exist external disturbances or unknown internal nonlinear uncer-
tainties, there are some methods to achieve stabilization. Sliding mode control is
applied in [25] to stabilize a 1-D wave equation with nonlinear van der Pol type
boundary condition that covers the anti-stable boundary, and subject to boun-
dary control matched disturbance on the other side. Adaptive method is used in
[26] to study the stabilization problem of an unstable wave equation, in which
the boundary observation is suffered with a harmonic disturbance. However, the
above methods are not applicable when considering the stabilization of a 1-D
wave equation with corrupted boundary observation by general disturbance.
ADRC plays an important role in solving the stabilization problem with general
corrupted boundary disturbance. In [27], ADRC is the first time adopted to set
up an ordinary differential equation disturbance estimator to estimate the dis-
turbance, in which the designed disturbance estimator is only dependent on the
output of the original system.

In this paper, we consider the stabilization of the following 1-D conservative

wave equation

Yo (St) =y (s:t), s€(0,1), t>0,

y(0,t)=0, t>0,

y, (Lt)=U(t), t=0, (1.1)
y(5,0)=y,(5), ¥ (s,0)=y,(s), 0<s<1,

Yo (1) ={y(L1),y, (Lt)+d(t)}, t=0,

where and henceforth y’' or y, is the derivative of y with respect to sand Y
or y, the derivative with respect to £ U (t) is the boundary input, vy, (t) is
the boundary output, Yy, and Y, are initial values and suppose that d(t) isa
differentiable external disturbance. The major concern for this kind of output is
that the velocity is relatively difficult to measure. If there is no disturbance in the
velocity measurement, it is easy to see that system (1.1) can be exponentially sta-
bilized directly by an output feedback controller.

The purpose of this paper is to use ADRC approach to stabilize (1.1) through
the output of (1.1). Our method is more general than [28], where the stabiliza-
tion of (1.1) with an infinite dimensional exosystem periodic disturbance is stu-
died. Accurately speaking, in [28], the boundary velocity measurement with the
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disturbance has the following form
z 2i-1
d(t)=>a cos(z—l)nt, (1.2)
i=1

in which a(i=1,2,---) denote Fourier coefficients and period T =4I(l>0).
In [28], d (t) is an output of an exosystem, and then the stabilization of the
system coupled by the original system and the exosystem is considered. However,
this method can only be used to solve the periodic disturbance which can be

written as an output of external system. It may not be suitable for more general
2j+1
periodic disturbance. In addition, when | = { J2 | j,ie Z} , the method is not

applicable.

The organization in this paper is as follows. In Section 2, a disturbance esti-
mator is designed to online estimate disturbance, then we verify the convergence
of the error system. In Section 3, an observer-based law is designed and the
closed-loop system is verified to be asymptotically stable. In Section 4, some

numerical simulations are provided.

2. Estimator and Observer Design

In this section, we design a disturbance estimator to estimate the disturbance
d(t), then establish an observer in terms of the designed disturbance estimator.
Suppose d(t)e H;,[0,0) and

li | |+|d( |_

im————=0, (2.1)
t—ow p(t)

in which p(t)eCl[O,oo),and forany t>0 satisfies

p(t)>0, p(t)>0

p(t) > as t—>oo, sup
te[O,oc)

(2.2)

p(Y)
p(t)

Same as the disturbance estimator in [27], we design the disturbance estimator

<

as

p(t)a(t)+[y, (Lt)+d(t)+p(t)y(Lt)],
d(t)- p(t)r(t),

i(1)=p* (O[a(t)-y(E)-r()],

(0)=do, r(0)=1, 5'(0)=5m

where (qo, o, d0> is the initial value of estimator, d(t) isan approximation of

q(t

)=~
(1)

-

(2.3)

o o,

d(t). Then, the observer of (1.1) is designed according to disturbance estimator
(2.3) as follows

(sit
9(0,t)=0, (2.4)

. (L) =U (1) +k[ % (L) +d(t) - (1) -d (1),

DOI: 10.4236/eng.2022.1412039

525 Engineering


https://doi.org/10.4236/eng.2022.1412039

S. X. Huang

where k >0 isa constant. We consider the observer (2.3) and (2.4) in the space
R®xH=R*xH{ (0,1)x*(0,1), H{(01)={f eH"(0,1)| f(0)=0}. Let

&(st)=y(s:t)=(s:t),
z(t)=p(t)[r(t)-a(t)+y(Lt)], (2.5)
d(t)=d(t)-d(t)

It is easy to see that the error system is governed by

d(t)=p(t)z(t)+d(t), (2.6)
S (S,t) =Gy (51t).

£(0,t)=0,

& (Lt)=—k& (Lt)—kd (t).

It can be known that the ODE-part of (2.6) is independent of its PDE-part and

its well-posedness and convergence has been proved in [27]. Therefore, for brev-

ity, the proof of the well-posedness and convergence of the ODE-part is omitted
in this paper, we only need to consider the well-posedness and convergence of
the PDE-part. We consider the PDE-part of (2.6) in the space
H =H{ (0,1)xL*(0,1) with the normal inner product.

Define an operator C:D(C)(<)—>H as

C(f.g)=(9.1"),
D(C)={(f.g)eH! (0,1)xL*(0,1)] f'(1)=—kg(1)}.

As we all know, C generates an exponentially stable C,-semigroup e on

(2.7)

‘H . The dual operator is

C'(gy)=(~v.—¢"),
D(C")={(¢w)eH (0.1)xL*(0,2)] ¢ (1) = ky (1)}

Take the inner product of (¢, l//) € D(C*) with the PDE-part of (2.6) to obtain

ANl -aoho ) e

in which &(-) being Dirac distribution and
h(t)=—kd(t). (2.10)

(2.8)

Hence, the PDE-part of (2.6) is equivalent to

& (st)=¢&,(st)+8(s=1)h(t),
£(0,t)=0,

2.11
£ (Lt) = —ké& (L1), 210
£(5,0)=5(s), &(s.0)=&(s)
or
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(2.12)

where D= (0, 5(5 —1))T .

Theorem 2.1. For arbitrary initial datum (&,,&,) € H , the PDE-part of (2.6)
has a unique solution (&,&)eC(0,00,H), and for arbitrary T >0, there is a
D; >0 depending on T only such that

ey <o fl Sl I ar).

Proof. By [29], it only needs to verify that D" is admissible for e®", which
is equal to say (a) D'C™" is bounded from H to C, and (b) for arbitrary
T >0, thereisa L; >0 only depends on 7; which makes

e (S’t) =& (S’t)’
£ (0,1)=0,

£ (L) = k&' (L), (2.13)

y. (1)=& (L),
satisfies

[le @) <L, E..(0),
where
E.. (1) =% Bl (00 (& (s Jos
A simple calculation obtains
{C*l(w//)((k¢(1)+.[;1//(l)dl)s.f§(sI)t//(l)dl,¢(3)), -
D' (g = (0.0(1)).

Thus, D'C"™" isbounded on 7. Then, by differentiating E.. (t) we get
. N 2
E.. (t)=—k(& (L)) <0,
integrating both sides yields J.OT (& (1,'[)}2 dt < % E.. (0). O

Theorem 2.2. Suppose that p(t)eC*[0,00) and d(t)e H,[0,%0). Then, the
observers (2.3) and (2.4) are well-posed, i.e., for arbitrary initial date
9(-0),9,(-0),qy, ro,ao) e HxR?, (2.3) and (2.4) have a unique solution
gy, V.. q.r, &) eC (O, o) H x RB) . Furthermore, if we also suppose that p(t) and
d(t) satisfy (2.2) and (2.1), respectively, then the solution of (2.3) and (2.4) sa-

tisty

=0. (2.15)

HxR®

!L@H(y_y’ Yi _9t'q_y(1")’r'a_d)

Proof. Based on Theorem 2.1, the solution of (2.12) depends on the initial
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date and d e L}, (0,0). For arbitrary ¢ >0, for some t, >0, we can assume
that |h = |kd | <o forall t>t . Thus, we can write the solution of (2.12)

as

(E(1).& (1) =™ (£(-1).& (+1)) + [ e "Dh(1)dI. (2.16)
It follows from the admissibility of D and [29] that
<||[ e (o<>h) 1)d
in which Lis a constant independent of h (t) ,and

(WOu)(t):{W(t)’ 0<t<g,

s u(t), t>g

C(I_I)Dd

Il <tfn]z, ., <te. (217)
H

Since € is exponential stable, there are two constants M >0 and x>0,
hold in

||e°‘||H <Me™, Vt>0.

Thus, we have

c(t-t) 1 C (-1 (=) |||l rt Ct
'fye e e )
t (2.18)
<Me ) [*e“Dh(1)dI
H
Rewriting (2.16) as
(E(0.& ) (.19
= €% (£(-0),&(~0))" +e [*e“IDn(1)dl + [ e Ich(1)dl,
according to (2.17) and (2.18), we obtain
l(£¢.0.40) ||
\ (2.20)
<Me[(£(-0),&(-0))],, +Me* [ e““Dh(1)dl| +Lo.
H
Take t— oo on both sides of (2.20) to get
I|m|| t),& (+ || <Lo. (2.21)
Because o is arbitrarily selected, we get
i), -0 o)
Combining (2.5), we have
iml(y-5.%- 3., =0 @)
(2.15) then can be obtained by (2.23) and [27]. O

Remark 2.1. If we only consider using displacement to stabilize (1.1), i.e., use
y(1,t) only. Inspired by [24], let
v(s,it)=y(1-st), (2.24)

thus, v (s, t) is determined by
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(0 t) ( ) (2.25)

The observer of (2.25) is constructed as
Ve (5,1) =V (s,1),

v (0.t)=-U(t), (2.26)

v(Lt)= 2[ (0,t-1)-v(0,t-1)].

Let v(s,t)=v(s,t)—v(s,t) be the error. Therefore, the error ¥(s,t) is de-
termined by

(2.27)

As we all know;, system (2.27) is well-posed and can be finite-time stable:
(V(s.t).7,(s,t))=0 as t=3 ([24]), ie,

(17(S,t)—1/(5,'[),17t (S,'[)—Vt (S,t)) =0 as t>3. Therefore, if the controller is
presented like U (t)=—kv, (0,t), then when t>3, we have v, (0,t)=v,(0,t),
which will use the velocity measurement v, (0,t) of system (2.25). With (2.24),
we will use the velocity measurement vy, (1,t) of system (1.1). Thus, the stabili-

zation of (1.1) carr’t use only the displacement measurement y (1, t) .

3. Well-Posedness and Stability of Closed-Loop System

The closed-loop system consists of system (1.1), observer (2.3) and (2.4) in the
state space 7’ xR®. Based on the observer we designed, we can apply the same

controller as in [30]

U (t)=—tanh(m)¥, (Lt), (3.1)
where m is a normal constant. Therefore, the closed-loop system is

Ve (8:1) = Vs (s:1),

y(0,t)=0,

¥, (L,t)=—tanh(m) ¥, (1, )

a(t)=-p()a()+[y (L) +d(t)+ p(t)y(L )],

r'(t) () P(t)r(t), (3.2)
OLa()-y@)-rt)],

9n (s,t) = 955 (s,t),

§(0,t)=0,

9, (Lt) =—tanh(m) §, (L,t) + k[ y, (1) +d ()= 9, (1.t)=d (1) |

Theorem 3.1. Assume that p(t)eC'[0,00) and d(t)e Hy, [0,00) satisty
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(2.2) and (2.1), respectively. For arbitrary initial date

(y(.,O), Y, (.,0), )‘/(, O), v, (-,O),q(O), r(O), (](0)) e H?xR3, system (3.2) has a
unique solution (y, Yo, ¥, ¥, 0,1, 6|) eC (0,00;7-(2 x ]R3> and (3.2) is asymptoti-
cally stable, i.e.,

tim|(y.y.9.9.ar.d-d)] , =0 (3.3)
Proof. By the invertible transformation
y 1 0 0 0)y
Yo |_ 01 0 O )it ' (3.4)
é 1 0 -1 0|y
& 01 0 -1\

then the PDE-part of (3.2) is equivalent to

Yie (S't) =Y (S’t)’

y(0,t)=0,

¥, (L,t)=—tanh(m)y, (1,t)+tanh(m)& (Lt),
& (sit) =44 (si1),

£(0,t)=0,

& (Lt)=—k& (Lt)—kd(t),

then system (3.5) can be written as

SOE0KE0E60.E (D)= 5 (0.£60.4 (0)+B(), 6o

(3.5)

where
B=(0,0,0,5(s-1)), (3.7)
and the operator C:D(C)c H?* — H? is defined by
C(f.9.6v)=(9,f"w.¢"), ¥(f,9.4.w)eD(C),
D(C)= {C( f,0.¢,w)eH?| f'(1)=—tanh(m)g(1)+tanh(m)y (1), (3.8)
#'(1) = —kw (1)}
As we all know, C generates an exponential stable C,-semigroup e on H’.

Along the same line for (2.7) to (2.23), we can obtain that B in (3.9) is admiss-
ible for e and

lim(y (1), % (+1).£ (). & (1))

t—>o

2= 0. (3.9)
Combining (3.4), we have
tim|(y,v,, 9,90, =0. (3.10)

Then, the stability of the closed-loop system is obtained by Theorem 2.1, Theo-
rem 2.2 and (3.10). g

4, Simulation Results

In this section, some simulations are carried out for open-loop (1.1) and closed-
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loop (3.2). In (1.1) and (3.2), the initial date is selected as follows
Yo (5,0) =2s—sin(2s), y,(s,0)=s+2cos(3s),
¥, (s,0) = —23+sin(25), “1( 0) = 2s+3cos(ns),

q(0)=-1 r(0)=1 d(0
p(t)=1+30t, k= 2 m=5.

(4.1)

For system (1.1) and system (3.2), we use the finite element method to calcu-
late their solutions. The system (1.1) is conservative, which is presented in Fig-
ure 1. If we give a (3.1) controller at the s=1 endpoint, the system will be
asymptotically stable, it can be seen in Figure 2. We can see from Figure 3 that
the designed observer is convergent. In Figure 4, d (t) can approximate con-
verge to d(t) well, and when time tends to infinity, both q(t) and r(t)
converge to 0, which indicates that the established disturbance estimator has sa-

tisfactory convergence.

(b)

(b)

Figure 2. The y-part displacement of closed-loop system (31). (a) Displacement of y(s,t); (b) Displacement of y,(s,t).
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(a)

(b)

t

Figure 4. Trajectory of the ODE-part of (31).

5. Concluding Remarks

In this paper, the problem of stabilization for a 1-D conservative wave equation
is studied. The difficulty in this paper is that the boundary velocity observation is
affected by a general disturbance. The merit of our method lies in that the
boundary velocity observation is subjected to a general disturbance, including
constant disturbance and periodic disturbance as its special cases. If there is no
collocated boundary displacement measurement, it seems that only using the
corrupted collocated boundary velocity measurement cannot estimate the dis-
turbance, which is a disadvantage of this paper. In future studies, we will extend

this method to the Schrdédinger equation and the Euler-Bernoulli equation.
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