
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: dr_amal2@hotmail.com; 
 
 
 

British Journal of Applied Science & Technology 
14(3): 1-18, 2016, Article no.BJAST.23215 

ISSN: 2231-0843, NLM ID: 101664541 

 
SCIENCEDOMAIN international 

             www.sciencedomain.org 

 

 

The Compound Family of Generalized Inverse 
Weibull Power Series Distributions 

   
Amal S. Hassan1*, Salwa M. Assar1 and Kareem A. Ali1,2 

 
1Department of Mathematical Statistics, Institute of Statistical Studies and Research, 

 Cairo University, Egypt. 
2Department of Commerce, Higher Institute of Specific Studies, Al-Haram Giza, Egypt. 

 
Authors’ contributions 

 
This work was carried out in collaboration between all authors. Author ASH designed the study, 

performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript and 
managed literature searches. Authors SMA and KAA managed the analyses of the study and 

literature searches. All authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/BJAST/2016/23215 
Editor(s): 

(1) Wei Wu, Applied Mathematics Department, Dalian University of Technology, China. 
Reviewers: 

(1) P. E. Oguntunde, Covenant University, Nigeria. 
(2) Diana Bilkova, University of Economics, Prague, Czech Republic. 

(3) Lakshmi Narayan Mishra, National Institute of Technology, Silchar, India. 
Complete Peer review History: http://sciencedomain.org/review-history/13146 

 
 
 

Received 20th November 2015  
Accepted 1

st
 January 2016 

Published 3
rd

 February 2016 

 
 

ABSTRACT 
 

Compounding a continuous lifetime distribution with a discrete one is a useful technique for 
constructing flexible distributions to facilitate better modeling of lifetime data. In this paper, a new 
family of lifetime distributions, called the generalized inverse Weibull power series distribution is 
introduced. This new family is obtained by compounding the generalized inverse Weibull and 
truncated power series distributions. This compounding procedure follows the same way that was 
previously carried out by [1]. This family contains several new distributions such as generalized 
inverse Weibull Poisson; inverse Weibull Poisson; inverse Rayleigh Poisson; inverse exponential 
Poisson; generalized inverse Weibull logarithmic; inverse Weibull logarithmic; inverse Rayleigh 
logarithmic; inverse exponential logarithmic; generalized inverse Weibull geometric; inverse Weibull 
geometric; inverse Rayleigh geometric  and inverse exponential geometric as special cases. 
The hazard rate function of the new family of distributions can be increasing, decreasing and 
bathtub-shaped. Several properties of the new family including; quantile, entropy, moments and 
distribution of order statistics are provided. The model parameters of the new family are estimated 
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by the maximum likelihood method. The two new models namely; generalized inverse Weibull 
Poisson and the generalized inverse Weibull geometric distributions are studied in some details. 
Finally, applications to two real data sets are analyzed to illustrate the flexibility and potentiality of 
the new family.  
 

 
Keywords: Generalized inverse Weibull distribution; power series distribution; distribution of minimum; 

entropy; quantile function; estimation. 
 

1. INTRODUCTION 
 
Numerous probability distributions do not provide 
adequate fits to real data in many practical 
situations.  So, several distributions have been 
proposed in the literature to model lifetime data 
by compounding some useful lifetime 
distributions.  Compounding lifetime distributions 
have been obtained by mixing the distribution 
when the lifetime can be expressed as the 
minimum of a sequence of independent and 
identically distributed random variables together 
with a discrete random variable. This idea was 
first pioneered in [1] by compounding the 
exponential random variable together with a 
geometric random variable. This distribution is 
known as the exponential geometric distribution. 
In the same manner, an exponential Poisson 
distribution has been introduced in [2] by 
compounding an exponential distribution together 
with Poisson distribution. While, in [3] 
generalized the exponential Poisson by including 
a power parameter in his distribution.                         
The Weibull-geometric and Weibull-Poisson 
distributions which naturally extend the 
exponential geometric and exponential Poisson 
have been provided in [4] and [5].  

 

In the last few years, several families of 
distributions have been proposed by 
compounding some useful lifetime and power 
series distributions. The exponential power 
series family of distributions with decreasing 
failure rate has been introduced in [6]; which 
contains as special cases the exponential 
Poisson, exponential geometric and exponential 
logarithmic distributions. A three-parameter 
Weibull power series distribution with decreasing, 
increasing, upside-down bathtub failure rate 
functions has been introduced in [7]. The 
generalized exponential power series 
distributions have been proposed in [8]. The 
compound class of extended Weibull power 
series distributions has been proposed in [9]. The 
class of Lindley power series distributions has 
been introduced in [10].  A new family of 
distributions has been defined in [11] by 

compounding the Burr XII and truncated power 
series distributions.   
 

The inverse Weibull (IW) distribution is an 
important life time model in reliability and survival 
analysis (see [12]). The IW distribution can be 
used to model a variety of failure characteristics 
such as infant mortality, useful life, wear out 
period, relays, ball bearings, etc. The three-
parameter generalized inverse Weibull (GIW) 
distribution is commonly used in the lifetime-
literature and more flexible than the inverse 
Weibull distribution. The GIW distribution was 
introduced in [13] which extends to several 
distributions. The probability density function 
(pdf) of the GIW with shape parameter �  and 
scale parameters �   and �  takes the following 
form  
 

�(�; �, �, �) = ����������
���

�
�
�
�

,   
� > 0,   �, � and � > 0.                                            (1) 

 

The corresponding cumulative distribution 
function (cdf) is 
 

 �(�; �, �, �) = ���(
�
�
)�.                                           (2)  

 

The rth moment about zero for the GIW 
distribution is given by 
 

 ��
� = �(��) = �� �

�

�   Γ �1 −
�

�
  � , � = 1,2, …  (3) 

 

where,  Γ(.) is the standard gamma function. 
 

In this article, a new family of the generalized 
inverse Weibull power series (GIWPS) models is 
introduced by compounding the generalized 
inverse Weibull distribution together with power 
series distribution. Some of statistical properties 
of the GIWPS distribution such as moments, 
quantiles, Re

'
nyi entropy and order statistics are 

studied.  In particular, two sub-models of the new 
family are derived and studied in some details. 
An application of the proposed family is 
illustrated using a real data set. 
 

This paper is organized as follows. In Section 2, 
the generalized inverse Weibull power series 
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distribution with its probability density, cumulative 
distribution, reliability and hazard rate functions 
are introduced. In the same section, some 
special sub-models are derived and two 
important propositions are introduced. In Section 
3, some mathematical properties of the new 
family are derived. Estimation of the model 
parameters involved using the maximum 
likelihood method and some related inferences 
are discussed in Section 4. Two special models 
which are; the generalized inverse Weibull 
Poisson and the generalized inverse Weibull 
geometric distributions are investigated in 
Sections 5 and 6 respectively. Applications to 
two real data sets are presented in Section 7. 
Finally, some concluding remarks are addressed 
in Section 8. 
     

2. CONSTRUCTION OF THE NEW FAMILY  
 

In this section, the generalized inverse Weibull 
power series family of distributions is created. 
This new family is derived by compounding the 
generalized inverse Weibull and power series 
distributions.  

Let ��,��, … ,��  be �  identically independent 
distributed random variables having the GIW with 
probability density function (1). Suppose that Z 
has a zero truncated power series distribution 
with the following probability mass function  
 

��(� = �; �) =
���

�

�(�)
,    � = 1, 2,3, …      ,         (4) 

 
where, � > 0  is the scale parameter. The 
coefficients  �� ′s  depend only on  �, �(�) =
∑ ���

�   �
��� is such that �(∞ ) is finite,  c�(.) and  

�′′(.)  denote its first and second derivatives, 
respectively. Table 1 shows useful quantities of 
some power series distributions (truncated at 
zero) according to (4); such as the Poisson, 
logarithmic, geometric and binomial distributions. 
The properties of the power series class of 
distributions can be seen in [14].  
 
Let W(1) = min{ ��,��, … ,��}, and by assuming 
that;   �  and �′�  are independent, then the 
conditional probability density function of 
�(�)|� = � is given by 

 
 

�� (�)|�
(�|�; �, �, �) = �����������

���
�
�
�
�

�1 − �
���

�
�
�
�

�

���

.                                                               (5) 

 
Table 1. Useful quantities for some power series distributions 

 
� ���(�) ��′(�) ��(�) �(�) �� Distribution 
� < � < ∞  ln (1 + �) �� �� �� − 1 �!�� Poisson 

� < � < 1 1 − ��� (1 − �)�� (1 − �)�� −ln (1 − �) ��� Logarithmic 
� < � < 1 �(1 + �)�� 2(1 − �)�� (1 − �)�� �(1 − �)�� 1 Geometric 
� < � < 1 

�� − 1�
�
� − 1 

�(� − 1)

(1 + �)���
 

�(1 + �)��� (1 + �)� − 1 �
�

�
� Binomial 

 
The joint probability density function of W(1) and Z is obtained as follows 
 

�� (�)�
(�, �; �, �, �, �) = �����������

���
�
�
�
�

�1 − �
���

�
�
�
�

�

���
���

�

�(�)
 .                                         

 

The probability density of the generalized inverse Weibull power series family of distributions is 
defined by the marginal density of W(1) 

 

�(�; �, �, �, �) =

�����������
���

�
�
�
�

c� �� �1 − �
���

�
�
�
�

��

�(�)
, � > 0, �, �, �, � > 0 .                        (6) 

 
The cumulative distribution function of the GIWPS distribution corresponding to (6) is obtained as 
follows  



 
 
 
 

Hassan et al.; BJAST, 14(3): 1-18, 2016; Article no.BJAST.23215 
 
 

 
4 
 

�(�; �, �, �, �) = 1 −

� �� �1 − �
���

�
�
�
�

��

�(�)
,            � > 0.                                                                        (7) 

 
The random variable W following (6) with the set of parameters � = (�, �, �, �)  is denoted by 
�~�����(�). 
 
In addition, the reliability and hazard rate functions for the GIWPS distribution take, respectively, the 
following forms  
 

�(�; �, �, �, �) =

� �� �1 − �
���

�
�
�
�

��

�(�)
,                                                                                                          (8) 

 
and 
 

ℎ(�; �, �, �, �) =

�������(���)�
���

�
�
�
�

c� �� �1 − �
���

�
�
�
�

��

� �� �1 − �
���

�
�
�
�

��

.                                                              (9) 

 

2.1 Useful Expansion  
 
In this subsection, two important propositions will be provided. The first proposition indicates that the 
new family has the GIW distribution as a limiting case, whereas the second proposition provides a 
useful expansion for the pdf of the GIWPS family of distributions (6).  

 
Proposition 1: The GIW distribution with parameters  �, � and � is a limiting special case of the 
GIWPS family of distributions as � → 0�. 
 
Proof: 

lim
�→ ��

�(�; �, �, �, �) =  1 − ���
�→ ��

�1 − �
���

�
�
�
�

� + ��
�� ∑ ���

����
��� �1 − �

���
�
�
�
�

�

���

1 + ��
�� ∑ ���

����
���

 ,          

 
and by using L'Hopital's rule, it follows that 
 

lim
�→ ��

�(�; �, �, �, �) = �
���

�
�
�
�

,        

                                                                     
which is the distribution function of the generalized inverse Weibull distribution as defined in (2). 
 
Proposition 2: The probability density function of the GIWPS can be expressed as an infinite mixture 
of the GIW with parameters ��, � and �, which is given by: 
 

�(�; �, �, �, �) =���
�
��

�

���

��(�; �)

�

���

(− 1)����(�, ��, �, �), 

 
where, �(�, ��, �, �) is the pdf of the GIW distribution  with parameters, ��, �  and �. 
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Proof:   
 

The pdf (6) can be rewritten as following 
 

�(�; �, �, �, �) =
���������� ∑ ����

��� ∑ ����
�
�∞

��� (− 1)��
��(���)�

�
�
�
�

∞
���

�(�)
 ,                        

                            =�
���

�

�(�)

�

���

�� �
� − 1

�
�

�

���

(− 1)�(� + 1)����(� + 1)��������
��(���)�

�
�
�
�

, 

                            =���
�
��

�

���

��(�; �)

�

���

(− 1)���� (�, ��, �, �),                                                                    (10) 

 

where, �(�, ��, �, �) is the pdf of the GIW distribution with parameters ��, �  and �.  
 

2.2 Special Sub-models 
 

The cdf (7) extends some distributions which 
have not been studied in the literature, the  new 
sub models are; generalized inverse Weibull 
Poisson (GIWP); inverse Weibull Poisson (IWP); 
inverse Rayleigh Poisson (IRP); inverse 
exponential Poisson (IEP); generalized inverse 
Weibull logarithmic (GIWL); inverse Weibull 
logarithmic (IWL); inverse Rayleigh logarithmic 
(IRL); inverse exponential logarithmic (IEL), 
generalized inverse Weibull geometric (GIWG); 
inverse Weibull geometric (IWG); inverse 
Rayleigh geometric (IRG) and inverse 
exponential geometric (IEG). Table 2 gives the 
cdf of the new sub-models. 
 

3. SOME MATHEMATICAL PROPERTIES 
 

In this section, some mathematical properties of 
the GIWPS distribution including, quantile 
function, rth moment, Re

'
nyi entropy and 

distribution of order statistics will be derived. 
 

3.1 Quantiles and Moments 
 

The quantile function has been used in several 
statistical aspects such as the generating 
random numbers. The quantile function, say  
�(�) of  � is given by 
 

� = �(�) = � �
��

�
ln�1 −

���[�(�)(���)]

�
��

��

�
,       (11) 

 

where, �  is  a uniform random variable on the 
unit interval (0,1) and   ���(�) is the inverse 
function of �(�). 
 

Some of the most important features and 
characteristics of a distribution can be studied 
through its moments such as tendency, 
dispersion, skewness and kurtosis. Therefore, a 
general expression for the rth moment of the 

GIWPS distribution will be derived. 
 

Proposition 3: The rth moment about zero for a 
GIWPS distribution is given by 
 

��
� = �(��) = ∑ ∑ ��(�; �)

�
���

�
��� ��

�
� (−1)���(��)

�

���Γ �1 −
�

�
� , � > �, � = 1,2, … .                  (12)        

 

Proof: The rth moment of the GIWPS distribution is easily obtained by substituting the rth moment of 
the GIW distribution defined in (3), but with parameters ��, �  and �, in expression (10), then we obtain 
the result in (12).   
 

Based on the first four moments of the GIWPS distribution, the measures of skewness (��) and 
kurtosis (�) can be obtained from following relations respectively 
 

�� =
��

� − 3��
���

� + 2(��
�)�

(��
� − (��

�)�)
�
�

,                                   

 

and 
 

� =
��

� − 4��
���

� + 6(��
�)���

� − 3(��
�)�

(��� − (���)�)�
,     

 

where, ��
�, ��

�, ��
� and ��

� can be obtained from (12), by substituting � = 1,2,3 and 4. 
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Table 2. Useful new lifetime distributions from the GIWPS family 
 

�(�)                      �     �     �      � Models cdf 
 
 
�� − � 
 

 
 

� > 0 
 

 
 
� > 0 

 

 
 
� > 0 

 

 
 
    � > 0 
 

 
 
GIWP 
 

�� − exp �� �1 − �
���

�
��

�

��

�� − 1
 

 
 
�� − � 

 
 

� > 0 

 
 
� > 0 

 
 
� = 1 

 
 
      � > 0 

 
 
IWP 

�� − exp �� �1 − �
��

�
�
�
�

��

�� − 1
 

 
 
�� − � 

 
 

� > 0 

 
 
� = 2 

 
 
� = 1 

 
 
      � > 0 

 
 
IRP 

�� − exp �� �1 − �
��

�
��

�

��

�� − 1
 

 
 
�� − � 

 
 

� > 0 

 
 
� = 1 

 
 
� = 1 

 
 
       � > 0 

 
 
IEP 

�� − exp �� �1 − �
��
� ��

�� − 1
 

 
 
− �� (� − �) 

 
 

� > 0 

 
 
� > 0 

 
 
� > 0 

 
 
      0 < � < 1 

 
 
GIWL 1 −

ln �1 − � �1 − �
���

�
��

�

��

ln [1 − �]
 

 
 
− �� (� − �) 

 
 

� > 0 

 
 
� > 0 

 
 
� = 1 

 
 
    0 < � < 1 

 
 
IWL 1 −

ln�1 − � �1 − �
��

�
��

�

��

ln [1 − �]
 

 
 
− �� (� − �) 

 
 

� > 0 

 
 
� = 2 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IRL 1 −

ln�1 − � �1 − �
��

�
�
�
�

��

ln [1 − �]
 

 
 
− �� (� − �) 

 
 

� > 0 

 
 
� = 1 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IEL 

1 −
ln�1 − � �1 − �

��
� ��

ln [1 − �]
 

 
 

�

(� − �)
 

 
 
 

� > 0 

 
 
 
� > 0 

 
 
 
� > 0 

 
 
 

0 < � < 1 

 
 
 
GIWG 

1 −

(1 − �) �1 − �
���

�
�
�
�

�

1 − � �1 − �
��

�
�
�
�

�

 

 
 

�

(� − �)
 

 
 
 

� > 0 

 
 
 
� > 0 

 
 
 
� = 1 

 
 
 

0 < � < 1 

 
 
 
IWG 

1 −

(1 − �) �1 − �
��

�
�
�
�

�

1 − � �1 − �
��

�
�
�
�

�

 

 
�

(� − �)
 

 
 

� > 0 

 
 
� = 2 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IRG 1 −

(1 − �) �1 − �
��

�
�
�
�

�

1 − � �1 − �
��

�
��

�

�

 

 
�

(� − �)
 

 
 

� > 0 

 
 
� = 1 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IEG 

1 −
(1 − �) �1 − �

��
� �

1 − � �1 − ��
�
��

 

 
 
(� + �)� − � 

 
 

� > 0 

 
 
� > 0 

 
 
� > 0 

 
 

0 < � < 1 

 
 
GIWB 1 −

(1 + � �1 − �
���

�
��

�

�)� − 1

(1 + �)� − 1
 

 
 
(� + �)� − � 

 
 

� > 0 

 
 
� > 0 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IWB 1 −

(1 + � �1 − �
��

�
��

�

�)� − 1

(1 + �)� − 1
 

 
 
(� + �)� − � 

 
 

� > 0 

 
 
� = 2 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IRB 1 −

(1 + � �1 − �
��

�
�
�
�

�)� − 1

(1 + �)� − 1
 

 
 
(� + �)� − � 

 
 

� > 0 

 
 
� = 1 

 
 
� = 1 

 
 

0 < � < 1 

 
 
IEB 

1 −
(1 + � �1 − �

��
� �)� − 1

(1 + �)� − 1
 

 
 



 
 
 
 

Hassan et al.; BJAST, 14(3): 1-18, 2016; Article no.BJAST.23215 
 
 

 
7 
 

Also, it is easy to show that, 
 

�� (�) =�
��

�!

�

���

��
�  ,       

 
where, ��

� is the rth moment, while ��(�) denotes the moment generating function (mgf) of �.  Then 
by using (12), the mgf of � can be written as follows: 
 

�� (�) =���
��

�!
��(�; �)

�

���

�

���

�
�

�
� (−1)���(��)

�
���Γ �1 −

�

�
�

�

���

, � > �, � = 1,2, …   . 

 

3.2 Order Statistics 
 
In this section, expressions for the pdf of the ith order statistics from the GIWPS distribution are 
derived. In particular, the distribution of smallest and largest order statistics are obtained.  
 
Let ��, �� … ,��be a random sample with probability density function (6) and  ��:� < ��:� < ⋯ <
��:�   be the corresponding order statistics. The pdf of the ith order statistics, say  ��:�(�; �), � =
{�, �, �, �}, is obtained as follows:  
 

��:�(�;�) =
�

�(� ,�����)
�(�;�)[�(�;�)]���[1 − �(�;�)]���,         � > 0.                                  (13) 

 
By using, the pdf (6), cdf (7) and applying the binomial expansion in (13), then we get 
 

��:�(�;�) =
�

�(�,�����)
�(�; �) ∑ ����

�
����

��� (−1)� �
�(�(���

���
�
�
�
�

)

�(�)
�

�����

.                                       (14) 

 

Now, since an expansion for �� ��(1 − ����
�

�
�
�

)��

�����

 can be written as follows:  

 

�� ��(1 − �
���

�
�
�
�

)��

�����

= ����

�

���

�� �1 − �
���

�
�
�
�

�

�

�

�����

, 

                               = ���� �1 − �
���

�
�
�
�

��

�+ �− �

�[1 +
��
��

� �1 − �
���

�
�
�
�

� +
��
��

�� �1 − �
���

�
�
�
�

�

�

+ ⋯ �

�+ �− �

,  

= ���� �1 − �
���

�

�
�
�

��
�+ �− �

�∑ ���� �1 − �
���

�

�
�
�

�
�

∞
�=0 �

�+ �− �

,                                               (15) 

 

where, �� =
����

��
.  

 
As mentioned in [15], for a positive integer j, we have the following relation 
 

�� ��

�

���

���

�

= � ��,�

�

���

��.                                                                                                                           (16) 

 
Hence by applying relation (16) in (15), then (15) can be written as follows 
 

�� ��(1 − ����
�

�
�
�

)��

�����

= ��
����� ∑ ������,�

�
��� �������� �1 − ����

�

�
�
�

�

�������

,                   (17) 
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where, ������,� = 1 and the coefficients ������,� are easily determined from the recurrence 

equation  ������,� = ��� ∑ [�(� + � − � + 1) − �]�
��� ��������,��� , � ≥ 1. 

 

By using the expansion ��(�) = ∑ � ���
����

��� for�� �� �1 − ����
�

�
�
�

��, then it can be written 

as; 
 

�� �� �1 − �
���

�
�
�
�

�� =���� �� �1 − �
���

�
�
�
�

��

����

���

 ,                                                             

�� �� �1 − ����
�

�
�
�

�� = �� ∑ ��(� + 1) �� �1 − ����
�

�
�
�

��

�

,�
��� �� =

����

��
 .                                 (18) 

 
Then, the pdf of the ith order statistics from the GIWPS distribution is obtained by 
substituting expansions (17) and (18) in pdf (14) as follows 
 

��:�(�; �) =
1

�(�, � − � + 1)
�� ����,�,�,�

�

���

�

���

�

���

���

���

�(�; (� + 1)�, �, �),       � > 0,                          (19) 

 
where, 
 

�(�; (� + 1)�, �, �) is the pdf of the GIW distribution with parameters (� + 1)�, � and �,  
 

��,�,�,� =
��(� + 1)����������

�(�)�������(� + 1)
�
� − 1

�
� �

� + � + � − � + �

�
� (−1)�����

������� ������,�. 

 
The pdf of the smallest and the largest order statistics from the GIWPS distribution is obtained by 
substituting  � = 1 and  �,  in (19), respectively, as follows 
 

��:�(�;�) = � � �
� ��(� + 1)��������

�(�)�(� + 1)

∞

���

∞

���

∞

���

�
� + � − 1 + �

�
� (−1)��1

� ��− 1,��(�; (�

+ 1)�, �, �),                                                                                                                      � > 0, 
 
and 
 

��:�(�;�) = �� � �
���(� + 1)������

�(�)���(� + 1)

∞

���

∞

���

∞

���

���

���

�
� − 1

�
� �
� + � + �

�
� (− 1)�����

�����,��(�; (�

+ 1)�, �, �),                                                                                                                 � > 0, 
 
where, again �(�; (� + 1)�, �, �) is the pdf of a GIW distribution with parameters (� + 1)�, � and �. 
 
Furthermore, the ��:�th  moment of ith order statistics from the GIWPS distribution can be obtained 
from (19) as follows  
 

���:�
� =

1

�(�, � − � + 1)
�� � ���,�,�,�

�

���

�

���

�

���

���

���

���

∞

�

�(�; (� + 1)�, �, �) ��,                                     (20) 

 

where, ∫ ��∞

�
�(�; (� + 1)�, �, �) �� is the �th moment of the GIW distribution with parameters (� +

1�,� and �. Then ��:�th    moment of the ith order statistics from GIWPS distribution is easily obtained 
by substituting the � th moment of the GIW distribution defined in (3), but with parameters �(� +
1), �  and �, in (20), thereafter, the previous equation can be reduced to    
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���:�
� =

1

�(�, � − � + 1)
�� ����,�,�,�

�

���

�

���

�

���

���

���

����(� + 1)�
�
�Γ �1 −

�

�
� , � > �, � = 1,2, …   .  

 
3.3 Re'nyi Entropy 
  
The entropy is a measure of uncertainty variation. The concept of entropy plays a vital role in 
information and communication theory. The R´enyi entropy of a random variable � following GIWPS 
distribution, for � > 0  and � ≠ 1 , is defined as follows 
 

 
 

Let, �� = ∫ ��(�;�)�
�
��

�

�
, then 

 

�� = �(�����)����(���)�
����

�
�
�
�

⎩
⎪
⎨

⎪
⎧

�
∑ ��� �� �1 − �

���
�
�
�
�

��

���

�
���

�(�)

⎭
⎪
⎬

⎪
⎫

��
�

�

��. 

 
But,  
 

����� �� �1 − �
���

�
�
�
�

��

����

���

�

�

= ��
� �� ��

�

���

�� �1 − �
���

�
�
�
�

��

�

�

�

, �� =
����

��
(� + 1).(21) 

 
By applying relation (16) in (21), then it takes the following form 
  

������� �1 − �
���

�
�
�
�

��

���
�

���

�

�

= ��
� � ��,�

�

���

�� �1 − �
���

�
�
�
�

��

�

   ,                                          

                                                                                   = ��
� � ��

�

�
�

�

���

�

���

(− 1)���,��
��

����
�
�
�
�

.                                 (22) 

 
The coefficients for � > 1  are computed from the recurrence equation  ��,� = ��� ∑ [�(� + 1) −�

���

�����,�−� ��� ��,0=1. Then �� can be written as   

 

�� = (�����)���
� ∑ ∑ ��

�
��

���
∞
��� (−1)���,��

� ∫ ���(���)∞

�
���(���)�

�

�
�
�

�� .                         (23)   

 
The Re

'
nyi entropy can be reduced to the following formula  

 

 ��(�) = (1 − �)�� log�
(�����)���

�

�(�)�
� ��

�

�
�

�

���

�

���

(− 1)�
��,��

���(�(���)��)Γ �
�(� + 1) − 1

� �

(�(� + �))
�(���)��

�

�.       

 
4. ESTIMATION OF THE MODEL PARAMETERS 
 
In this section; the maximum likelihood estimators (MLEs) of the model parameters of the GIWPS 
distribution are determined from complete samples.  
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Let  ��, �� … ,��  be a simple random sample from the GIWPS distribution with parameters                          
 � ≡ (�, �, �, �). The likelihood function based on the observed random sample of size � is given by 

 

�(�;�) = �����������(�)�
��

���
�(���)

�

���

��
���

�
��

�
��

���

�c� �� �1 − �
���

�
��

�
�

��

�

���

 . 

 
The natural logarithm of the likelihood function, ℓ

∗
≡ �� �(�;�), is given by 

 

ℓ
∗
= ��� � + � ln� + � ln� + �� ln� − � ln�(�) − (� + 1)�ln(��)

�

���

− ���
�

��
�
��

���

+ �lnc� �� �1 − �
���

�
��

�
�

��

�

���

.   

 

The maximum likelihood estimators of �, �, � and  �, say �� , �,� �� and  ��, are obtained by setting the first 
partial derivatives of ℓ

∗
 to be zero. The first partial derivatives for log-likelihood function with respect to 

�, �, � ��� � are given respectively as follows: 
 

�ℓ∗

��
=
�

�
+ �

�1− �
���

�
��

�
�

� � ′′ �� �1 − �
���

�
��

�
�

��

�� �� �1 − �
���

�
��

�
�

��

�

���

−
���(�)

�(�)
,                                                            

�ℓ∗

��
=
�

�
+ ���� − ���

�

��
�
��

���

ln�
�

��
� −  ���(��

�

���

)

+ ���� �

ln�
�
��
� �

���
�
��

�
�

��′�� �1 − �
���

�
��

�
�

��

��
� �� �� �1 − �

���
�
��

�
�

��

,

�

���

                           

�ℓ
∗

��
=
��

�
−
��

�
��

�

��

�
��

���

+ ��������

�
���

�
��

�
�

��′�� �1 − �
���

�
��

�
�

��

��
��� �� �1 − �

���
�
��

�
�

��

�

���

, 

 
and 
 

�ℓ∗

��
=
�

�
− ��

�

��
�
��

���

+ ����

�
���

�
��

�
�

��′�� �1 − �
���

�
��

�
�

��

��
��� �� �1 − �

���
�
��

�
�

��

�

���

.                                                    

 
The MLEs of the model parameters are obtained after setting the non-linear equations to be zero, 

i.e,   
�ℓ∗

��
= 0,

�ℓ∗

��
= 0,   

�ℓ∗

��
= 0, and 

�ℓ∗

��
= 0. It is clear that, there is no closed solution for the above non-

linear equations, so an extensive numerical solution will be applied via iterative technique.   
 
For the interval estimation of the model parameters, the 4 × 4  observed information matrix �(�), 
whose elements are the second derivatives of the total log likelihood function,   
 



 
 
 
 

Hassan et al.; BJAST, 14(3): 1-18, 2016; Article no.BJAST.23215 
 
 

 
11 

 

�(�) = − �
��ℓ

∗

������

�
�×�

= −

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

��ℓ∗

���
��ℓ∗

����

��ℓ∗

����

��ℓ∗

����

��ℓ
∗

����

��ℓ
∗

���

��ℓ
∗

����

��ℓ
∗

����

��ℓ∗

����

��ℓ∗

����

��ℓ∗

���
��ℓ∗

����

��ℓ
∗

����

��ℓ
∗

����

��ℓ
∗

����

��ℓ
∗

��� ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

�×�

, �, � = 1,2,3,4  

 
Under the regularity conditions, the known asymptotic properties of the maximum likelihood method 

ensure that: √���� − ��
�
→ ��(0, �

��(�)) as � → ∞ , where 
�
→  means the convergence in distribution, 

with mean 0 = (0,0,0,0)�  and 4 × 4  variance covariance matrix ���(�)  then, the 100(1 − �)% 
confidence interval for � ≡ (�, �, � �) is given, as follows 
 

�� ± �� �⁄ ����  (��) ,   

 
where �� �⁄  is the standard normal at � 2⁄  ,  � 2⁄  is significance level and ��� (.)’s denote the diagonal 

elements of ���(�) corresponding to the model parameters. 
 

5. GENERALIZED INVERSE WEIBULL POISSON DISTRIBUTION 
 
As mentioned in Section 2 that the generalized inverse Weibull Poisson distribution is obtained from 
GIWPS distribution as a special case. As seen from Table 2, the cdf of the GIWP takes the form 
 

�(�;�) = (�� − 1)�� [�� −  exp �� �1 − ����
�

�
�
�

��], � > 0, �, �, �, � > 0.                                     (24) 

 
The pdf of the GIWP distribution corresponding to (24) is  
 

�(�;�) = �������������(
�
�
)�(�� − 1)�� exp �� �1 − �

���
�
�
�
�

�� .   � > 0.                              

 
The reliability and hazard rate functions are obtained directly from (8) and (9) using the quantity 
�(�) = �� − 1, � > 0, ��(�) = ��, that corresponds to the zero truncated Poisson distribution as the 
following 
 

�(�;�) =

exp �� �1 − �
���

�
�
�
�

�� − 1

�� − 1
, 

 
and 
 

ℎ(�;�) =

�������������(
�
�
)�exp �� �1 − �

���
�
�
�
�

��

exp �� �1 − �
���

�
�
�
�

�� − 1

.                                                 

 
Figs. 1 and 2 represent the probability density and the hazard rate functions plots for the GIWP 
distribution for some selected values of parameters.  
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Fig. 1. Plots of the GIWP densities for some values of the parameters 
 

 
 

Fig. 2. Hazard rate function plots of the GIWP distribution for some values of the parameters 
 
The GIWP distribution has increasing, decreasing and constant failure rates as shown in Fig. 2. 
 
The quantile function for the GIWP distribution is obtained directly from expression (11) with  
 �(�) = �� − 1 and ���(�) = ln (1 + �) as follows 
 

� = ��
−1

�
ln�1 −

ln�1 + ���� − 1�(1 − �)��

�
��

��
�

       .                                                   

 

The rth moment about zero of the GIWP distribution is obtained from (12) with ��(�; �) =
�����

Γ(���)�������
,   

  � = 1,2, …   as  follows  
 

��
� = ∑ ∑ ��

�
�∞

�=1
∞
�=1

��

Γ(�+ 1)(��− 1)
(−1)�−1(��)

�

���Γ �1 −
�

�
� , � > �,   � = 1,2, …   .             

 
6. GENERALIZED INVERSE WEIBULL GEOMETRIC DISTRIBUTION 
 
The second special case of the GIWPS family of distributions will be discussed in some details in this 
section. As mentioned in Section 2 the distribution function of the generalized inverse Weibull 
geometric (see Table 2) takes the following form 
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�(�;�) = 1 −

(1 − �) �1 − �
���

�
�
�
�

�

1 − � �1 − �
���

�
�
�
�

�

,   �, �, �,   � > 0,       0 <  � < 1.                                        (25)     

 
The pdf of the GIWG distribution corresponding to (25) takes the following form 
 

�(�;�) = (1 − �)��������� �1 − ��(1 − �
���

�
�
�
�

��

��

�
���

�
�
�
�

 
,   � > 0.                              

 
In addition, the hazard rate function takes the following form 
 

ℎ(�;�) =
����������

���
�
�
�
�

�1 − ��(1 − �
���

�
�
�
�

�� �1 − �
���

�
�
�
�

�

.                                                                             

 
Figs. 3 and 4 represent the probability density and the hazard rate functions plots for the GIWG 
distribution for some selected values of parameters.  
 

 
 

Fig. 3. The pdf plots of the GIWG distribution for some values of parameters 
 

 
 

Fig. 4. Hazard rate function plots of the GIWG distribution for some values of parameters 



 
 
 
 

Hassan et al.; BJAST, 14(3): 1-18, 2016; Article no.BJAST.23215 
 
 

 
14 

 

It is clear from Fig. 4 that the GIWG distribution has increasing, decreasing and constant failure rates.  
 
Furthermore, the quantile function and the rth moment formula for the GIWG distribution are obtained 
from (11), (12) by using ��(�; �) = (1 − �)����, � = 1,2… , �(�) = �(1 − �)�� and ��(�) = (1 −
�−2  (see Table 1) respectively as follows 
 

 � = � �
��

�
ln�

����

����
��

��

�
, 

 
and 
 

 ��
� = ∑ ∑ ��

�
�∞

�=1
∞
�=1 (1 − �)��− 1(−1)�−1(��)

�

���Γ �1 −
�

�
� , � > �, � = 1,2, …                              

 
7. APPLICATIONS 
 
In this section, two real data sets will be provided 
to compare the fit of some special models of the 
GIWPS distribution and to illustrate the flexibility 
of the new family. 
 
The first data set is taken from [16], where the 
vinyl chloride data is obtained from clean 
upgradient ground –water monitoring wells in 
mg/L; the data are as follows: 
 
5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 
0.6, 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 
0.2, 0.1, 0.1, 1.8, 0.9, 2, 4, 6.8, 1.2, 0.4, 0.2. 
 
We have fitted the GIWP, GIWG, GIW and IW 
distributions to this real data set. The pdf of the 
GIWP is as mentioned in Section 5, the pdf of the 
GIWG distribution is as mentioned in Section 6.  
 
In addition, the pdf of the GIW is as mentioned in 
Section 1, and the pdf of the inverse Weibull 
distribution is as follows   
 

�(�; �, �) = ����������(
�
�
)�,   � > 0,   �, � > 0, 

 
where �  is the shape parameter and  �  is the 
scale parameter. 
 

The models parameters of the GIWP, GIWG, 
GIW and IW distributions are estimated by the 
maximum likelihood method. The values of 
Kolmogorov-Smirnov (K-S) statistics (with the 

corresponding standard errors), maximum 
likelihood estimates of the parameters (with 
standard errors), Akike information criterion (AIC) 
and Bayesian information criterion (BIC) are 
calculated. The results for all mentioned models 
are reported in Table 3.  
 
In general the best model corresponds to the 
smallest values of AIC, BIC, K-S.  It clear from 
Table 3 that the GIWP model fits the data set 
better than the others competing models.  
 
Plots of the pdfs and cdfs of the fitted GIWP, 
GIWG, GIW and IW models to the data, 
displayed in Figs. 5 and 6, indicated the 
superiority of the GIWP model than the other 
three models.  
   
As a second example, the data set from [17] will 
be considered. It consists of 40 observations of 
the active repair times (in hours) for airborne 
communication transceiver. The data are: 
 
0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 
1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 
1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 
3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40 
5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.  
 
We have fitted the GIWP, GIWG, Weibull 
Poisson (WP) and Weibull (W) distributions to 
this real data set. The pdf of Weibull Poisson 
(WP) distribution with shape parameter  �  and 
scale parameters � and � is as follows  

 

�(�; �, �, �) = ����������� − 1�
��
���(��)

�
��� (��1 − ��(��)

�
�), � > 0, �, �, � > 0. 

 
The Weibull (W) distribution has the following density function  
 

�(�; �, �, �) = ���������(��)
�
,                               � > 0,              

 
where � > 0 is a shape parameter and � is a scale parameter. 
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Table 3. Estimates (
a 
denotes standard errors), K-S (

b
 denotes p values), AIC and BIC for the 

first data set 
 

Models          MLES                 Measures 
�� ��  �� ��  K-S  AIC   BIC 

GIWP 0.168 
(0.156)

a 
4.173 
(26.01)

a 
5.027 
(0.155)

a 
340.545 
(1.915*1  0^3)

a 
0.078 
(0.985)

b 
117.678 123.783 

GIWG 0.148 
(0.025)

a 
47.468 
(33.55)

a 
4.333 
(1.114)

a 
0.999 
(7.098*10^-4)

a 
0.131 
(0.602)

b 
125.573 131.678 

GIW 0.88 
(0.109)

a 
0.799 
(282.62)

a 
0.797 
(247.98)

a
 

- 0.113 
(0.775)

b 
123.253 127.832 

IW 
 

0.88 
(0.109)a 

0.617 
(0.128)a 

- - 0.113 
(0.775)b 

121.253 124.306 

 

 
 

Fig. 5. Estimated densities of models for the first data set 
 

 
 

Fig. 6. Estimated cumulative densities for the first data set 
 
Table 4 shows the values of AIC, BIC and K-S 
statistics. Figs. 7 and 8 provide some plots of the 
estimated cumulative distribution functions as 

well as the estimated probability densities of the 
fitted GIWP, GIWG, WP and W models to the  
this data set. 
 



Table 4. Estimates (a denotes standard errors), K

Models  MLES 

�� ��  
GIWP 0.528 

(0.242)a 
1.127 
(0.738)a 

GIWG 1.174 
(0.328)

a 
0.973 
(3.986)

a 

WP 1.187 
(0.138)

a 
0.106 
(0.046)

a 

W 
 

0.96 
(0.109)

a 
0.255 
(0.045)

a 

It is clear from Table 4 that the proposed
distribution fits to this data is better than the other 

Fig. 7. Estimated densities of models for the second data set

Fig. 8. Estimated cumulative densities for the second data set
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denotes standard errors), K-S (b denotes p values), AIC and BIC for the 
second data set 

 

   Measures

    ��                          ��  K-S    AIC 

3.256 
(0.261)a 

6.957 
(6.66)a 

0.105 
(0.77)b 

188.772 
 

1.606 
(7.744)

a 
-0.016 
(1.209)

a 
0.159 
(0.26)

b 
186.948 

- 3.572 
(1.894)

a 
0.124 
(0.57)

b 
192.944 

- - 0.129 
(0.51)

b 
195.023 

 
It is clear from Table 4 that the proposed GIWP 
distribution fits to this data is better than the other 

models according to the AIC, BIC, and the 
statistic K-S. 

 

 
 

Estimated densities of models for the second data set 
 

 
 

Fig. 8. Estimated cumulative densities for the second data set 

 
 
 
 

, 2016; Article no.BJAST.23215 
 
 

denotes p values), AIC and BIC for the 

Measures 

   BIC 

 195.527 

 193.704 

 198.011 

 198.4 

models according to the AIC, BIC, and the 
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It is clear from plots of Fig. 7 that the fitted 
density of the GIWP model is closer to the 
empirical histogram than the corresponding 
densities of the GIWG, WP and W models, also, 
Fig. 8 confirm this conclusion.  

 

8. CONCLUSION 
 

In this paper, a new family of lifetime distributions 
called the generalized inverse Weibull power 
series distributions with increasing, decreasing 
and constant failure rate functions has been 
introduced. The GIWPS density function can be 
expressed as a mixture of GIW density functions. 
Furthermore, the GIWPS distribution has been 
extended several new sub-models which have 
not been studied in the literature. Mathematical 
properties of the new family, including 
expressions for density function, moments, 
moment generating function and quantile 
function are provided. Further, explicit 
expressions for the order statistics and Re

'
nyi 

entropy are derived. Maximum likelihood is 
implemented for estimating the model 
parameters. The generalized inverse Weibull 
Poisson and the generalized inverse Weibull 
geometric distributions have been provided. 
Some statistical properties of the GIWP and the 
GIWG models have been discussed. In order to 
show the usefulness of the suggested family, we 
fit the GIWP and the GIWG to two real life data 
sets as two sub-models examples from this 
family. The GIWP model provides consistently a 
better fit than the other models. We hope that 
this generalization may attract wider applications 
in areas such as engineering, survival and 
lifetime data, hydrology, economics (income 
inequality) and others.  
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