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ABSTRACT

Plasma echo theory is revisited, and we apply it to a plasma slab bounded by a vacuum. Spatial
echoes in a slab plasma are investigated by calculating the electric field produced by external
charges and satisfying the boundary conditions at the interfaces. We determine the echo spots
associated with the symmetric mode of the surface wave in the slab. Naturally, in the course of
development, the dispersion relation of the electrostatic surface plasma wave in a slab geometry
is derived kinetically by satisfying the specular reflection boundary condition for the distribution
function. We show that echoes can occur at various spots. The diversity of echo occurrence spots
is due to the boundary terms, and appears to be owing to the reflections of the waves from the
interface.
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1 INTRODUCTION

The existence of echoes in plasmas have
long been known theoretically [1,2] as well as
experimentally [3]. The theoretical investigations
of the plasma echoes are confined mainly to
echoes in an infinite plasma. The theory of the
echoes for bounded plasmas are rather few. In
this work, we investigate the plasma echoes in a
slab which has two interfaces with vacuum. The
interfaces act as the surfaces that reflect off the
waves generated inside.

Let us briefly review the basic nonlinear
mechanism that results in echoes. The echo
phenomena is the result of a quadratic interaction
of the two primary waves launched by two
external charges at different locations (spatial
echoes) or different times (temporal echoes). The
linear response function (the dielectric function)
of the plasma in the Fourier space has a
singularity at ω = kv (in addition to other
singularities). In its inversion to (x, t) variables,
this singularity modulates the distribution function
, f(k, ω, v), with the exponential phase eik(x−vt)

or e−iω(t−x/v). This term is called the free
streaming term or the ballistic term since x = vt
is the characteristics of the Vlasov equation for a
free particle. This rapidly modulating exponential
phase makes the f(x, v, t) more and more
oscillatory as t or x increases, and consequently,∫
fdv will become vanishingly small due to

almost complete phase mixing. Therefore, in
the first order, the phase mixing obliterates any
appreciable effect on the macroscopic variable
such as density perturbation. However, the
second order distribution function which is a
product of two first order distribution functions
is not phase-mixed when or where the condition
for a constructive interference is met, thereby
the second order electric field does not vanish,
resulting in an echo. It is evident from
the expression for the product of two free-
streaming exponentials eik1(x1−vt1)eik2(x2−vt2)

that a constructive interference can result in at
a certain time (temporal echo) or a certain spot
(spatial echo) such that k1x1 + k2x2 = v(k1t1 +
k2t2).

Spatial echoes in a semi-bounded plasma were
theoretically investigated in a static situation
where the non-propagating electric field and the

distribution function vary along the x direction
which is perpendicular to the plasma-vacuum
interface [4,5]: E = E(x, t) and f = f(x, v, t),
where x > 0 (x < 0) is the plasma (vacuum)
region. In this case, the corresponding Vlasov
equation takes the form of a first order differential
equation, and can be solved by satisfying the
specular reflection boundary condition at the
interface x = 0 : f(v, 0) = f(−v, 0) [6]. This
differential equation approach with the specular
reflection boundary condition for a semi-bounded
plasma has been shown to be entirely equivalent
with the Fourier transform development provided
that the E(x) is extended into the region x < 0 in
an odd function manner, E(x) = −E(−x) [5,7].
Recently Lee and Lee [8] investigated the spatial
echoes associated with a propagating surface
wave in a semi-bounded plasma. In that work [8],
the authors obtained the echo spots in a more
general circumstance; namely, in terms of both x
and z- coordinates.

The salient feature in solving the Vlasov equation
in a bounded plasma is the odd function
extension of E(x) that gives rise to a surface
term at x = 0 in the Fourier transform of the
Poisson equation. The surface term plays an
important role in the determination of the echo
spots. The odd function discontinuity of E(x)
at the interface is characteristic of a bounded
plasma. The diversity of echo spots [5,8] is due
to the surface term. Physically, the surface term
manifests the reflection of the electric field at the
boundary.

In this work, we investigate spatial echoes
in a slab plasma. Generally, analysis of
surface waves in a slab geometry contains
extra complication as compared to the case of
semi-bounded plasmas because we have two
interfaces, x = 0 and x = L, on both of
which the specular reflection boundary condition
should be satisfied. The extension from the
case of a semi-bounded geometry is not trivial,
and the determination of echo occurrence spots
in the slab is not straightforward. Earlier Lee
and Lim [9] derived the linear dispersion relation
of the surface wave in a slab plasma. In
the present problem of plasma echoes, the
governing equation has an additional term, a
term of the external charges which launches
echoes. Therefore the analytical development of
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the determination of the electric field in a slab is
parallel to the linear analysis in Ref. [9].

In section II, we show how the odd function
extension of Ex(x) emerges from the invariant
argument of the Vlasov equation under the
simultaneous reflections x → −x and v →
−v, thereby satisfying the specular reflection
condition at x = 0 and x = L. In section III,
the plasma electric field is determined in terms
of the external charges by satisfying the electric
continuity equations across the interfaces x =
0 and x = L. An important feature of the
electric field in a slab is the presence of the
cosine series S (see Eq. (3.42)) which stems
from the odd function discontinuity of Ex(x) at
x = 0 and x = L. [ In a semi-bounded plasma,
we have a single term, not a series.] It was
shown by fluid equations that the surface wave
in a slab has two modes; symmetric and anti-
symmetric mode [10]. The kinetic surface wave
also exhibits the two modes. In this work, we
investigate only the echoes associated with the
symmetric mode. Section IV determines the echo
spots by calculating the second order electric
field, the product of two first order electric fields.
This section contains mainly mathematical details
in carrying out the Fourier inversion integrals
by contour integration , which leads to Eqs.
(4.49) and (4.50), the echo spots. We show a
mathematical finesse on how we can utilize the
linear dispersion relation in Fourier inverting the
aforementioned cosine series.

We have a diversity in the echo spots.
The diversity of echo occurrence spots has
been experimentally reported [11] and can be
explained by the boundary terms, and appears
to be due to the reflections of the waves off
the interface. The identification of the echo
spot associated with surface wave appears to be
useful in experimental point of view [11].

2 FORMULATION OF THE
PROBLEM

We consider a plasma consisting of electrons
and stationary ions, the latter forming the uniform
background. The plasma is assumed to occupy
the slab 0 < x < L. The regions x < 0

and x > L are assumed to be vacuum. The
perturbed electron distribution function f(r,v, t)
and the electric field E(r, t) will depend on x and
z-coordinates with the y coordinate ignored since
y direction has a translational invariance. The
basic state is a plasma surface wave propagating
in the slab with the phasor exp(ikxx + ikzz −
iωt) with external charges as prescribed in Eq.
(2.3) below. We have the nonlinear Vlasov
equation and the Poisson equation to describe
the electrostatic perturbation:

∂

∂t
f(v, r, t) + v · ∂f

∂r
− e

m
E(r, t) · ∂f

∂v
= 0 (2.1)

with r = x̂x+ ẑz, v = x̂vx + ẑvz,

E = x̂Ex + ẑEz

∇ ·E =
∂Ex
∂x

+
∂Ez
∂z

=

4π

(
−e
∫
d2vf + ρ0(x, z, t)

)
(2.2)

where f is two-dimensional distribution function,
and ρ0 represents the external charges:

ρ0(x, z, t) = ρ1e
iω1tδ[k0(x− L1)]δ[k0(z − ζ1)] +

ρ2e
iω2tδ[k0(x− L2)]δ[k0(z − ζ2)] (2.3)

where k0 is introduced to make the argument
of the δ–function dimensionless. We solve the
simultaneous equations (2.1) and (2.2) for a
given ρ0(x, z, t) as prescribed by Eq. (2.3). In
mathematical terms, we have an inhomogeneous
system, driven by the source term in Eq. (2.3).
The responses f and E should be determined by
ρ0.

The kinetic equation is supplemented by the
kinematic boundary condition which we assume
to be the specular reflection condition

f(vx, x = 0) = f(−vx, x = 0), f(vx, x = L)

= f(−vx, x = L) (2.4)

Assuming that the external perturbation is small,
we solve Eqs. (2.1) and (2.2) by successive
approximation. First, the linear solution of
Eq. (2.1) will be obtained for f with the
boundary condition (2.4). Substituting this
solution in Eq. (2.2) yields an integral equation
for the electric field which is solved by Fourier
transform. Then the linear solution will be
used to obtain the higher order solutions. We
work only up to the second order. The
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higher order distribution function should also
satisfy the boundary condition (2.4). The
electric field should satisfy the electric boundary
conditions: the normal component of the electric
displacement Dx(x) and the tangential electric
field Ez(x) are continuous across the interface.

The specular reflection boundary conditions in
Eq. (2.4) can be satisfied by extending the
electric field components by the recipe [9]

Ex(−x) = −Ex(x), Ex(2L− x) = −Ex(x) (2.5)

Ez(−x) = Ez(x), Ez(2L− x) = Ez(x) (2.6)

The functions Ex(x) and Ez(x) as defined by
Eqs. (2.5) and (2.6) are plotted in Figures
3 and 4 in Ref. [12] with a linear profile
assumed (interchange letters x nd z therein).
Ex(x) and Ez(x) are piecewise continuous with
discontinuities at x = ±nL (n: integer). The jump
of Ex(x) at the discontinuities x = ±nL should

be carefully accounted for in Fourier transforming
∂Ex/∂x. Let us Fourier transform the above
equations with respect to t and z. In this work,
the Fourier transforms are defined by

f(k, ω) =

∫ ∞
−∞

dx

∫ ∞
−∞

dtf(x, t)e−ikx+iωt

f(x, t) =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π
f(k, ω)eikx−iωt

Equation (2.1) is transformed to the form

−i(ω − k · v)f(v,k, ω)− e

m

∫
dω′

2π

∫
d2k′

(2π)2
E(k− k′, ω − ω′) · ∂

∂v
f(v,k′, ω′) = 0 (2.7)

where k = x̂kx + ẑkz.

In Fourier transforming Eq. (2.2), care should be
exercised in regard to the term ∂Ex/∂x:

∫ ∞
−∞

dx

∫ ∞
−∞

dze−ikxx−ikzz
∂

∂x
Ex(x, z, ω) =

∫ ∞
−∞

dxe−ikxx
∂

∂x
Ex(x, kz, ω) =

ikxEx(kx, kz, ω) +

[
Ex(x, kz, ω)e−ikxx

]( ∣∣∣∣L−
0+

+

∣∣∣∣2L−
L+

+

∣∣∣∣3L−
2L+

+ · · ·
)

−
[
Ex(x, kz, ω)e−ikxx

]( ∣∣∣∣−L+

0−
+

∣∣∣∣−2L+

−L−
+

∣∣∣∣−3L+

−2L−
+ · · ·

)
(2.8)

where ±nL± = ±nL ± ε (n = 1, 2, · · · ) with ε positive infinitesimal. Then, Fourier transform of Eq.
(2.2) becomes

ik ·E(k, ω) +N(kz, kx, ω) = 4π

[
−e
∫
f(k,v, ω)d2v + ρ0(k, ω)

]
(2.9)

N(kz, kx, ω) = A(coskxε+ coskx2L− + coskx2L+ + coskx4L− + coskx4L+ + · · · )

+B(coskxL
− + coskxL

+ + coskx3L− + coskx3L+ + · · · )

= 2A(
1

2
+ cos2kxL+ cos4kxL+ · · · ) + 2B(coskxL+ cos3kxL+ · · · )

where A = 2Ex(0−, kz, ω), B = 2Ex(L−, kz, ω). In writing the last line, we put L+ = L− = L, and
ε = 0. The N(kx, kz, ω) term in Eq. (2.9) is characteristic of a slab plasma and responsible for the
diversity of surface wave echoes, as compared with an infinite plasma.
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Equation (2.3) gives

ρ0(k, ω) =
2π

k20
ρ1δ(ω + ω1)e−ikxL1 e−ikzζ1 + 1→ 2 (2.10)

Equations (2.7) and (2.9) constitute a set of nonlinear simultaneous equations . We solve the set of
equations by successive approximations in terms of perturbation series:

f(k,v, ω) = f0(v) + f (1)(k,v, ω) + f (2)(k,v, ω) + · · ·

E(k, ω) = E(1)(k, ω) + E(2)(k, ω) + · · ·

Breaking down Eqs. (2.7) and (2.9) order by order, we have

−i(ω − k · v)f (1)(k,v, ω) =
e

m
E(1)(k, ω) · df0

dv
(2.11)

ik ·E(1)(k, ω) +N(kz, kx, ω) = 4π

[
−e
∫
f (1)(k,v, ω)d2v + ρ0(k, ω)

]
(2.12)

−i(ω − k · v)f (2)(k,v, ω) =
e

m
E(2)(k, ω) · df0

dv
+

e

m

∫ ∞
−∞

dω′

2π
×

∫ ∞
−∞

dk′x
2π

∫ ∞
−∞

dk′z
2π

E(1)(k− k′, ω − ω′) · ∂
∂v

f (1)(k′, ω′,v) (2.13)

i k ·E(2)(k, ω) = −4πe

∫
f (2)(k,v, ω)d2v (2.14)

3 LINEAR SOLUTION

Equations (2.11) and (2.12), and ∇×E = 0 give

E(1)(k, ω) =
ik

k2 ε(k, ω)
[N(kz, ω)− 4πρ0(k, ω)] (3.1)

where

ε(k, ω) = 1 +
ω2
p

k2

∫
d2v

k · df0
dv

ω − k · v (3.2)

is the dielectric function (ωp is the plasma frequency). The constants A and B in N are determined
from the electric boundary conditions as shown in the following. Then, E(1) is determined entirely
in terms of the external charges. One of the electric boundary conditions is the continuity of the
normal component of electric displacement, Dx(x). The latter in the plasma side can be obtained
from Eq. (2.12). By definition, Dx(k, ω) = Ex(k, ω) + 4πi

ω
Jx(k, ω) where J is the current, Jx(k, ω) =

−e
∫
d2v vx f(k, ω,v). We calculate

4πi

ω
Jx =

4πi

ω
(−e)

∫
vxfd

2v =
ω2
p

ω

∫
d2vvx

Ej
∂f0
∂vj

ω − k · v

5
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where we used Eq. (2.11). The above quantity equals to (ε − 1)Ex. Thus we have Dx = εEx.
This equality can be most easily proved by assuming f0 a Maxwellian. Use ∂f0

∂vj
= − T

m
vjf0 and

E · v = Ex
kx

k · v to simplify the last term, and thus

4πi

ω
Jx = −Ex

ω2
p

ω

T

m

∫
vx
kx

k · v
ω − k · v f0 d

2v

Put k·v
ω−k·v = −1 + ω

ω−k·v . (−1)–term vanishes upon integration, and we have

4πi

ω
Jx = −Ex

ω2
p

kx

T

m

∫
vxf0

ω − k · vd
2v = Ex

ω2
p

kx

∫ ∂f0
∂vx

ω − k · vd
2v

= −Ex ω2
p

∫
f0 d

2v

(ω − k · v)2
= Ex

ω2
p

k2

∫
d2v

k · ∂f0
∂v

ω − k · v q.e.d.

Using the above result, we obtain

D(1)
x (k, ω) = ε(k, ω) E(1)

x (k, ω) =
ikx
k2

[N − 4πρ0(k, ω)] (3.3)

Also we should invert

E(1)
z (k, ω) =

ikz
k2 ε(k, ω)

[N(kz, ω)− 4πρ0(k, ω)] (3.4)

To invert Eq. (3.3), we write

D(1)
x (x, kz, ω) =

∫ ∞
−∞

dkx
2π

eikxx
2ikx
k2

[
A(

1

2
+ cos2kxL+ cos4kxL+ · · · )

+B(coskxL+ cos3kxL+ · · · )− 2πρ0(k, ω)

]
(3.5)

It is important to integrate term by term, and sum over the integrated terms. Let us consider a term∫ ∞
−∞

kxdkx
k2

eikxx cos nkxL (n = 1, 2, 3, · · · )

=
1

2

∫ ∞
−∞

kxdkx
k2

eikxx (einkxL + e−inkxL) = i

∫ ∞
−∞

kxdkx
k2

einkxLsin kxx (3.6)

To obtain the last equality, we changed variable kx → −kx. Therefore, Eq. (3.5) takes the form

D(1)
x (x, kz, ω) =

i

π

∫ ∞
−∞

kxdkx
k2

[
A

2
eikxx +Aisin kxx (e2ikxL + e4ikxL + · · · )

+iBsin kxx(eikxL + e3ikxL + · · · )− 2πρ0(k, ω)eikxx
]

(3.7)

Likewise, we can write the inversion integral of Eq. (3.4) in the form

E(1)
z (x, kz, ω) =

i

π

∫ ∞
−∞

kzdkx
k2ε

[
A

2
eikxx +Acos kxx (e2ikxL + e4ikxL + · · · )

6
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+Bcos kxx (eikxL + e3ikxL + · · · )− 2πρ0(k, ω)eikxx
]

(3.8)

Equations (3.7) and (3.8) are the plasma solutions in which A and B, the constants, should be
determined from the boundary conditions. In particular, the boundary values are as follows.

D(1)
x (0, kz, ω) = −A

2
− 2i

∫ ∞
−∞

dkxkx
k2

ρ0(k, ω) (3.9)

At x = L, Eq. (3.7) gives quite simple result. After successive cancellations, the coefficient of A
becomes zero. The coefficient of B inside the large bracket reduces to − 1

2
. Therefore we get

D(1)
x (L, kz, ω) =

B

2
− 2i

∫ ∞
−∞

dkxkx
k2

ρ0(k, ω)eiLkx (3.10)

Equation (3.8) immediately gives

E(1)
z (0, kz, ω) =

i

π

∫ ∞
−∞

dkxkz
k2ε

[
AS1 +BS2 − 2πρ0(k, ω)

]
(3.11)

where S1 =
1

2
+ e2iLkx + e4iLkx + · · · , S2 = eiLkx + e3iLkx + · · · (3.12)

At x = L, the following interesting relation (in view of Eq. (3.11)) can be easily proved:

E(1)
z (L, kz, ω) =

i

π

∫ ∞
−∞

dkxkz
k2ε

[
AS2 +BS1 − 2πρ0(k, ω)eiLkx

]
(3.13)

Next, we should obtain the vacuum solutions outside the slab. We have ∇2φ(x, z) = 0, with E =
−∇φ. Fourier transforming this equation with respect to z, the vacuum equation reads

∂2

∂x2
φ(x, kz)− k2zφ = 0 (3.14)

which is solved by the functions φ ∼ exp(±kzx). We obtain

i) in the region x > L:

Ex(x, kz) = A′kze
−kzx, Ez(x, kz) = −iA′kze−kzx (3.15)

ii) in the region x < 0:

Ex(x, kz) = −B′kzekzx, Ez(x, kz) = −iB′kzekzx (3.16)

where A′ and B′ are constants to be determined from the boundary conditions at the interfaces.
Using the preceding equations, we can write the continuity equations. Continuity of Dx at x = 0
yields

−A
2
− 4πi

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

kxdkx
k2

e−ikxL1 + 1→ 2 = −B′kz (3.17)

Continuity of Dx at x = L yields

B

2
− 4πi

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

kxdkx
k2

eikx(L−L1) + 1→ 2 = A′kze
−kzL (3.18)

Continuity of Ez at x = 0 yields

i

π

∫ ∞
−∞

kzdkx
k2ε

[
AS1 +BS2

]
− 4πi

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

kzdkx
k2ε

e−ikxL1 + 1→ 2

7
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= −ikzB′ (3.19)

Continuity of Ez at x = L yields

i

π

∫ ∞
−∞

kzdkx
k2ε

[
BS1 +AS2

]
− 4πi

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

kzdkx
k2ε

eikx(L−L1) + 1→ 2

= −ikzA′ e−kzL (3.20)

Equations (3.15)–(3.20) determine the four constants A, B,A′, andB′. A′ andB′ are easily eliminated,
and we have simultaneous equations for A and B:

A(
1

2
+ I1) +BI2 = ξ0 (3.21)

AI2 +B(
1

2
+ I1) = ξL (3.22)

where

Ii =
kz
π

∫ ∞
−∞

dkx
k2ε

Si (i = 1, 2) (3.23)

ξ0 =
4π

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

dkx
k2

(
kz
ε
− ikx)e−ikxL1 + 1→ 2 (3.24)

ξL =
4π

k20
ρ1δ(ω + ω1)e−ikzζ1

∫ ∞
−∞

dkx
k2

(
kz
ε

+ ikx)eikx(L−L1) + 1→ 2 (3.25)

Equations (3.21) and (3.22) yield

A =
1

∆

[
(
1

2
+ I1)ξ0 − I2ξL

]
(3.26)

B =
1

∆

[
(
1

2
+ I1)ξL − I2ξ0

]
(3.27)

∆ = (
1

2
+ I1)2 − I22 (3.28)

Let us digress here to investigate dispersion relation of the surface wave that is implied in the above
equations. When ρ1 = ρ2 = 0 (ξ0 = ξL = 0), Eqs. (3.21) and (3.22) give the solvability condition,

∆ = (
1

2
+ I1 + I2)(

1

2
+ I1 − I2) = 0 (3.29)

Therefore, 1
2

+ I1 = ±I2 are the two dispersion relations, respectively for the symmetric and anti-
symmetric mode in a plasma slab. We write Eq. (3.29) in the form

1

2
+
kz
π

∫ ∞
−∞

dkx
k2ε

[
1

2
± eikxL + e2ikxL ± e3ikxL + e4ikxL ± · · ·

]
= 0 (3.30)

Although the series consisting of the exponential terms are not convergent as they are, they are
convergent upon picking up the poles located in the upper kx-plane from the denominator. Summing
up the two series formally, the two dispersion relations are obtained in the form [9]

1 +
kz
π

∫
dkx
k2ε

[
1± eiLkx
1∓ eiLkx

]
= 0 (3.31)

8
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In the fluid limit, Eq. (3.31) yields the dispersion relation that agrees with the slab dispersion relations
obtained from the fluid equations [9,10]. We will use the dispersion relation, 1

2
+ I1 = ±I2, to simplify

Eqs. (3.26) and (3.27). Let us write

A =
1

2I2
[ξ0(

1

2
+ I1)− ξLI2]

[
1

1
2

+ I1 − I2
− 1

1
2

+ I1 + I2

]
(3.32)

For the symmetric mode, we can put 1
1
2
+I1+I2

= δ( 1
2

+ I1 + I2) and the other term is negligible.

Therefore we obtain

A =
1

2

ξ0 + ξL
1
2

+ I1 + I2
= B (3.33)

For the anti-symmetric mode, 1
1
2
+I1−I2

= δ( 1
2

+ I1 − I2) and the other term is negligible. Therefore

we obtain

A =
1

2

ξ0 − ξL
1
2

+ I1 − I2
= −B (3.34)

In this work, we investigate the symmetric mode echoes. Let us calculate ξ0 and ξL in Eqs. (3.24)
and (3.25) by contour integration. The kx-contour in ξ0 (ξL) should wind the lower (upper) kx-plane.
The following results can be easily verified:∫ ∞

−∞
dkx

kz
k2

e−ikxL1 = π

[
H(Re kz)e

−L1kz −H(−Re kz)eL1kz

]
(3.35)

∫ ∞
−∞

dkx
kx
k2

e−ikxL1 = −i π
[
H(Re kz)e

−L1kz +H(−Re kz)eL1kz

]
(3.36)

∫ ∞
−∞

dkx
kz
k2

eikx(L−L1) = −π
[
H(−Re kz)ekz(L−L1) −H(Re kz)e

−kz(L−L1)

]
(3.37)

∫ ∞
−∞

dkx
kx
k2

eikx(L−L1) = iπ

[
H(−Re kz)ekz(L−L1) +H(Re kz)e

−kz(L−L1)

]
(3.38)

where H(x) is the step function: H(x) = 1 for x > 0 or H(x) = 0 for x < 0. In evaluating ξ0,L, the
contribution from the pole at ε = 0 can be neglected. Thus we obtain

ξ0 =
4π2

k20
ρ1δ(ω + ω1)e−ikzζ1

[
(
1

ε
− 1)H(Re kz)e

−L1kz − (
1

ε
+ 1)H(−Re kz)eL1kz

]
+

+(1→ 2) (3.39)

ξL =
4π2

k20
ρ1δ(ω + ω1)e−ikzζ1

[
− (

1

ε
+ 1)H(−Re kz)ekz(L−L1) + (

1

ε
− 1)H(Re kz)e

−kz(L−L1)

]

+(1→ 2) (3.40)

where (1→ 2) means the preceding term with the subscript 1 replaced by subscript 2. For symmetric
mode, the expression for N(kx, kz, ω) becomes (see the equation below Eq. (2.9))

N(kz, kx, ω) = (ξ0 + ξL)(
1

2
+ I1 + I2)−1S(kxL) + (1→ 2) (3.41)

9
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with S(kxL) =
1

2
+ coskxL+ cos2kxL+ cos3kxL+ cos4kxL+ · · · (3.42)

In Eq. (3.41), ( 1
2

+I1 +I2)−1S(kxL) = δ( 1
2

+I1 +I2)S(kxL) =
[
S(kxL)

]
1
2
+I1+I2=0

. In words, S(kxL)

in Eq. (3.41) is calculated by means of the dispersion relation 1
2

+ I1 + I2 = 0. Keeping this in mind,
the δ-function designation will be omitted. Thus the electric field in the slab, Eq. (3.1), is written as

E(1)(k, ω) =
ik

k2 ε(k, ω)
P (1, ω, kz)

(
R(1, kz)S(kx)− 2e−ikxL1

)
+ 1→ 2 (3.43)

where

P (1, ω, kz) =
4π2

k20
ρ1δ(ω + ω1)e−ikzζ1 (3.44)

R(1, kz) = (
1

ε
− 1)H(Re kz)(e

−kz(L−L1) + e−L1kz )− (
1

ε
+ 1)H(−Re kz)(ekz(L−L1) + eL1kz )

(3.45)

Equation (3.43) is the electric field in the slab, generated by the external charges and the plasma,
satisfying the boundary conditions. This equation will be used to calculate the quadratic second order
electric field in the next section.

4 THE SECOND ORDER SOLUTION AND ECHO OCCURRENCE

Next, we deal with the second order equations, Eqs. (2.10) and (2.11). Using Eq. (2.10) in Eq. (2.11)
yields, owing to the electrostatic nature of E(2),

E(2)(ω,k) =
4πe2

m

k

k2ε(k, ω)

∫
d2v

k ·Q
(ω − k · v)2

(4.1)

where Q stands for

Q(ω,k,v) =

∫ ∞
−∞

dω′

2π

∫ ∞
−∞

dk′x
2π

∫ ∞
−∞

dk′z
2π

E(1)(ω − ω′,k− k′)f (1)(ω′,k′,v) (4.2)

Substituting the first order solutions, Eqs. (2.8) and (3.5), into the above equations, we can write E(2)

in the form,

E(2)(ω,k) =
−ie3

2π2m2

k

k2ε(k, ω)

∫
d2v

(ω − k · v)2

∫
dk′z

∫
dk′x

∫
dω′×

k · (k− k′)

ε(ω − ω′,k− k′)(k− k′)2
k′ · df0

dv

k′2ε(ω′,k′)(ω′ − k′ · v)

×[Γ(1, ω′,k′) + 1→ 2] [Γ(1, ω − ω′,k− k′) + 1→ 2] (4.3)

where Γ(1, ω,k) = P (1, ω, kz)

(
R(1, kz)S(kxL)− 2e−ikxL1

)
(4.4)

For a Maxwellian f0(v), we have

k′ · df0
dv

ω′ − k′ · v == −m
T
f0(−1 +

ω′

ω′ − k′ · v ) (4.5)

10
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where –1 can be assumed to contribute nothing to the velocity integral due to phase mixing. Thus
k′ ·d/dv in Eq. (4.3) will be replaced by −mω′/T . Equation (4.3) will be used for investigation of echo
occurrence.

The various cross terms in the product Γ(1)Γ(2) are the candidates of echo resonances. We choose
to investigate a cross term which is 1–term in Γ(1) multiplied by the exponential term in Γ(2) in Eq.
(4.3):

P (1, ω′, k′z)R(1, k′z)S(k′xL)P (2, ω − ω′, kz − k′z)(−2)e−i(kx−k
′
x)L2 (4.6)

With the above term, the t–inversion
∫
dω/2π e−iωt(· · · ) can be easily carried out by simply putting

ω′ → −ω1 and ω → −ω3 = −(ω1 + ω2):

E(2)(t,k) = C1 e
iω3t

∫
d2vf0

k

k2
1

(ω3 + k · v)2
e−ikzζ2 e−ikxL2

×
∫
dk′ze

i(ζ2−ζ1)k′zR(1, k′z)

∫
dk′x

k · (k− k′)

(k− k′)2k′2(ω1 + k′ · v)
S(k′xL)eik

′
xL2 (4.7)

where C1 is a constant consisting of unessential factors, and we have taken the dielectric functions
out of the integral. We eventually can show that they become the product [ε(−ω1)ε(−ω2)ε(−ω3)]−1

with the k–dependance obliterated.

Let us write explicitly the inversion integral of Eq. (4.7) with respect to k:

E(2)(t, x, z) = C2 e
iω3t

∫
d2vf0
v2x

∫
dkze

ikz(z−ζ2)
∫
dkx e

ikx(x−L2) k

k2
1

(kx + kzvz+ω3
vx

)2

×
∫
dk′ze

i(ζ2−ζ1)k′zR(1, k′z)

∫
dk′x

k · (k− k′)

(k− k′)2k′2(ω1 + k′ · v)
S(k′xL)eik

′
xL2 (4.8)

The main contribution to the
∫
dkx–integral comes from the double pole at

kx = −kzvz + ω3

vx
(4.9)

The residue is obtained by taking ∂/∂kx [Integrand×(kx+ kzvz+ω3
vx

)2] and substituting Eq. (4.9) for kx.
Here it is sufficient to differentiate the exponential functions only because they yield asymptotically
dominant result. After performing the

∫
dkx–integration, we have

E(2)(t, x, z) = C3(x− L2) eiω3t

∫
d2vf0
v2x

exp [−i(x− L2)ω3/vx]

×
∫
dkz

k

k2
eikz(z−ζ2)H(−Im kzvz

vx
) exp[−i(x− L2)kzvz/vx]

∫
dk′ze

i(ζ2−ζ1)k′zR(1, k′z)

∫
dk′x

k · (k− k′)

(k− k′)2k′2(ω1 + k′ · v)
S(k′xL)eik

′
xL2 (4.10)

where k =

(
− kzvz + ω3

vx
, kz

)
(4.11)

11
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Integral
∫
dk′x can be carried out by picking up the simple pole at ω1 + k′ · v = 0 or at k′x =

−(k′zvz + ω1)/vx, giving

E(2)(t, x, z) = C4 (x− L2) eiω3t

∫
d2vf0
v3x

e−i(x−L2)ω3/vx e−iL2ω1/vx

×
∫
dkz

k

k2
H(−Im kzvz

vx
) exp[ikz(z − ζ2)− i(x− L2)kzvz/vx]

×
∫
dk′zH(−Im k′zvz

vx
)exp [i(ζ2 − ζ1)k′z − iL2k

′
zvz/vx]R(1, k′z)

k · (k− k′)

(k− k′)2k′2
S(k′xL)

(4.12)

where k′ =

(
− k′zvz + ω1

vx
, k′z

)
(4.13)

In carrying out the above integral, we pick up the simple poles at k2 = 0 and k′2 = 0. Equations
(4.11) and (4.13) give respectively

k2 =
v2

v2x
(kz − kz+)(kz − kz−) (4.14)

k′2 =
v2

v2x
(k′z − k′z+)(k′z − k′z−) (4.15)

where

kz± = −ω3

v2
(vz ± ivx) (4.16)

k′z± = −ω1

v2
(vz ± ivx) (4.17)

Which simple pole we should take depends upon the contours that must be used. In any case, we
have k·(k−k′)

(k−k′)2 = 1
2
. Thus integral

∫
dk′z in Eq. (4.12) is written as∫

dk′z(· · · ) =
ivx
4ω1

∫
dk′z

(
1

k′z − k′z+
− 1

k′z − k′z−

)
exp [i(ζ2 − ζ1)k′z − iL2k

′
zvz/vx]

× H(−Im k′zvz
vx

) R(1, k′z)S(−ω1 + vzk
′
zL

vx
L) (4.18)

Let us assume

θ ≡ ζ2 − ζ1 − L2
vz
vx

< 0 (4.19)

Then the k′z-contour should encircle the lower-half k′z plane. Thus we obtain∫
dk′z(· · · ) =

πvx
2ω1

[
H(vx)eiθk

′
z+R(1, k′z+)S(−ik′z+L)

−H(−vx)eiθk
′
z−R(1, k′z−)S(ik′z−L)

]
(4.20)

12
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Let us assume

θ0 ≡ z − ζ2 − (x− L2)
vz
vx

< 0 (4.21)

Then the kz-contour in Eq. (4.12) should encircle the lower-half kz plane. Thus we obtain∫
dkz(· · · ) =

ivx
2ω3

∫
dkz k

(
1

kz − kz+
− 1

kz − kz−

)
exp [ikzθ0]H(−Im kzvz

vx
)

=
πvx
ω3

[
k(kz+)H(vx)eikz+θ0 − k(kz−)H(−vx)eikz−θ0

]
(4.22)

∫
dk′z(· · · )

∫
dkz(· · · ) =

π2v2x
2ω1ω3

[
H(vx)k(kz+)exp[iθk′z+ + iθ0kz+]R(1, k′z+)S(−ik′z+L)+

+H(−vx)k(kz−)exp[iθk′z− + iθ0kz−]R(1, k′z−)S(ik′z−L)

]
(4.23)

The series S(φ), where φ represents either −ik′z+L or ik′z−L, can be decomposed:

S(φ) =
1

2
+ cosφ+ cos2φ+ cos3φ+ · · ·

=
1

2
[
1

2
+ eiφ + e2iφ + e3iφ + · · ·+ 1

2
+ e−iφ + e−2iφ + e−3iφ + · · · ] (4.24)

We shall use the dispersion relation in Eq. (3.30) to evaluate the above series. Eq. (3.30) for the
symmetric mode can be written as

i

2πε

∫ ∞
−∞

dξ(
1

ξ + ikz
− 1

ξ − ikz
)[

1

2
+ eiξL + e2iξL + e3iξL + · · · ] = −1

2
(4.25)

This can be contour-integrated by surrounding the upper ξ-plane. We have:

If Re kz < 0, 1
2

+ekzL+e2kzL+e3kzL+· · · = ε
2
. If Re kz > 0, 1

2
+e−kzL+e−2kzL+e−3kzL+· · · = − ε

2
.

If this result is applied to Eq. (4.24), we can write

S(φ) =
ε

4
H(Re[−iφ]) +X+H(Re[iφ])− ε

4
H(Re[iφ]) +X−H(Re[−iφ]) (4.26)

where X± are unknown quantities which will be discarded in the following by assuming that they
contribute only to phase-mixing integrals. Thus, we write

S(ik′z−L) =
ε

4
H(−vz)−

ε

4
H(vz) (4.27)

S(−ik′z+L) =
ε

4
H(vz)−

ε

4
H(−vz) (4.28)

Equation (3.45) and the above equations yield

R(k′z−)S(ik′z−L) =
1 + ε

4
H(vz)(e

k′z−(L−L1) + eL1k
′
z−) +

1− ε
4

H(−vz)(e−k
′
z−(L−L1) + e−L1k

′
z−)

R(k′z+)S(−ik′z+L) = −1 + ε

4
H(vz)(e

k′z+(L−L1) + eL1k
′
z+)− 1− ε

4
H(−vz)(e−k

′
z+(L−L1) + e−L1k

′
z+)

13
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Therefore the velocity integral in Eq. (4.12) consists of the following four parts.∫ ∞
0

dvx

∫ ∞
0

dvz(· · · )(eϕ1 + eϕ
′
1) : (4.29)

ϕ1 = k′z+(L− L1) + iθk′z+ + iθ0kz+ − i(x− L2)ω3/vx − iL2ω1/vx (4.30)

ϕ′1 = k′z+L1 + iθk′z+ + iθ0kz+ − i(x− L2)ω3/vx − iL2ω1/vx (4.31)

∫ ∞
0

dvx

∫ 0

−∞
dvz(· · · )(eϕ2 + eϕ

′
2) : (4.32)

ϕ2 = −k′z−(L− L1) + iθk′z+ + iθ0kz+ − i(x− L2)ω3/vx − iL2ω1/vx (4.33)

ϕ′2 = −k′z−L1 + iθk′z+ + iθ0kz+ − i(x− L2)ω3/vx − iL2ω1/vx (4.34)

∫ 0

−∞
dvx

∫ ∞
0

dvz(· · · )(eϕ3 + eϕ
′
3) : (4.35)

ϕ3 = k′z−(L− L1) + iθk′z− + iθ0kz− − i(x− L2)ω3/vx − iL2ω1/vx (4.36)

ϕ′3 = k′z−L1 + iθk′z− + iθ0kz− − i(x− L2)ω3/vx − iL2ω1/vx (4.37)

∫ 0

−∞
dvx

∫ 0

−∞
dvz(· · · )(eϕ4 + eϕ

′
4) : (4.38)

ϕ4 = −k′z−(L− L1) + iθk′z− + iθ0kz− − i(x− L2)ω3/vx − iL2ω1/vx (4.39)

ϕ′4 = −k′z−L1 + iθk′z− + iθ0kz− − i(x− L2)ω3/vx − iL2ω1/vx (4.40)

We are interested in the imaginary parts of the phases. After some algebra we obtain

Im ϕ1 =
vx
v2

[ω2L2 − ω1(L− L1)− xω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.41)

Im ϕ′1 = −vx
v2

[ω3(x− L2) + ω1(L1 + L2)]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.42)

Im ϕ2 = −vx
v2

[ω1(L− L1) + ω1L2 + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.43)

Im ϕ′2 = −vx
v2

[ω1(L1 + L2) + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.44)

Im ϕ3 = −vx
v2

[ω1(L1 − L) + ω1L2 + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.45)

Im ϕ′3 = −vx
v2

[−ω1L1 + ω1L2 + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.46)
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Im ϕ4 = −vx
v2

[ω1(L− L1) + ω1L2 + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.47)

Im ϕ′4 = −vx
v2

[ω1(L1 + L2) + (x− L2)ω3]− vz
v2

[ω3(z − ζ2) + ω1(ζ2 − ζ1)] (4.48)

Among the above integrals, ϕ3 and ϕ′3 yield acceptable echo coordinates. Putting Im ϕ3 = 0 gives
an echo spot:

xecho =
ω1(L− L1) + ω2L2

ω3
, zecho =

ω1ζ1 + ω2ζ2
ω3

(4.49)

Putting Im ϕ′3 = 0 gives an echo spot:

xecho =
ω1L1 + ω2L2

ω3
, zecho =

ω1ζ1 + ω2ζ2
ω3

(4.50)

Note that zecho’s are the same for the above
phases.

We obtained two echo spots as given by Eqs.
(4.49)–(4.50). Among these, xecho in Eq. (4.49),
which depends on the slab thickness L, is
characteristic of slab. It appears that the other
can be in a semi-bounded or an infinite plasma as
well. The echo spots that we obtained need to be
checked against the inequalities θ0 < 0 and θ < 0
postulated at the outset of contour integration.
We have a great variety of combinations of the
parameters ω1, ω2, L1, L2, ζ1, and ζ2. It appears
that there is no difficulty to have the premises
θ0 < 0 and θ < 0, and the condition 0 < xecho <
L satisfied.

5 DISCUSSION

Equations (4.49) and (4.50) are the main results
of this work in locating the echo spots associate
with the the surface of the symmetric mode in a
slab plasma launched by two oscillating charges
at (x, z) = (L1, ζ1) and (L2, ζ2). The echo at
Eq. (4.49) is slab surface wave-proper. Our
search for the echo spots are not exhaustive;
the echoes associated with the anti-symmetric
mode should be investigated separately, and
we put aside many other product terms in Eq.
(4.3). It appears that we have diversity of echo
locations in a slab plasma. It was reported of
experiment that we have multiple echo spots
in a semi-bounded plasma [11]. The diversity
appears to be due to reflections of the wave at
the interface. Mathematically, the discontinuity of
Ex(x) at x = ±nL is responsible for the diversity.

In reality, bounded plasmas are usual rather
than exceptional. Important literatures to
get acquainted with this field are References
[10] and [13], among others. Earlier authors
investigated in semi-bounded plasmas the
surface wave echoes [4,5,8] and the nonlinear
wave interactions [14]. The investigation of the
surface waves in a slab geometry is scarcely
found in the literature. The experimental report
appears to be mainly with regard to a semi-
bounded plasma. The slab plasma appears to
be worthy of more attention. The kinetic theory
of the surface waves in a slab has been dealt
with in References [9] and [15]. In Reference
[15], the electric field is expanded in a cosine
series. In Reference [9], which is the basis
of the present work, automatically derives the
exponential series by extending the electric field
in an oddly manner.

6 CONCLUSION

In a plasma slab, the spatial echoes can occur at
various spots. The diversity of echo spots is firstly
due to the multiplicity of the wave modes, the
symmetric and the anti-symmetric modes of the
surface wave, each satisfying different dispersion
relation, and secondly due to the reflections of
the waves off the two interfaces. In this work,
we investigated the spatial echoes associated
with the symmetric mode. Our investigation is
not exhaustive since an exemplary quadratic
interaction term was chosen. The mathematical
analysis accompanying the relevant contour
integration shown in this work would be useful
for calculation of different interaction terms. The
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temporal echoes in a slab geometry would be an
interesting subject of future investigation.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

References
[1] Gould RW, O’Neil TM, Malmberg JH.

Plasma wave echo. Phys. Rev. Lett.
1967;19:219-222.

[2] Krall NA, Trivelpiece AW. Principles of
Plasma Physics. McGraw-Hill: New York;
1974.

[3] Malmberg JH, Wharton CB, Gould RW,
O’Neil TM. Plasma wave echo experiment.
Phys. Rev. Lett. 1968;20:95-98.

[4] Sitenko AG, Pavlenko VN, Zasenko VI.
Echo in a half-space plasma. Phys. Letters.
1975;53A:259-260.

[5] Lee HJ, Lee MJ. Echo in a Semi-Bounded
Plasma. The Open Plasma Physics Journal.
2015;(8):1-7.

[6] Landau L. On the vibration of the electronic
plasma. J. Phys. 1946;(10):25-34.

[7] Alexandrov AF, Bogdankevich LS,
Rukhadze AA. Principles of Plasma

Electrodynamics. Springer-Verlag: New
York; 1984.

[8] Lee HJ, Lee MJ. Surface wave echo in a
semi-bounded plasma. J. of Modern Phys.
2016;(7):1-13.

[9] Lee HJ, Lim YK. Kinetic theory of surface
waves in a plasma slab. J. of Korean Phys.
Soc. 2007;50:1056-1061.

[10] Gradov OM, Stenflo L. Linear theory of
a cold bounded plasmas. Phys. Reports.
1983;(3):111-137.

[11] Shivarova A, Zhelyazkov I. Surface waves in
gas-discharge plasmas in Electromagnetic
Surface Modes. In: A. D. Boardman, editor.
Wiley: New York; 1982.

[12] Lee HJ, Kim CG. Kinetic theory of
electrostatic surface waves in magnetized
plasmas. J. of Korean Phys.Soc.
2009;54:85-93.

[13] Vukovic S. Surface waves in plasmas and
solids. In: Vukovic, editor. World Scientifi;
1986.

[14] Sitenko AG, Pavlenko VN. Kinetic theory
of the nonlinear wave interaction in a
semi-bounded plasma. Sov. Phys. JETP.
1978;47(1):65-72.

[15] Cooperberg DJ. Electron surface waves in a
plasma slab with uniform ion density. Phys.
plasmas. 1988;( 5):853-861.

—————————————————————————————————————————————————–
c©2016 Lee and Lim; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/16540

16

http://creativecommons.org/licenses/by/4.0

	INTRODUCTION
	FORMULATION OF THE PROBLEM
	LINEAR SOLUTION
	THE SECOND ORDER SOLUTION AND ECHO OCCURRENCE
	DISCUSSION
	CONCLUSION

