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Abstract

In this paper we proved Varanovskaya type theorem for gkres Bernstein-Chlodowsky
polynomials.

Keywords: Generalized Bernstein-Chlodowsky operator; approxim#tieorem; analog of Bernstein type
theorem.

1 Introduction

The polynomial constructed by Bernstein in 1912 for a continuowiéun has the form

gn(f;x):g f(%}:nk(x)k(l—x)”_k, 0<x<1, k=0L.n.

0

In 1932, Bernstein's follower Chlodowsky had congiedcthe increasing sequences of polynomials
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B,(f;x) kzof(kb“}:( J( njn_k,OSXSbn, 1

that was named as Bernstein-Chlodowsky polynomials soneelaiter,

where

. b
limb, =, Ilm—‘O

n-oo n- o

Note that, the condition imposed tba in the definition of classic Bernstein-Chlodowsky operadoes not

provide continuous convergence B‘n (f ; X) polynomials to the functionf (X)

Note here the papers [1-5,6,7,8] related directly to Bleenstein-Chlodowsky polynomials and their
generalizations and the paper [4,9,10] generalizing theltseof the paper [11] on infinitely increasing
interval from which we can also conclude a number obrén@s on these polynomials. Some main
properties of the polynomials (1.1) were stated in the mopbdd]. About applications of general positive
linear operator we refer to [13,14].

In the paper we prove an approximation theorem for Bern&tigiodowsky polynomial.
2 Preliminaries and Auxiliary Results

We have

Bn(f;X)—X2 :M for the function f('[)='[2.

Therefore,

supB, (t*x) - x‘— ”2
x0.b, ]

Then for convergence to zero & — 00 of the right hand part of this equality does not suffice

fullfillment of condition — — ©0 .
n

We'll impose the stronger condition d&y1

=0.

lim
f
Hence it follows that for any natural number
br
lim—-=0.
n- o n4
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Lemma 1.1. For Bernstein-Chlodowsky polynomial (1.1) the following préiper

B (Lx)=1
B, (t;x) = x
B,(t%;x)=x + —X(b“n_ x)

hold.

Theorem 2.1. Let the function f '(x) be uniformly continuous on the semiaxis aﬁij](f ;X) be
Bernstein-Chlodowsky polynomials of ordar for the function f (X) Then for anyX [ [0, bn]

B,(f:x)- f(X)Sg“{“j”ﬁj.

Remark 1.1. Note that theorem 2.1 was proved in [1].

3 Main Results
Now we reduce the main results of this paper.

Theorem 3.1. Let f DCZ[O,OO) and Bn(f,X) be the Bernstein-Chlodowsky polinomials for function
f. Leta sequencébn} satisfy condition

) ab
lim M, (f")==o.

2
>n
oo n

Then for everyX [ [0, bn] the asymptotical equality

B,(fix)=x)+ f;E:()X(bn -X)+p,. p, ~ 0N - e @

Proof. We have

f (%) = f(x)+f (x)(ﬁ - xj + {f_(x) + A(ﬁﬂ(% - sz. (3.2)

n 2 n

By (3.1), we have
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+{ f"2(x) R A( i H(k: _XJZ}XC:(b_Xan (1‘,01) :

nf(x)kb kak_ln_k
T YL Cn(b—j[l bJ ;

Kb,y Kb, o X)) (4 X)L
2 g ][y -

= f(x) + f'(X)(x-X) + f"z(x) o s Xomx) ey x2j+

2 k n-k
C: l 1 — l =
b, b,

:fuy+f“@x@-@+“,akqj

k=0

+i/1(

n

2n k=0 n

B (f:x)= f(x)+- Xy

2n

where

=S e 2 )

We take arbitrary? > 0 and choosingsufficient largen LIN such that

|kbn_><4<bn
N Yn
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£
< E . We divide rn as the sum of two terms:

= AR

n | #n

R RO

2
n

4n

Therefore

(& el
< Mf[1+(%jm + (1+ x”‘)+ (1+ x”‘{k—:” - xj + (1+ xm{% - x)zjs

o
b n

n

K, _

<M ;b 1+
n

X

<M;b" (k:”:X)z +(k:n_XJZ +(kb“ —sz <
o o

= f*n
52

Thus
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B a1 (K X V(X )

SRS C”m[l QJ :
e o e (X
e

Taking into account (3.1) in the last inequality, we get

<&
2

eb bm _e bm
r <— +M —-K(2m
n 2\/— n2 ( ) 2\/ﬁ

—1MK (2m).
n2

For m=4, we have

£ b, b4
r <=

2\/ﬁ n?
b’MK(8) ¢

Since ————— <—,then

—1 MK (8).

n2

b,
r<—fLe.

" Jn
Jn

We denotep, = F r.,

n

This completes the proof of theorem.

4 Conclusion

Thus, we proved Varanovskaya type theorem for generalieeasi&in-Chlodowsky polynomials.
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