Research Journal of Mathematics

Asian Research Journal of Mathematics

7(2): 1-7, 2017; Article no.ARJOM.37734

ISSN: 2456-477X

On Varanovskaya Type Theorem for Generalized Bernstein-Chlodowsky Polynomials

Aytekin E. Abdullayeva^{1*}

¹Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Azerbaijan.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2017/37734

Editor(s)

(1) Hari Mohan Srivastava, Professor, Department of Mathematics and Statistics, University of Victoria, Canada.

**Reviewers:

(1) W. Obeng-Denteh, Kwame Nkrumah University of Science and Technology, Ghana.

(2) Wei Wei, Xi'an University of Technology, China. (3) G. Y. Sheu, Chang-Jung Christian University, And Feng-Chia University, Taiwan.

Complete Peer review History: http://www.sciencedomain.org/review-history/21999

Received: 26th October 2017 Accepted: 16th November 2017

Published: 21st November 2017

Original Research Article

Abstract

In this paper we proved Varanovskaya type theorem for generalized Bernstein-Chlodowsky polynomials.

Keywords: Generalized Bernstein-Chlodowsky operator; approximation theorem; analog of Bernstein type theorem.

1 Introduction

The polynomial constructed by Bernstein in 1912 for a continuous function has the form

$$\overline{B_n}(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k (x)^k (1-x)^{n-k}, \ 0 \le x \le 1, \ k = 0,1,...n.$$

In 1932, Bernstein's follower Chlodowsky had constructed the increasing sequences of polynomials

-

^{*}Corresponding author: E-mail: aytekinabdullayeva@yahoo.com;

$$B_{n}(f;x) = \sum_{k=0}^{n} f\left(\frac{kb_{n}}{n}\right) C_{n}^{k} \left(\frac{x}{b_{n}}\right)^{k} \left(1 - \frac{x}{b_{n}}\right)^{n-k}, 0 \le x \le b_{n},$$
(1.1)

that was named as Bernstein-Chlodowsky polynomials some time later,

where

$$\lim_{n\to\infty}b_n=\infty,\quad \lim_{n\to\infty}\frac{b_n}{n}=0.$$

Note that, the condition imposed on b_n in the definition of classic Bernstein-Chlodowsky operators does not provide continuous convergence of $B_n(f;x)$ polynomials to the function f(x).

Note here the papers [1-5,6,7,8] related directly to the Bernstein-Chlodowsky polynomials and their generalizations and the paper [4,9,10] generalizing the results of the paper [11] on infinitely increasing interval from which we can also conclude a number of theorems on these polynomials. Some main properties of the polynomials (1.1) were stated in the monograph [12]. About applications of general positive linear operator we refer to [13,14].

In the paper we prove an approximation theorem for Bernstein-Chlodowsky polynomial.

2 Preliminaries and Auxiliary Results

We have

$$B_n(f;x)-x^2=\frac{x(b_n-x)}{n}$$
 for the function $f(t)=t^2$.

Therefore,

$$\sup_{x \in [0,b_n]} |B_n(t^2;x) - x^2| = \frac{b_n^2}{4n}.$$

Then for convergence to zero as $n \to \infty$ of the right hand part of this equality does not suffice the fullfillment of condition $\frac{b_n}{n} \to \infty$.

We'll impose the stronger condition on b_n

$$\lim_{n\to\infty}\frac{b_n}{\sqrt[4]{n}}=0.$$

Hence it follows that for any natural number r

$$\lim_{n\to\infty}\frac{b_n^r}{n^{\frac{r}{4}}}=0.$$

Lemma 1.1. For Bernstein-Chlodowsky polynomial (1.1) the following properties

$$B_n(1;x) = 1$$

 $B_n(t;x) = x$
 $B_n(t^2;x) = x^2 + \frac{x(b_n - x)}{n}$

hold.

Theorem 2.1. Let the function f'(x) be uniformly continuous on the semiaxis and $B_n(f;x)$ be Bernstein-Chlodowsky polynomials of order n for the function f(x). Then for any $x \in [0,b_n]$

$$|B_n(f;x)-f(x)| \leq \frac{3}{2}\omega \left(f;\frac{b_n}{\sqrt{n}}\right)$$

Remark 1.1. Note that theorem 2.1 was proved in [1].

3 Main Results

Now we reduce the main results of this paper.

Theorem 3.1. Let $f \in C^2[0,\infty)$ and $B_n(f,x)$ be the Bernstein-Chlodowsky polinomials for function f. Let a sequence $\{b_n\}$ satisfy condition

$$\lim_{n\to\infty} M_n(f') \frac{b_n^2}{n} = 0.$$

Then for every $x \in [0,b_n]$ the asymptotical equality

$$B_n(f;x) = f(x) + \frac{f''(x)}{2n}x(b_n - x) + \rho_n, \ \rho_n \to 0, n \to \infty$$
(3.1)

Proof. We have

$$f\left(\frac{kb_n}{n}\right) = f(x) + f'(x)\left(\frac{kb_n}{n} - x\right) + \left\lceil \frac{f''(x)}{2} + \lambda \left(\frac{kb_n}{n}\right) \right\rceil \left(\frac{kb_n}{n} - x\right)^2. \tag{3.2}$$

By (3.1), we have

$$B_{n}(f;x) = \sum_{k=0}^{n} \left\{ f(x) + f'(x) \left(\frac{kb_{n}}{n} - x \right) + \left[\frac{f''(x)}{2} + \lambda \left(\frac{kb_{n}}{n} \right) \right] \left(\frac{kb_{n}}{n} - x \right)^{2} \right\} \times C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} =$$

$$= \sum_{k=0}^{n} f(x) C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} +$$

$$+ \sum_{k=0}^{n} f'(x) (\frac{kb_{n}}{n} - x) C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} +$$

$$+ \sum_{k=0}^{n} \frac{f''(x)}{2} (\frac{kb_{n}}{n} - x)^{2} C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} +$$

$$+ \sum_{k=0}^{n} \lambda (\frac{kb_{n}}{n}) (\frac{kb_{n}}{n} - x)^{2} C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} =$$

$$= f(x) + f'(x)(x - x) + \frac{f''(x)}{2} \left(x^{2} + \frac{x(b_{n} - x)}{n} - 2x^{2} + x^{2} \right) +$$

$$+ \sum_{k=0}^{n} \lambda \left(\frac{kb_{n}}{n} \right) \left(\frac{kb_{n}}{n} - x \right)^{2} C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k} =$$

$$= f(x) + \frac{f''(x)}{2n} x(b_{n} - x) + \sum_{k=0}^{n} \lambda \left(\frac{kb_{n}}{n} \right) \left(\frac{kb_{n}}{n} - x \right)^{2} C_{n}^{k} \left(\frac{x}{b_{n}} \right)^{k} \left(1 - \frac{x}{b_{n}} \right)^{n-k}$$

$$B_{n}(f;x) = f(x) + \frac{f''(x)}{2n} x(b_{n} - x) + r_{n},$$

where

$$r_n = \sum_{k=0}^n \lambda \left(\frac{kb_n}{n}\right) \left(\frac{kb_n}{n} - x\right)^2 C_n^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-k}.$$

We take arbitrary $\varepsilon > 0$ and choosing sufficient large $n \in \mathbb{N}$ such that

$$\left|\frac{kb_n}{n} - x\right| < \frac{b_n}{\sqrt[4]{n}} .$$

Then
$$\left| \lambda \left(\frac{kb_n}{n} \right) \right| < \frac{\varepsilon}{2}$$
. We divide r_n as the sum of two terms:

$$r_{n} = \sum_{\left|\frac{kb_{n}}{n} - x\right| < \frac{b_{n}}{\sqrt[4]{n}}} \lambda \left(\frac{kb_{n}}{n}\right) \left(\frac{kb_{n}}{n} - x\right)^{2} C_{n}^{k} \left(\frac{x}{b_{n}}\right)^{k} \left(1 - \frac{x}{b_{n}}\right)^{n-k} + \sum_{\left|\frac{kb_{n}}{n} - x\right| \ge \frac{b_{n}}{\sqrt[4]{n}}} \lambda \left(\frac{kb_{n}}{n}\right) \left(\frac{kb_{n}}{n} - x\right)^{2} C_{n}^{k} \left(\frac{x}{b_{n}}\right)^{k} \left(1 - \frac{x}{b_{n}}\right)^{n-k}.$$

Therefore

$$\left| \lambda \left(\frac{kb_n}{n} \right) \left(\frac{kb_n}{n} - x \right)^2 \right| \le$$

$$\le M_f \left(1 + \left(\frac{kb_n}{n} \right)^m + \left(1 + x^m \right) + \left(1 + x^m \right) \left(\frac{kb_n}{n} - x \right) + \left(1 + x^m \right) \left(\frac{kb_n}{n} - x \right)^2 \right) \le$$

$$\le M_f b_n^m \left(1 + \left| \frac{kb_n}{n} - x \right| \frac{kb_n}{n} - x \right| + \left(\frac{kb_n}{n} - x \right)^2 \right) \le$$

$$\le M_f b_n^m \left(\frac{\left(\frac{kb_n}{n} - x \right)^2}{\delta^2} + \frac{\left(\frac{kb_n}{n} - x \right)^2}{\delta} + \left(\frac{kb_n}{n} - x \right)^2 \right) \le$$

$$\le M_f b_n^m \left(\frac{kb_n}{n} - x \right)^2$$

$$\le M_f b_n^m \left(\frac{kb_n}{n} - x \right)^2$$

$$\le M_f b_n^m \left(\frac{kb_n}{n} - x \right)^2$$

Thus

$$\begin{split} &r_n \leq \sum_{\left|\frac{kb_n}{n} - x\right| \leq \frac{b_n}{\sqrt[4]{n}}} \frac{\mathcal{E}}{2} \left(\frac{kb_n}{n} - x\right)^2 C_n^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-k} + \\ &+ Mb_n^m \sum_{\left|\frac{kb_n}{n} - x\right| \geq \frac{b_n}{4\sqrt{n}}} \frac{\left(\frac{kb_n}{n} - x\right)^{2m}}{\left(\frac{b_n}{\sqrt[4]{n}}\right)} C_n^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-k} \leq \end{split}$$

$$\leq \frac{\varepsilon}{2} \frac{b_n^2}{\sqrt{n}} + Mb_n^m \frac{n^{\frac{m}{2}}}{b_n^{2m}} \sum_{k=0}^n \left(\frac{kb_n}{x} - 1\right)^{2m} C_n^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-k} \leq \\ \leq \frac{\varepsilon}{2} \frac{b_n^2}{\sqrt{n}} + Mb_n^m \frac{n^{\frac{m}{2}}}{b_n^{2m}} \frac{b_n^{2m}}{n^{2m}} \sum_{k=0}^n \left(k - \frac{nx}{b_n}\right)^{2m} C_n^k \left(\frac{x}{b_n}\right)^k \left(1 - \frac{x}{b_n}\right)^{n-k}.$$

Taking into account (3.1) in the last inequality, we get

$$r_n \leq \frac{\varepsilon}{2} \frac{b_n^2}{\sqrt{n}} + M \frac{b_n^m}{n^{\frac{3m}{2}}} K(2m) n^m = \frac{\varepsilon}{2} \frac{b_n^2}{\sqrt{n}} + \frac{b_n^m}{n^{\frac{m}{2}}} MK(2m).$$

For m = 4, we have

$$r_{n} \leq \frac{\varepsilon}{2} \frac{b_{n}}{\sqrt{n}} + \frac{b_{n}^{4}}{n^{2}} MK(8).$$

Since
$$\frac{b_n^2 MK(8)}{n^{\frac{3}{2}}} < \frac{\mathcal{E}}{2}$$
, then

$$r_n < \frac{b_n}{\sqrt{n}} \mathcal{E}$$
.

We denote
$$\rho_n = \frac{\sqrt{n}}{b_n^2} r_n$$
.

This completes the proof of theorem.

4 Conclusion

Thus, we proved Varanovskaya type theorem for generalized Bernstein-Chlodowsky polynomials.

Acknowledgements

The author would like to thank the Editor and the referee for carefully reading the manuscript and for their valuable comments and suggestions which greatly improved this paper.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Abdullayeva AE. On order of approximation function by generalized Bernstein- Chlodowsky polynomials. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2004;28(3):157-164.
- [2] Abdullayeva AE, Mammadova AN. On order of approximation function by generalized Szasz operators and Bernstein-Chlodovsky polynomials. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2013;37(2):3-8.
- [3] Abdullayeva AE, Soylemez D. On approximation theorems for Bernstein-Chlodowsky polynomials. Trans. Natl. Acad. Sci. 2017;37(1):3–10.
- [4] Aral A, Gadjiev AD. Weighted L_p approximation with positive linear operators on unbounded sets. Appl. Math. Let. 2007;20(10):1046-1051.
- [5] Buyukyazici I, Ibikli E. Approximation properties of generalized Bernstein polynomials of two variables. Appl. Math. Comput. 2004;156(2):367-380.
- Buyukyazici I, Ibikli E. Inverse theorems for Bernstein-Chlodowsky type polynomials. J.Math. Kyoto Univ. 2006;46(1):21-29.
- [7] Karsli H. A Voronovskaya-type theorem for the second derivative of the Bernstein-Chlodowsky polynomials. Proc. Eston. Acad. Sci. 2012;61(1):9-19.
- [8] Mammadova AN, Abdullayeva AE. Approximation theorems for Bernstein-Chlodowsky and generalized Szasz operator. Adv. Appl. Math. Sci. 2013;12(3):137-149.
- [9] Gadjiev AD, Aliev RA. Korovkin type theorem for linear k-positive operators in a polydisk of analytical functional. Math. Slov. 2016;66(5):1179-1186.
- [10] Gadjiev AD, Ispir N. On a sequence of linear positive operators in weighted spaces. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 1999;3(11):45-55.
- [11] Gadjiev AD, On P. P. Korovkin type theorems. Math. Notes, 1976;2(20):781-786.
- [12] Lorentz GG. Bernstein polynomials. Toronto; 1953.
- [13] Wei W, Qiang Y, Zhang J. A Bijection between lattice-valued filters and lattice-valued congruences in residuated lattices [J]. Math. Prob. Engin. 2013;36(8):4218-4229.
- [14] Wei Wei, Srivastava HM, Yunyi Zhang, Lei Wang, Peiyi Shen, Jing Zhang. A local fractional integral inequality on fractal space analogous to Anderson's inequality[C]. Abst. Appl. Anal. Hindawi Publishing Corporation. 2014;46(8):5218-5229.

© 2017 Abdullayeva; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/21999