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Abstract 
 

In this paper, the use of selective breading evolutionary process for improving the performance of GAs is 
evaluated. To accomplish this evaluation, the generalized tardiness flow shop scheduling (GTFS) problem 
is designated. A natural evolutionary GA and two selective breeding Gas are developed for evaluating 
their performances in solving the proposed problem. An extensive numerical experiment on total of 2250 
randomly generated scenarios is conducted to compare the effects of selective breeding mechanism. The 
effects of the varieties factors on the solution of the algorithms are analyzed by the factorial ANOVA. 
The computational results reveal that a significant improvement can be obtained if one employs an initial 
population with better genes. 
 

 
Keywords: Scheduling; sequencing; natural breading GA; selective breeding GA; generalized tardiness 

flow shop. 
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1 Introduction 
 
Job scheduling is vital tool for manufacturing and engineering and has a major effect on the productivity of a 
process. Production scheduling incentive is maximization of the efficiency and reduction of the operations 
costs. Production systems can be classified as batch processing, job shop and flow shop system. A flow shop 
is a processing system in which the task sequence of each job is fully specified, and all jobs visit the work 
stations in the same order [1]. The flow shop scheduling measure of performances are generally the time 
required to finish all jobs or makespan, the average flow time, and the total tardiness of jobs.  
 
This manuscript proposed a set selective breeding genetic algorithm (GA) for the generalized tardiness 
flowshop (GTFS) problem. The evolutionary process of almost all the cited GAs is inbreeding. In the other 
hand humans have been domesticating animals for thousand years. In developing countries, the selective 
breeding has been practiced for the cattle’s traits. For producing cattle with better genes, they usually import 
bulls with better genes and use them for breeding. The whole purpose of selective breeding is to allow 
individuals with the best sets of genes to reproduce a better next generation [2]. Utilizing the same concept, 
we investigated the use of selective breeding in GA.  
 
For discussion of the GTFS problem, a model with a due date for completion of each operation of the jobs is 
considered, while in the traditional tardiness flowshop, there is only a due date for the final operation of each 
job. However, in most of the real-world projects, the outcomes are delivered through predefined phases and 
there is an associated due date for each phase. Usually the phases are carried out in a unidirectional 
precedence structure. Considering n projects to be scheduled, each having m phases, the problem can be 
modeled as an n jobs-m machines Flow shop scheduling problem with the intermediate jobs due dates.  
Where the tardiness is defined as the measure scheduling performance, this model is called the generalized 
version of the tardiness Flow shop scheduling model. 
 

2 Review of Related Works 
 
The GTFS problem was first introduced by Ghassemi-Tari and Olfat [3]. However rare research studies have 
considered this problem. One of the early work is a study in which four COVERT based heuristic algorithms 
are proposed for the GTFS [4]. Later several other heuristic algorithms using different rules such as apparent 
tardiness cost (ATC), slacked-based rule, modified due date (MDD) rules, and other simple rules of SPT and 
EDD, are also proposed for the problem [5-7]. In spite of the extensive efforts of these works, the use of the 
metaheuristic type solution approaches have not be considered for the GTFS. 
 
Among the metaheuristics, genetic algorithms are reported as the efficient optimization approaches [8]. 
Genetic algorithms have been originally proposed by Holland [9]. The use of evolutionary algorithms for 
shop scheduling problems started around 1980. Two of the first applications of evolutionary algorithms to 
flow shop scheduling problems have been given by Werner [10]. Another early approach for applying GA to 
flow shop scheduling problems is the work of Murata et al. [11].  
 
The permutation flow shop scheduling problem (PFSP) has been studied by many researchers However there 
are little research works considering tardiness flow shop permutation scheduling. Zheng, and Wang [12] 
investigated the effect of different initialization, crossover and mutation operators on the performances of a 
genetic algorithm and proposed an effective hybrid heuristic for flow shop scheduling. Later, Wang and 
Zheng [13] presented a novel and systematical approach based on ordinal optimization and optimal 
computing budget allocation technique to determine optimal combination of genetic operators for flow shop 
scheduling problems. Then through a simulation experiment, they have shown that the proposed 
methodology is able to determine optimal combination of genetic operators and simultaneously to provide a 
good solution with reasonable performance evaluation for scheduling problem.  
 
Chung et al. [14] developed a genetic algorithm for solving the tardiness permutation flow shop scheduling 
problems with m-machine, n-job. Use of the GA for solving flow shop problems with the varieties of 
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objectives are addressed in by Cemil et al. [15]. This study was limited to a flow shop tardiness with a 
common due date. A GA and a Tabu search algorithm for solving this problem were proposed. Three genetic 
algorithms for the problem of minimizing total tardiness have been given by Vallada and Ruiz [16].  
 
Onwubulu and Mutingi [17] considered the flow shop problem with three different objectives of minimizing 
the total tardiness, the number of tardy jobs and a linear combination of both criteria. Babu et al. [18] 
introduced a genetic algorithm to solve n-jobs m-machines flow shop scheduling problem to get the optimum 
results of make-span and total tardiness. Ta et al. [19] considered the m-machine tardiness permutation flow-
shop scheduling problem and proposed several metaheuristic algorithms. The metaheuristics were compared 
to a genetic algorithm and concluded the good performances of the metaheuristic algorithms. Other efforts 
are the works of Rahman [20], Sajadi [21], Shin [22], and Wang et al. [23], Cui et al. [24]. 
 
Scheduling with learning effects has received considerable attention recently [25]. Lee and Chung [26] 
consider a permutation flowshop scheduling problem with learning effects where the objective is to minimize 
the total tardiness. Other recent studies are the work of Kia et al. [27] and Mou et al. [28]. 
 
The review of the related works reveals that the concept of the selective breeding and its prosperities on 
improving the final solution has not been investigated thoroughly. Also, the use of the metaheuristics for the 
GTFS problem has been considered only on one study [29]. Moreover, the effects of the dissimilarities of 
different algorithm routines on the improving the final solution may not be the only source of its 
improvement, but it may root on the value of the input parameters. This is another deficiency which is 
realized in the related studies. To overcome these shortcomings, in this research, three GAs are proposed for 
the GTFS problem. The two of the GAs are developed based on the selective breeding concept. The third GA 
is proposed based on the natural evolutionary process to evaluate the solution improvement of the selective 
breeding with respect to the natural breeding. An extensive computational experiment including a factorial-
ANVOA is conducted for assessing the solution improvement of the selective breeding algorithms as well as 
the effects of the verities of input parameters in the solution improvement. 
 

3 The Proposed Solution Algorithms 
 
Due to the combinatorial nature of the mathematical model, we proposed a natural evolutionary and two 
variants of the selective breeding GA for solving the proposed problem. The concepts of the two variants GA 
are similar to the natural evolutionary GA except that the initial population of one of the parents is selected 
from a set of schedules with better genes. The process of developing these algorithms will be described in the 
following subsections.  
 
3.1 Algorithm 1. The natural evolutionary GA 
 
We proposed the following procedures for generation of the initial population as well as the required 
operators.   
 
3.1.1 Initial population 
 
For generation of the initial population a chromosome is considered as a permutation schedule of the Flow 
shop model. Therefore, in a model with n jobs and m machines there are m chromosomes, each having n 
genies which represent the job’s sequences. Using pseudo random generation, a uniform density function of 

],1[ m is employed, and by eliminating the repeated numbers, m distinct machines are generated. Then 

another uniform of ],,1[ n is used, and again by eliminating the repeated numbers, n jobs are assigned to 
each of the m machines randomly. Now for generating a permutation schedules, the same sequence is used 
for all other machines. By repeating this procedure for every m generated machines, we constructed m 
permutation schedules as the initial population.  
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3.1.2 GA operators 
 
As in general practice a GAs consists of three major operators, namely; selection / reproduction, crossover, 
and mutation operators. Each of these operators can be describes in the following subsections. 
 
3.1.2.1 Selection/Reproduction operator 
 
The elitist and roulette wheel selection operators are employed for the proposed GA. A probability according 
to its fittingness values is assigned as a basis for the selection for the further reproduction. In proposed 
algorithm, the m permutation schedules are first sorted by the values of their tardiness in a non-decreasing 
order. By assigning the rank k, from 0 to m-1 to the sorted schedule, we defined the function

)1(/)(2)( +−= mmkmkw for assigning a weight to each of the m schedules. Now by assigning a 

corresponding probability according to the defined weights to each population member, and using the density 

function of ���� �  
���	
�

������
, we can obtain the cumulative density function (CDF). By generating a random 

variable x from a uniform density function of [0, m-1], the selection of each schedule is accomplished 
according to the inverse of the CDF as bellow: 
 

  .2/)))]1)(1(1(4)21[(12()( 2/12/11 xmmmmmxF −+−−−−−−=−
                           (1) 

 
In the proposed GA, the parents’ selection for mutation and crossover operators are also conducted using the 
roulette wheel selection mechanism. Then all generated chromosomes by crossover and mutation operator 
are replaced with those having worst objective function values in the current population. 
 
3.1.2.2 Crossover operator 
 
In proposed GA, a crossover rate of is used. We let the crossover rate takes different values from 0.70 to 

0.90. The Modified Order Crossover (MOX) is employed as the crossover operator. In MOX operator by a 
random number generation mechanism a cut point is determined. Then the genes in the left segment of the 
cut from first (second) parent are copied to the genes in the left segment of the cut in the first (second) 
offspring. The genes from second (first) parent, after omitting the selected genes are designated and mapped 
to right of the cut of the first (second) offspring in the same order. Through this procedure two offspring are 
generated and kept in a file to be considered after the mutation process. Fig. 1 presents an illustrative 
example of the crossover operator. 
 
3.1.2.3 Mutation operator 
 
In the proposed algorithm, the mutation is applied after )1(*100 cm pp −= percent, in which cp is the 
percentage of crossover iterations. The mutation is performed by the one point inversion method. First, we 
generated a random variable from a uniform density function of [0, n]. The value of this random variable 
specifies the cut point in the string of the genes. Then the genes in the left segment of the cut of the parent 
are copied to the left segment of the cut of the genes of the offspring in the same order.  The remaining genes 
of the parent are then reversed and mapped to right of the cut of the offspring. Fig. 2 presents an illustrative 
example of the mutation operator. 
 
It is to be noted that, we select 20 as the number of iterations. This is due to the fact that in the process of 
conducting the computational experiment, we performed an extensive analysis on different factors, such as 
number of jobs, number of machines, crossover rate, and different factor levels. The computation process 
failed for the most of the higher factors levels where the iteration numbers are set to the greater than 20. 
Therefore, in order to have a consistence results for all different factor levels, the number of iterations is set 
to 20. 
 

cp%
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3.1.3 Steps of the GA  
 
The steps of the proposed GA can be summarized by the following algorithmic procedures. 
 

Step1. Generate the initial population and calculate the tardiness of the parents. 

Step2. Let .1 and ,70.0 == Itpc  

Step3. Perform crossover iteration, and calculate the tardiness of the offspring to save it in File OFC. 
Step4. Perform Mutation iteration, and calculate the tardiness of the offspring to save it in File OFM. 

Step5. Select offspring with the rate of cp100 from OFC and offspring with the rate of )1(100 cp−
percent from OFM, and select the least m tardy schedules. 

Step6. If ,20=It  go to Step7, otherwise let ,1+= ItIt  and go to Step3. 

Step7. Designate the sequence with the smallest tardiness as the final solution for this .cp If

,90.0=cp stop. Otherwise let ,05.0+= cc pp and go to Step 3. 

 
3.2 Selective breeding algorithms 
 
Three different sequencing rules of shortest processing time (SPT), earliest due date (EDD), and combined 
SPT-EDD, are employed for generation of the initially selected parent and two algorithms each with three 
variants of one of the initial parent are proposed. Before illustrating the outlines of these algorithms let us 
first describe the generation of the selected initial population. 
 
3.2.1 Generation of the selected initial parent  
 
To generate the selected initial population, we employed some heuristic sequencing rules, such as SPT, 
EDD, and combined SPT-EDD. Since in the generalized tardiness flow shop problem a due date is defined 
for every operation of the jobs, it would be worthwhile to deal each of the machines distinctly as a single 
machine tardiness problem for developing some simple sequencing rules. Let us first propose the following 
definitions and theorems. 
 
Definition 3.2.1.1: Let S represents a schedule in which job i proceeds job j and S’ represents another 
schedule which is identical to S except that job j proceeds job i.  
 
Definition 3.2.1.2: Let the total tardiness of job i and j in schedule S and schedule S’ are denoted by ,ijT and 

jiT respectively. By letting B(i) and B(j) as the available time of job i and j to be processed respectively, 

then the value of ,ijT and jiT can be determined as follows: 

 

          }.0,)(max{}0,)(max{)()( jjiijiij dtjBdtiBSTSTT −++−+=+=                  (2)  
 

               }.0,)(max{}0,)(max{)'()'( iijjijji dtiBdtjBSTSTT −++−+=+=        (3) 
 
Since the rest of jobs in both schedules have the same sequence, only different values of ,ijT and

jiT alter 

the total tardiness of the both schedules. 
 
Based on the above definitions the following theorems are proposed: 
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Fig. 1. An example of the crossover operator 
 

 
 

Fig. 2. An example of the mutation operator 
 
Theorem 3.2.1. Assuming , and jiji ddtt ≥≥ then SPT provides a schedule, which is better than or equal to 

the non SPT schedule with the objective of minimizing the total tardiness of the jobs.  
 
Proof. Based on the values of the total tardiness of Schedule S and Schedule S’ which are determined by the 
following equation, it can be verified that .jiij TT >

 
 

                                                                                   }.0,)(max{ jjiij dttiBT −++=
 (4) 

 

         }0,)(max{}0,)(max{ ijijjji dttiBdtjBT −+++−+=                                   (5)  
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If ,)( ii dtiB ≤+ it can be deducted that .jiij TT > Therefore, it is preferable to have job j with smaller 

processing time (or at most equal processing time to job i) precede job i. By using the same reasoning for 
every other two jobs we can conclude that the SPT schedule is superior to the non SPT schedule. Now if 

.)( ii dtiB >+ Then, 

 

 
                                .)()( jjiiiij dttjBdtjBT −+++−+=

                                         (6) 
 

             .)(}0,)(max{ ijijjji dttiBdtjBT −+++−+=
                                               

(7) 
 

 
We then have =− jiij TT }.0,)(max{)( jjji dtjBdtiB −+−−+ If the maximum in the last term is zero, 

then the condition implies that ;jiij TT ≥  and if the maximum in the last term is positive, then  

 
.0)()( ≥−=−+−−+=− jijjjijiij ttdtjBdtiBTT Therefore, it can be concluded that ,jiij TT ≥ so it 

is preferable to have job j with smaller processing time (or at most equal processing time to job i) precede 
job i. By using the same reasoning for every other two jobs we can conclude that the SPT schedule is 
superior to the non SPT schedule. 
 
Theorem 3.2.2.  Assuming  , and , jiji ddtt <≥ then EDD provides a schedule, which is better than or 

equal to the non EDD schedule with the objective of minimizing the total tardiness of the jobs unless for the 

case that 
,)( jj dtjB >+
in which SPT provides a better schedule.  

 
Proof.  
 

                                                              .)( iiij dtiBT −+=                                                (8) 

 

                                         .)( iijji dttjBT −++=                                           (9) 

 

If ,)( ii dtjB >+ and .)( jji dttiB ≤++ . ijji TTthen ≥  So it is preferable to have job i (the job with 

the earlier due date) precede job j. Now if .)( ii dtiB >+ .)()( jijj ttiBdtjBand ++<≤+ Then we 

have,  
 

 
 
                                                                          (11) 

 
Then .)( jijiij dtiBTT −+=− Therefore, we can conclude that, it is preferable to have job i (the job with 

the earlier due date) precede job j unless ,)( ji dtiB >+  in which case job j (the shorter job) may precede 

job i. This due to the fact that, if ,)( jj dtjB >+ then we will have:  

 

               )()( jjiiiij dttjBdtiBT −+++−+=                                                              (12) 

 

                     .)()( iijjjji dttiBdtjBT −+++−+=                                                       (13) 

(10)                                                                          .)()( jjiiiij dttjBdtiBT −+++−+=

                        )( iijji dttjBT −++=
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Then ,0≥−=− jijiij ttTT  and Therefore, Case 2.2.3 yields ,jiij TT ≥ so it is preferable to have job j (the 

shorter job) precede job i. Again by using the same reasoning for every other two jobs the proof is 
completed.  
 

If ,)( ii dtiB ≤+ based on the values of the total tardiness of Schedule S and Schedule S’ which are 

determined by the following equation, it can be verified that it can be deduct that .jiij TT >
 

 

          }.0,)(max{ jjiij dttiBT −++=
                                                                                (14)                                                                             

 

   }.0,)(max{}0,)(max{ jjijjji dttiBdtjBT −+++−+=
                                          (15) 

 
Therefore, it is preferable to have job j with smaller processing time (or at most equal processing time to job 
i) precede job i. By using the same reasoning for every other two jobs we can conclude that the SPT schedule 
is superior to the non SPT schedule.  
 

Now if .)( ii dtiB >+ Then 

 

 
 

(17)                                                                          .)(}0,)(max{ ijijjji dttiBdtjBT −+++−+=  

 
We then have =− jiij TT }.0,)(max{)( jjji dtjBdtiB −+−−+ If the maximum in the last term is zero, 

then the condition implies that ;jiij TT ≥  and if the maximum in the last term is positive, then 

.0)()( ≥−=−+−−+=− jijjjijiij ttdtjBdtiBTT Therefore, it can be concluded that ,jiij TT ≥ so it 

is preferable to have job j with smaller processing time (or at most equal processing time to job i) precede 
job i. By using the same reasoning for every other two jobs we can conclude that the SPT schedule is 
superior to the non SPT schedule. 
 
Based on these theorems if one considers each machine of the flow shop model distinctively, SPT and EDD 
sequencing rules can provide a near optimal tardiness of each machine. This could be a reasonable 
assumption due to the fact that there is a due date for every operation of the jobs in the permutation schedule. 
Now in obtaining the permutation schedules, if we apply these rules to all machines of the generalized flow 
shop we obtain m distinct permutation schedules and from those we can generate the initial population of one 
of the parents. To distinguish the job number and its position in the sequence, it would be convenient to use 
brackets to indicate position of job in the sequence. Using this concept, [k] = l means that the kth job in the 
sequence is job l. Similarly, lkt ][ refers to the processing time of the kth job in sequence being processed on 

machine l. Based on the above sequencing rules three subroutines are proposed for generating one of the 
initial populations. These subroutines are presented as the followings: 
 
Subroutine 1. SPT schedules 
 

Step 1. Let k=1. 

Step 2. Schedule jobs in non-decreasing order of i.e.  

Step 3. Use this sequence for all the m machines and calculate the total tardiness of this permutation 
schedule.  

Step 4. If k=m, go to step 5, otherwise let k=k+1, and, then go to step 2.  
Step 5. Select the generated m schedules for one of the selective parent, and stop. 

(16)                                                                           .)()( jjiiiij dttjBdtiBT −+++−+=

;ikt .][]2[]1[ knkk ttt ≤≤≤ L
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Subroutine 2. EDD schedules 
 

Step 1. Let k=1. 

Step 2. Schedule jobs in non-decreasing order of ;ikd i.e. .][]2[]1[ knkk ddd ≤≤≤ L  

Step 3. Use this sequence for all the m machines and calculate the total tardiness of this permutation 
schedule.  

Step 4. If k=m, go to step 5, otherwise let k=k+1, and, then go to step 2.  
Step 5. Select the generated m schedules for one the selective parent, and stop. 

 
Subroutine 3. Combined SPT-EDD schedules 
 

Step 1. Let k=1. 

Step 2. Schedule jobs in non-decreasing order of ;ikt i.e. .][]2[]1[ knkk ttt ≤≤≤ L  

Step 3. Use this sequence for all the m machines and calculate the total tardiness of this permutation 
schedule. 

Step 4. Schedule jobs in non-decreasing order of ;ikd i.e. .][]2[]1[ knkk ddd ≤≤≤ L  

Step5. Use this sequence for all the m machines and calculate the total tardiness of this permutation 
schedule.  

Step 6. If k=m, go to step 7, otherwise let k=k+1, and, then go to step 2.  
Step 7. Select m schedules with the lowest tardiness from the generated 2mschedules and designate 

them as one of the selective parent, and then stop. 
 
As it is mentioned earlier, evaluation of the effect of the selected breading on the solution of the GA is the 
major purpose of this study. To achieve this goal, two other GA algorithms, in addition to the natural 
evolutionary GA (Algorithm1), are proposed. In Algorithm 2 and Algorithm 3, contrary to the customary 
random selection, one of the initial parents is nominated by the best schedule, presumably as parent with the 
better genes. In Algorithm 2, the selected initial parent remains unchanged throughout the all evolutionary 
process of the generating new populations. In Algorithm 3, we let that the initially selected parent to be 
evolved throughout the evolutionary genetic process. A more detail description of the algorithms will be 
illustrated in the following subsections. 
 
3.2.2 Algorithm 2-Selective breeding algorithm (unchanged initially selected parent) 
 
Algorithm 2 differs from the proposed natural evolutionary GA (Algorithm 1) by the generation of the 
population of one of the parents. In Algorithm 1 both parents are generated randomly and the next 
populations are generated through the use of the crossover and the mutation process. However, in Algorithm 
2 we let one of the parents is selected from the population with better genes. For a better evaluation, three 
versions of GA are considered for the initial selecting population with better genes. Bellow, designates these 
versions: 
 

Version 1. GA with the SPT schedules. 
Version 2.  GA with the EDD schedules.  
Version 3.  GA with the best of SPT and EDD schedules. 

 
To begin with, the above three subroutines are first executed and among their solutions, the best schedule 
with the minimum tardiness is nominated as the initially selected parent for each version. Using the selected 
schedules as one of the parents, the other procedures of Algorithm 2 are similar to Algorithm 1.  The 
following summarizes the steps of Algorithm 2. 
 

Step1. Let k=1 
Step 2.  Generate the initial selected parent using version k.   

Step3. Generate the other initial parent randomly. Let .1 and ,70.0 == Itpc  
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Step4. Perform crossover iteration and calculate the tardiness to save it in File OFC. 
Step5. Perform Mutation iteration and calculate the tardiness to save it in File OFM. 

Step6. Select offspring with the rate of cp100 from OFC and offspring with the rate of )1(100 cp−
percent from OFM, and select the least m tardy schedules as one of the new parents, and the 
initially selected parent as the other new parent. 

Step7. If ,20=It  go to Step 8, otherwise let ,1+= ItIt  and go to Step 4. 

Step8. Designate the sequence with the smallest tardiness as the final solution for this .cp  If

,90.0=cp go to Step 9, otherwise let ,05.0+= cc pp and go to Step 4. 

Step 9.  If k=3 stop, otherwise let k=k+1, go to Step 2. 
 
3.2.3 Algorithm 3-Selective breeding algorithm (evolving initially selected parent)  

 
Similar to Algorithm 2, three versions of GA are considered for the initial selecting population with better 
genes. Algorithm 3 differs from Algorithm 2 by letting both of the initially selected parents originates form 
selecting populations with better genes. Other than this the rest of algorithmic procedures of Algorithm 3 are 
similar to Algorithm 2. The following summarizes the steps of Algorithm 3. 
 

Step1. Let k=1 
Step 2.  Generate the initial selected parent using version k.   
Step3. Chose the two initial parents by the selection procedure (described in Section 4.1.2.1). Let 

.1 and ,70.0 == Itpc  
Step4. Perform crossover iteration and calculate the tardiness to save it in File OFC. 
Step5. Perform Mutation iteration and calculate the tardiness to save it in File OFM. 

Step6. Select offspring with the rate of cp100 from OFC and offspring with the rate of )1(100 cp−
percent from OFM, and select the least m tardy schedules. 

Step7. If ,20=It  go to Step 8, otherwise let ,1+= ItIt  and go to Step4. 

Step8. Designate the sequence with the smallest tardiness as the final solution for this .cp  If

,90.0=cp go to Step 9, otherwise let ,05.0+= cc pp and go to Step 4. 

Step 9.  If k=3 stop, otherwise let k=k+1, go to Step 2. 
 

4 Computational Experiments 
 
An extensive computational experiment, based on factorial analysis of variance (ANOV) is conducted for 
evaluating the effect of different factors on the improvement of the initial solution for different versions of 
the proposed algorithms. The improvement is determined by the difference of the final solution and the 
initial solution by the fowling relation: 
 

               ./100*)(% ITFTITI −=
                                                                                   (18) 

 
Where %I, designates the percentage improvement in the schedule tardiness obtained by applying each 
individual GA, IT represents the initial tardiness of the schedule at the begging of the corresponding GA, and 
FT indicates tardiness of the final schedule obtained after termination of the corresponding GA.  
 
An extensive computational experiment consisting of 2250 randomly generated scenarios are performed for 
evaluating the effects of different factors at different level to test the hypothesis of the equality of the 
improvement obtained by the different algorithms. More precisely a factorial ANOVA is conducted for 
algorithm 1, in which the number of job, the number of machine, and the crossover rate are designated as the 
independent variables and the percent improvement is designated as the dependent variable. Also, a three 
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factorial ANOVA is performed for evaluating the effect of three factors, such as the number of job, the 
number of machines and the type of the initially selected schedule (STP, EDD, or combine STP-EDD) as one 
of the parents on the equality of the percentage of improvement (%I) obtained by Algorithm 2 and Algorithm 
3. To perform the ANOVA, five test problems are randomly generated for each instance. Then, the proposed 
algorithms are coded by C++ and run on a Core i5 PC with 8 GB Ram, using SAS software. The following 
subsections describe the generation of the test problems and the results of these experiments respectively. 
 

4.1 Generation of the test problems 
 
For generating an unbiased set of the test problems, the concept of pseudo random generation is employed. 
The test problems are randomly generated with various sizes, in terms of both the number of jobs and the 
number of machines and are respectively classified according to the values of m = 3, 5, 7, 9, 10, and n= 15, 
25, 50, 100, 200, 400. For each combination of job and machine, five instances are randomly generated and 
solved by 20 iterations with the crossover rates (CRs) of 0.70, 0.75, 0.80, 0.85, and 0.90. It is to be noted 
that, several computational experiments are also conducted on the different factor levels with the number of 
iteration greater than 20.  However due to computational complexity of the higher factor level values, most 
of them are failed. Therefore, in order to have a consistence results for all different factor levels, the number 
of iterations is set to 20.  
 
For the number of jobs, the following sizes are considered: 8, 10, 12, 15, 17, 20, 25, 30, 40, 50, 75, 100, 200, 
300, 400 and 500. For the machines, we considered problems with 5, 10 and 20 machines. For each job, the 
processing times on the various machines are generated from a uniform distribution over the integers 1 to 
100, while an integer weight is obtained from a uniform distribution [1,10]. Finally, for each job, an integer 
due date was generated from the uniform distribution. Both the tardiness factor and the range of due dates 
parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0. For each combination of n and m, 50 instances were 
randomly generated. As the result, a total of 1250 instances were generated for each problem size.  
 
For each job, the processing times on the various machines, an integer value is generated from a normal 
distribution with =µ 4 and .5=δ Finally, for each job, an integer due date was generated from the normal 

distribution with =µ 9 and .4=δ  
 

4.2 Computational results 
 
The tables illustrating the results of ANOV are presented in the Appendix 1. In this appendix, a class of 
experiments are devoted to the hypothesis on the equality of %I with respect to the effect of different factors. 
Table A1-1, in the appendix, presents the result of ANOVA on effect of the three factors on the percentage 
improvement (%I) for Algorithm 1. The three factors A, B and C represent the number of jobs (n), the 
number of machines (m), and the different crossover rates (CR), respectively. This table reveals that the 
equality of the percentage improvement according to the different levels of the three factors and their 
interactions is rejected with the probability of greater than .9999 (1-.0001). Considering a distinct crossover 
rate, a similar analysis is conducted on Algorithm 1 and algorithm 2. For each individual crossover rate, a 3-
factorial analysis conducted in which factor A, B, and C respectively designates the number of jobs, the 
number of machines, and the different initial selected parent (ISP) with the levels of SPT, EDD, and 
combined SPT-EDD.  The results are illustrated in Table A1-2 through A1-7 of Appendix 1. Based on the 
content of these tables, it can be concluded that the hypothesis of the equality of the percentage improvement 
is rejected for all of the individual design with probability of greater than .9999 (1-.0001).  
 

It would be worthy, to illustrate how the percent improvement obtained by the different algorithms varies 
according to different input parameters. To reveal this variations Table 1 and Table 2 are provided. Table 1 
presents the percent improvement of Algorithm 1 with respect to the variations of the crossover rates and the 
number of machines. The efficiency of this algorithm is ranked for the variation of the crossover rates and 
the number of jobs, based on the values of the percent improvement. In this table, there is a consistency on 
the efficiency of Algorithm1 and the crossover rates. It can be realized that the crossover rates of .70 has the 
first ranking and as the crossover rate increases the efficiency decreases uniformly. Similarly, as the number 
of machines increase the efficiency virtually increases. 
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Table 2 provides the percent improvement of Algorithm 1 with respect to the variations of the crossover rates 
and the number of jobs. Likewise, the efficiency of this algorithm decrease as the crossover rate increases 
uniformly. However, as the number of jobs increase the efficiency decrease consistently. 
 
To illustrate the percent improvement on the solution of Algorithm 2 according to the number of machines 
and the number of jobs Table 3, and Table 4, is constructed respectively. Table 3 illustrates the percent 
improvement obtained by Algorithms 2 according to the variations of the initially selected parent and the 
number machines. The percent improvement is also ranked according to the number of machines and the 
type of the initially selected parent. It can be realized selection of the initial parent by the STP rule seems to 
have a better efficiency and as the number of machines increase the efficiency virtually increases.   
 
Table 4 presents the percent improvement obtained by Algorithms 2 according to the variations of the 
initially selected parent and the number jobs. The percent improvement is also ranked according to the 
number of jobs and the type of the initially selected parent. In this case the selection of the initial parent by 
the STP-EDD rule appears to have a better efficiency and as the number of jobs increase the efficiency 
consistently decrease.  
 
Similarly, to illustrate the percent improvement on the solution of Algorithm 3 according to the number of 
machines and the number of jobs Table 5, and Table 6, is created. Table 5 demonstrates the percent 
improvement of on the solution of Algorithm 3, for different initially selected parent, according to the 
number of machines. The percent improvement is also ranked according to the number of machines and the 
type of the initially selected parent. It can be realized that the performance of the percent improvement on the 
solution of Algorithm 3 executes very similar to the performance of Algorithm 2.  More clearly, the selection 
of the initial parent by the STP rule seems to have a better efficiency and as the number of machines increase 
the efficiency virtually increases. 
 

Table 1. Percent improvement of Algorithm 1 and ranking per the number of machines and the CRs 
 

m CR Total Ranking 
0.70 0.75 0.80 0.85 0.90 

3 6.77 6.29 6.24 6.43 6.14 6.37 5 
5 9.00 8.56 8.50 8.52 7.93 8.50 4 
7 11.32 9.63 9.97 9.63 9.34 9.98 3 
9 9.95 11.44 9.94 10.25 10.71 10.46 1 
10 11.24 9.79 9.85 10.23 9.85 10.19 2 
Average 8.16 7.75 7.55 7.65 7.48 9.10  
Ranking 1 2 4 3 5  

 
Table 2. Percent improvement of algorithm 1 and ranking per the number of machines and the CRs 

 
n CR Total Ranking 

0.70 0.75 0.80 0.85 0.90 
15 17.05 16.28 16.55 17.41 16.50 16.76 1 
25 13.21 14.37 13.08 13.41 12.80 13.37 2 
50 9.41 9.54 9.56 8.82 8.72 9.21 3 
100 6.45 6.27 6.03 6.28 6.56 6.32 4 
200 6.41 4.84 4.60 4.73 4.62 5.04 5 
400 5.42 3.57 3.57 3.42 3.56 3.91 6 
Ranking 1 2 4 3 5   

 
Table 6 describes the percent improvement of on the solution of Algorithm 3, for different initially selected 
parent, according to the number of jobs. The percent improvement is also ranked according to the number of 
machines and the type of the initially selected parent. It can be realized that the performance of the percent 
improvement on the solution of Algorithm 3 according to the number of jobs performs very similar to the 
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performance of Algorithm 2.  More clearly, as the number of jobs increase the efficiency virtually decreases.  
However, the selection of the initial parent by the STP-EDD rule seems to have a better efficiency. 

 
Table 3. Percent improvement and ranking of Algorithm 2 per initial parent and m 

 
m Initial selected parent Total Ranking 

SPT EDD SPT-EDD 
3 7.70 6.88 7.66 7.42 5 
5 9.20 8.86 9.45 9.17 4 
7 9.92 10.03 10.34 10.10 3 
9 9.59 10.13 10.73 10.15 1 
10 9.49 9.98 10.58 10.01 2 
Ranking 1 3 2   

 
Table 4. Percent improvement and ranking of Algorithm 2 per the initial parent and n 

 
n Initial selected parent Total Ranking 

SPT EDD SPT-EDD 
15 18.11 17.12 18.83 18.02 1 
25 13.33 13.73 14.42 13.82 2 
50 9.68 9.89 9.65 9.74 3 
100 5.89 6.22 6.73 6.28 4 
200 4.44 4.58 4.77 4.60 5 
400 3.63 3.52 4.11 3.75 6 
Ranking 2 3 1   

 
Table 5. Percent improvement and ranking of Algorithm 3 according to the initial parent and the 

number of machines 
 

m Initial selected parent Total Ranking 
SPT EDD SPT-EDD 

3 13.31 5.75 4.74 7.93 5 
5 14.05 7.92 6.83 9.60 4 
7 13.91 9.66 7.80 10.46 3 
9 14.89 10.86 9.18 11.64 1 
10 15.32 11.81 8.63 11.92 2 
12 14.29 9.20 7.44 10.31  
Ranking 1 2 3   

 
Table 6. Percent improvement and ranking of Algorithm 3 according to the initial parent and the 

number of jobs 
 

n Initial selected parent Total Ranking 
SPT EDD SPT-EDD 

15 18.63 16.20 11.95 15.59 1 
25 17.61 13.71 10.17 13.83 2 
50 14.33 9.60 8.50 10.81 3 
100 13.15 6.79 6.10 8.68 4 
200 11.36 5.60 4.56 7.17 5 
400 10.69 3.31 3.34 5.78 6 
500 14.29 9.20 7.44 10.31  
Ranking 1 2 3   
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Finally, to conclude the computational experiment Table 7 is provided. In this table, the percent 
improvements selective breeding algorithms (Algorithm 2 and Algorithm 3) with respect to the natural 
breeding algorithm (Algorithm 1), for different values of n, m, and CR are determined and reported. Based 
on the content of this table, it can be globally concluded that the performance of the algorithm 3 is greatly 
better than Algorithm2. Another notable inference is the growth on the percent improvement as the result of 
the increase on the value of CR. This result somehow would be predictable due to the structure of the 
proposed GA. In the proposed GA, We let a mutation to be is performed for every other iteration. Since the 
mutation may reverse the progress of optimization, the higher CR and therefore the lower mutation rate, (1-
CR), would be preferable. 

 
Table 7. Percent improvement of the Algorithm 2 and 3 with respect to Algorithm 1 for different CR 

 
n m % 70.00 % 75.00 % 80.00 % 85.00 % 90.00 

Alg. 2 Alg. 3 Alg. 2 Alg. 3 Alg. 2 Alg. 3 Alg. 2 Alg. 3 Alg. 2 Alg. 3 
15  

 
 
3 

5.81 10.98 13.66 15.85 10.83 16.77 12.10 17.47 8.70 14.37 
25 13.65 18.56 18.57 20.54 22.83 23.64 24.79 28.79 31.69 31.40 
50 18.13 26.51 66.39 29.30 5.95 17.73 24.24 29.77 27.45 33.33 
100 15.07 24.68 23.55 31.06 20.86 30.46 10.14 20.65 8.49 17.26 
200 1.12 5.17 10.60 11.93 14.00 19.18 1.02 10.32 25.80 23.01 
400 24.02 34.14 33.20 38.03 25.07 31.18 20.11 21.98 27.73 33.64 
15  

 
 
5 

13.19 17.07 15.04 20.80 16.09 21.91 13.79 19.12 19.11 23.11 
25 15.06 14.40 0.00 6.82 11.65 11.02 12.99 14.56 10.16 12.36 
50 3.82 10.21 8.42 14.52 8.72 15.49 8.35 13.83 23.69 27.32 
100 -4.56 8.43 4.83 17.74 4.55 4.84 4.17 11.01 3.08 9.93 
200 -5.68 3.10 3.24 4.77 5.46 7.41 9.57 11.95 10.22 6.17 
400 12.38 9.47 12.90 7.92 9.89 7.67 17.53 8.43 18.57 8.03 
15  

 
 
7 
 

11.65 9.62 17.29 15.63 7.31 6.27 9.56 11.37 15.12 18.32 
25 14.08 17.29 5.56 5.57 9.12 8.90 0.74 2.41 6.64 9.93 
50 4.47 6.56 14.74 16.41 3.47 7.59 4.91 12.04 12.42 17.71 
100 -3.62 -4.00 -0.36 -4.46 6.44 3.77 5.80 2.06 7.31 2.39 
200 -3.29 3.21 4.76 1.72 1.13 8.23 -7.89 -2.85 2.52 1.89 
400 -6.00 -6.94 16.67 15.27 2.16 -3.05 14.04 11.40 25.13 7.48 
15  

 
 
9 

14.48 19.48 6.19 15.38 9.86 15.71 5.41 11.48 1.69 6.60 
25 3.57 14.16 0.86 13.48 1.55 14.61 0.59 10.86 -3.36 7.23 
50 7.49 15.78 18.16 42.43 2.94 8.39 10.37 16.37 9.79 16.70 
100 50.53 2.77 -3.67 14.26 0.00 15.68 0.73 8.19 -4.80 6.17 
200 -3.91 52.51 -3.10 -3.91 8.73 2.79 4.79 4.11 -4.08 5.04 
400 6.50 14.77 10.19 19.02 20.39 21.77 15.55 20.75 8.35 11.20 
15  

 
 
10 

5.18 10.19 19.29 23.11 15.77 20.15 2.33 10.59 12.36 17.11 
25 21.02 22.05 0.60 8.26 -7.25 -1.13 -0.87 4.90 -5.21 6.13 
50 0.46 12.32 -0.21 4.51 2.77 9.15 4.96 10.87 9.59 11.91 
100 11.03 10.73 10.84 14.03 1.02 10.30 0.80 0.34 -2.02 0.17 
200 -0.12 4.46 -1.14 -4.44 -0.26 2.23 8.12 8.28 3.65 7.53 
400 12.39 25.78 -12.77 10.17 6.49 23.05 16.48 25.73 7.58 24.31 
Average percent 
Improvement 

7.17 13.78 6.34 14.19 6.80 12.72 6.72 12.56 8.91 13.92 

 
Additional experiment is conducted to evaluate the deviation of the average solutions of Algorithm 1, 
Algorithm 2, and Algorithm 3 from the optimal solution. To conduct this experiment, 24 additional test 
problems are randomly generated and classified per the number of jobs and the number of machines. Using 
the crossover rate of %90, the test problems are solved by the proposed algorithm and CPLX. V12. The 
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results of this experiment are depicted in Table 8. In this table, the percentage of deviations of the solutions 
of Algorithm 1, Algorithm 2, and Algorithm 3 from the optimal solution are determined by the following 
relation: 
 

 

 
The result revealed that the deviation of the solution of Algorithm 3 from the optimal solution, in average, is 
% 1.5 which is considerably smaller than the other two algorithms. This indicates that the Algorithm 3 with 
the evolving initially selected parent GA performs better than the natural evolving GA (Algorithm 1) as well 
as the selective breeding algorithm in which the initially selected parent remains unchanged throughout the 
algorithm iteration’s (Algorithm2). 
 
To evaluate the performance of the proposed approach in comparing to the existing works, the only available 
work considering GA for the GTFS problem is selected from the cited literature [], Then the cited algorithm 
(CA) is compared with Algorithm (3) and the results are summarized in Table 9. 

 
 Table 8. Deviation of Algorithm1, Algorithm 2, and Algorithm 3 from the optimal solution 

 

Problem 
no. 

m n Solution 
of Alg. 1 

Solution 
of Alg. 2 

Solution 
of Alg. 3 

The 
optimal 
solution 

Percent 
deviation 
of Alg. 1 
from the 
optimal 

Percent 
deviation 
of Alg. 1 
from the 
optimal 

Percent 
deviation 
of Alg. 1 
from the 
optimal 

1  
 
5 

5 17.9 17.2 17.1 17.1 4.47 0.58 0.00 
2 6 29.7 28.6 27.9 27.6 7.07 3.50 1.09 
3 7 42.6 43 42.1 40.7 4.46 5.35 3.44 
4 9 48.1 47.5 46.3 46.1 4.16 2.95 0.43 
5 10 49.9 49.9 49.1 48.7 2.40 2.40 0.82 
6 12 74.1 75.2 69.8 69.1 6.75 8.11 1.01 
7  

 
7 

5 23.1 23 22.2 21.3 7.79 7.39 4.23 
8 6 30.4 30.3 29.5 28.8 5.26 4.95 2.43 
9 7 49.8 48.8 47.9 47.5 4.62 2.66 0.84 
10 9 68.5 65.1 64.4 63.7 7.01 2.15 1.10 
11 10 87.1 86.2 83.2 82.7 5.05 4.06 0.60 
12 12 112.2 109.7 109.7 - - - - 
13  

 
9 

5 52.1 51.1 50.4 50.1 3.84 1.96 0.60 
14 6 69.7 69.6 69.2 68.5 1.72 1.58 1.02 
15 7 89.5 89.1 88.2 87.6 2.12 1.68 0.68 
16 9 100.1 99.8 99.3 95.1 5.00 4.71 4.42 
17 10 115.9 116.7 109.6 - - - - 
18 12 172.3 165.8 164.9 - - - - 
19  

 
10 

5 55.8 53.6 52.3 51.2 8.24 4.48 2.15 
20 6 76.8 73.6 70.7 70 8.85 4.89 1.00 
21 7 99.6 98.9 98.1 96.5 3.11 2.43 1.66 
22 9 104.5 101.7 100.1 98.2 6.03 3.44 1.93 
23 10 119.7 119.9 117.4 - - - - 
24 12 134.6 132.3 130.8 - - - - 
Average 5.16 3.65 1.55 

 

solution algorithm proposed the

solution optimal thesolution algorithm proposed the
%Deveation

−=
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Table 9. Comparing the solution of Algorithm 3 with the selected algorithm (CA) from the literature 
 

Problem no. m n Solution 
of CA 

Solution 
of Alg. 3 

The 
optimal 
solution 

Percent 
deviation 
of CA 
from the 
optimal 

Percent 
deviation 
of Alg.3 
from the 
optimal 

Percent 
deviation 
of CA 
from alg.3 
 

1  
 
5 

5 17.4 17.1 17.1 1.75 0 1.75 
2 6 27.9 27.9 27.6 1.09 1.09 0 
3 7 42.9 42.1 40.7 5.41 3.44 1.90 
4 9 47.7 46.3 46.1 3.47 0.43 3.02 
5 10 51.6 49.1 48.7 5.95 0.82 5.09 
6 12 70.4 69.8 69.1 1.88 1.01 0.86 
7  

 
7 

5 23.4 22.2 21.3 9.86 4.23 5.41 
8 6 31.4 29.5 28.8 9.03 2.43 6.44 
9 7 48.7 47.9 47.5 2.53 0.84 1.67 
10 9 67.5 64.4 63.7 5.97 1.10 4.81 
11 10 88.1 83.2 82.7 6.53 0.60 5.89 
12 12 114.4 109.7 - - - 4.28 
13  

 
9 

5 52.7 50.4 50.1 5.19 0.60 4.56 
14 6 73.1 69.2 68.5 6.72 1.02 5.64 
15 7 92.3 88.2 87.6 5.37 0.68 4.65 
16 9 101.1 99.3 95.1 6.31 4.42 1.81 
17 10 113.6 109.6 - - - 3.65 
18 12 171.6 164.9 - - - 4.06 
19  

 
10 

5 57.1 52.3 51.2 11.52 2.15 9.18 
20 6 74.7 70.7 70 6.71 1.00 5.66 
21 7 101.5 98.1 96.5 5.18 1.66 3.47 
22 9 103.9 100.1 98.2 5.80 1.93 3.80 
23 10 121.3 117.4 - - - 3.32 
24 12 137.1 130.8 - - - 4.82 

 

5 Conclusions 
 
In present work, an attempt has been made to conduct a thorough evaluation of the effect of the selective 
breeding concept on the solution of GAs. To assess this effect a GTFP problem is selected as a nominee and 
two selective breeding are proposed for the problem. The SPT, EDD and STP-EDD rules are employed to 
generate a set of schedules which construct one of the initial populations of the proposed selective breeding 
GAs. A natural breeding GA with the same structure is also developed and used as the reference for this 
evaluation. Then, an extensive numerical experiment on total of 2250 randomly generated scenarios is 
conducted to compare the effects of selective breeding mechanism. The effects of the varieties factors such 
as the number of jobs, the number of machines, the type of the initially selected parent and the different 
value of the crossover rates on the solution of the proposed algorithms are analyzed by the factorial ANOVA. 
A broad computational experiment is also conducted on the mean values of the solutions obtained by the 
proposed algorithms. In this experiment, the initial solution and the final solution of each algorithm is 
compared their associated percent improvements are calculated. The effect of the input parameters on the 
percent improvement as well as the improvement of different proposed algorithms are determined and 
compared. The computational results reveal that a significant improvement can be reached if one employs an 
initial population with better genes as one of the parents. It is also revealed that using an initial population 
with better genes as one of the parents performs much better when we let the initial selected parent is also 
being evolved throughout the progress of evolution. 
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Additionally, evaluation of the deviations of the solution of the proposed algorithms from the optimal 
solution disclose that all the proposed algorithms provide the near optimal solutions, while Algorithm 3 
performs much better than the other two-proposed algorithms. 
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Appendix 1 
 

The results of the factorial-ANOVA 
 

Table A1-1. The result of 3-factorial (n, m, CR) ANOVA for Algorithm 1 
 

Dependent variable: Result 

Pr>F F value Mean squares Sum of squares DF Source 

<0.0001 10.10 0. 01296484 1. 93176136 149 Model 

  0. 00128423 0. 77053880 600 Error 

   2. 70230016 749 Corrected 

 Result mean Root MSE Coefficient variance R-Square  

 0. 091015 0. 035836        39. 37394       0. 714858       

Pr > F  F value  Mean square  ANOVA SS  DF  Source 

<.0001  249.41  0. 32029711  1. 60148556  5  A  

<.0001  33.92  0. 04355797  0. 17423186  4  B  

0.2595  1.32  0. 00170063  0. 00680253  4  C  

0.0002  2.42  0. 00310479  0. 06209585  20  A*B  

0.9457  0.55  0. 00070355  0. 01407101  20  A*C  

0.8867  0.60  0. 00076766  0. 01228248  16  B*C  

0.9979  0.59  0. 00075990  0. 06079206  80  A*B*C  
 

Table A1-2. The result of 3-factorial (n, m, CR) ANOVA for ISP = STP of Algorithm 2 
 

Dependent variable: Result 

Pr>F F value Mean squares Sum of squares DF Source 

<0.0001 12.53  0. 01433520     2. 13594515      149 Model 

  0. 00114377 0. 68626469      600 Error 

   2. 82220984 749     Corrected total     

 Result mean Root MSE Coefficient variance R-square  

 0. 091888 0. 033820        36. 80532       0. 756834       

Pr > F F value Mean square ANOVA SS DF Source 

<.0001 351.70 0. 40226059 2. 01130297 5 A 

<.0001 9.92 0. 01134611 0. 04538443 4 B 

0.8513 0.34 0. 00038835 0. 00155339 4 C 

0.0184 1.79 0. 00204959 0. 04099177 20 A*B 

0.9974 0.34 0. 00038350 0. 00767002 20 A*C 

0.9997 0.20 0. 00022738 0. 00363802 16 B*C 

1.0000 0.28 0. 00031756 0. 02540455 80 A*B*C 
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Table A1-3. The result of 3-factorial (n, m, CR) ANOVA for ISP = EDD of Algorithm 2 
 

Dependent variable: Result 
Pr>F F value Mean squares Sum of squares DF Source 
<0.0001 18.08 0. 01356027      2. 02048040       149 Model 

  0. 00074985 0. 44990766       600 Error 
   2. 47038806 749     Corrected total     
 Result mean Root MSE Coefficient variance R-square  

 0. 091764 0. 027383 29. 84111 0. 817880  
Pr > F F value Mean square ANOVA SS DF Source 
<.0001 487.70 0. 36570198 1. 82850990 5 A 
<.0001 38.21 0. 02865049 0. 11460198 4 B 
0.8512 0.34 0. 00025469 0. 00101875 4 C 
<.0001 3.85 0. 00288951 0. 05779026 20 A*B  
1.0000 0.16 0. 00011917 0. 00238333 20 A*C 
0.9985 0.26 0. 00019584 0. 00313348 16 B*C 
1.0000 0.22 0. 00016303 0. 01304270 80 A*B*C 

 
Table A1-4. The result of 3-factorial (n, m, CR) ANOVA for ISP = STP-EDD of Algorithm 2 

 
Dependent variable: Result 

Pr>F F value Mean squares Sum of squares DF Source 
<0.0001 13.13     0. 01568425      2. 33695266       149 Model 

  0. 00119433 0. 71659846       600 Error 
   3. 05355112 749     Corrected total     

 Result mean Root MSE Coefficient variance R-Square  
 0. 097506 0. 034559 35. 44298 0. 765323  
Pr > F F value Mean square ANOVA SS DF Source 
<.0001 355.75 0. 42488622 2. 12443108 5 A 
<.0001 20.24 0. 02417009 0. 09668035 4 B 
0.6089 0.68 0. 00080726 0. 00322906 4 C 
0.0002 2.57 0. 00306726 0. 06134522 20 A*B 
0.9986 0.31 0. 00036811 0. 00736230 20 A*C 
0.9991 0.24 0. 00028497 0. 00455956 16 B*C 
1.0000 0.41 0. 00049181 0. 03934509 80 A*B*C 

 
Table A1-5. The result of 3-factorial (n, m, CR) ANOVA for ISP = STP of Algorithm 3 

 
Dependent variable: Result 

Pr>F F Value Mean squares Sum of square DF Source 
<0.0001 9.07 0. 00501650     0. 74745810       149 Model 

  0. 00055295 0. 33176744 600 Error 
   1. 07922554 749     Corrected Total     
 Result mean Root MSE Coefficient variance R-square  
 0. 142949 0. 023515 16. 44972 0. 692587  

Pr > F F value Mean square ANOVA SS DF Source 
<.0001 238.23 0. 13173016 0. 65865082 5 A 
<.0001 17.43 0. 00963796 0. 03855183 4 B 
0.994 0.02 0. 00000958 0. 00003834 4 C 
<.0001 3.82 0. 00211079 0. 04221587 20 A*B  
1.0000 0.16 0. 00009014 0. 00180286 20 A*C 
1.0000 0.06 0. 00003470 0. 00055526 16 B*C 
1.0000 0.13 0. 00007054 0. 00564311 80 A*B*C  
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Table A1-6. The result of 3-factorial (n, m, CR) ANOVA for ISP = EDD of Algorithm 3 
 

Dependent variable: Result 
Pr>F F value Mean squares Sum of squares DF Source 
<0.0001 16.31 0. 01359981    2. 02637112       149 Model 
  0. 00083406 0. 50043850       600 Error 
   2. 52680962 749     Corrected Total     
 Result mean Root MSE Coefficient variance R-square  
 0. 092006 0. 028880 31. 38935 0. 801948  
Pr > F F value Mean square ANOVA SS DF Source 
<.0001 368.84 0. 30763941 1. 53819704 5 A 
<.0001 31048.74 0. 08735746 0. 34942983 4 B 
0.6527 0.61 0. 00051217 0. 00204869 4 C 
<.0001 5.98 0. 00498623 0. 09972464 20 A*B  
0.9909 0.40 0. 00033648 0. 00672956 20 A*C  
0.9857 0.39 0. 00032157 0. 00514515 16 B*C 
1.0000 0.38 0. 00031370 0. 02509621 80 A*B*C  

 
Table A1-7. The result of 3-factorial (n, m, CR) ANOVA for ISP = STP-EDD of Algorithm 3 

 
Dependent variable: Result 

Pr>F F value Mean squares Sum of squares DF Source 
<0.0001 9.15 0. 00638702      0. 95166631      149 Model 

  0. 00069799 0. 41879107       600 Error 
   1. 37045738 749     Corrected Total     

 Result mean Root MSE Coefficient variance R-square  
 0. 074351 0. 026419 35. 53341 0. 694415  

Pr > F F value Mean square ANOVA SS DF Source 
<.0001 199.74 0. 13941433 0. 69707164 5 A 
<.0001 65.89 0. 04598833 0. 18395334 4 B 
0.5692 0.73 0. 00051214 0. 00204856 4 C 
<.0001 2.93 0. 00204688 0. 04093752 20 A*B 
0.9955 0.36 0. 00025326 0. 00506512 20 A*C 
0.9663 0.46 0. 00031806 0. 00508895 16 B*C 
1.0000 0.31 0. 00021876 0. 01750118 80 A*B*C 
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