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Abstract

In this paper, the use of selective breading evolutionargegsofor improving the performance of GAg is
evaluated. To accomplish this evaluation, the generai@eéihess flow shop scheduling (GTFS) problem
is designated. A natural evolutionary GA and two seledinemding Gas are developed for evaluating
their performances in solving the proposed problem. Aensxte numerical experiment on total of 2250
randomly generated scenarios is conducted to compare the effeelective breeding mechanism. The
effects of the varieties factors on the solution & #gorithms are analyzed by the factorial ANOVA.
The computational results reveal that a significant impron¢ren be obtained if one employs an initial
population with better genes.

Keywords: Scheduling; sequencing; natural breading GA; sekedireeding GA; generalized tardiness
flow shop.
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1 Introduction

Job scheduling is vital tool for manufacturing and engingeand has a major effect on the productivity of a
process. Production scheduling incentive is maximizatiothefefficiency and reduction of the operations
costs. Production systems can be classified as batcegsing, job shop and flow shop system. A flow shop
is a processing system in which the task sequence ofj@adh fully specified, and all jobs visit the work
stations in the same order [1]. The flow shop schedutiegsure of performances are generally the time
required to finish all jobs or makespan, the average filme, and the total tardiness of jobs.

This manuscript proposed a set selective breeding gealgorithm (GA) for the generalized tardiness
flowshop (GTFS) problem. The evolutionary process of almbsihe cited GAs is inbreeding. In the other

hand humans have been domesticating animals for thousand lyedeseloping countries, the selective

breeding has been practiced for the cattle’s traits. Famyging cattle with better genes, they usually import
bulls with better genes and use them for breeding. The whopogrirof selective breeding is to allow

individuals with the best sets of genes to reproduce arb@ikt generation [2]. Utilizing the same concept,
we investigated the use of selective breeding in GA.

For discussion of the GTFS problem, a model with a duefdatsmmpletion of each operation of the jobs is
considered, while in the traditional tardiness flowshbpre is only a due date for the final operation of each
job. However, in most of the real-world projects, the outare delivered through predefined phases and
there is an associated due date for each phase. Ushallphises are carried out in a unidirectional
precedence structure. Considerimgrojects to be scheduled, each havnghases, the problem can be
modeled as am jobsim machines Flow shop scheduling problem with the internedi@bs due dates.
Where the tardiness is defined as the measure schegelifaymance, this model is called the generalized
version of the tardiness Flow shop scheduling model.

2 Review of Related Works

The GTFS problem was first introduced by Ghassemi-diadiOlfat [3]. However rare research studies have
considered this problem. One of the early work is aystudvhich four COVERT based heuristic algorithms
are proposed for the GTFS [4]. Later several other heugfgorithms using different rules such as apparent
tardiness cost (ATC), slacked-based rule, modified due(DD) rules, and other simple rules of SPT and
EDD, are also proposed for the problem [5-7]. In spitdhefextensive efforts of these works, the use of the
metaheuristic type solution approaches have not bedrmesi for the GTFS.

Among the metaheuristics, genetic algorithms are repoethe efficient optimization approaches [8].
Genetic algorithms have been originally proposed by HollandT®& use of evolutionary algorithms for
shop scheduling problems started around 1980. Two of theafigications of evolutionary algorithms to
flow shop scheduling problems have been given by Werner At@jther early approach for applying GA to
flow shop scheduling problems is the work of Murata etldl].[

The permutation flow shop scheduling problem (PFSP) has badirdsby many researchers However there
are little research works considering tardiness flow shomytation scheduling. Zheng, and Wang [12]
investigated the effect of different initializationpssover and mutation operators on the performances of a
genetic algorithm and proposed an effective hybrid heéurfet flow shop scheduling. Later, Wang and
Zheng [13] presented a novel and systematical approach Hlmaseatdinal optimization and optimal
computing budget allocation technique to determine optimabowation of genetic operators for flow shop
scheduling problems. Then through a simulation experiment, tlese shown that the proposed
methodology is able to determine optimal combination of gemgtérators and simultaneously to provide a
good solution with reasonable performance evaluatioadioeduling problem.

Chung et al. [14] developed a genetic algorithm for sgihthe tardiness permutation flow shop scheduling
problems withm-machine,n-job. Use of the GA for solving flow shop problems with tWerieties of
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objectives are addressed in by Cemil et al. [15]. Thislystvas limited to a flow shop tardiness with a
common due date. A GA and a Tabu search algorithm fomngplkiis problem were proposed. Three genetic
algorithms for the problem of minimizing total tardinesgehbeen given by Vallada and Ruiz [16].

Onwubulu and Mutingi [17] considered the flow shop problem with thréereit objectives of minimizing
the total tardiness, the number of tardy jobs and a linearbination of both criteria. Babu et al. [18]
introduced a genetic algorithm to solxgobs m-machines flow shop scheduling problem to get the optimum
results of make-span and total tardiness. Ta et al. fi8jidered thenrmachine tardiness permutation flow-
shop scheduling problem and proposed several metaheuristic algortheymetaheuristics were compared
to a genetic algorithm and concluded the good performancie ohetaheuristic algorithms. Other efforts
are the works of Rahman [20], Sajadi [21], Shin [22], Wrahg et al. [23], Cui et al. [24].

Scheduling with learning effects has received considerattdémtion recently [25]. Lee and Chung [26]
consider a permutation flowshop scheduling problem with legreffects where the objective is to minimize
the total tardiness. Other recent studies are the wdflkacet al. [27] and Mou et al. [28].

The review of the related works reveals that the canokphe selective breeding and its prosperities on
improving the final solution has not been investigatexidghly. Also, the use of the metaheuristics for the
GTFS problem has been considered only on one study [29kdMer, the effects of the dissimilarities of
different algorithm routines on the improving the finalluion may not be the only source of its
improvement, but it may root on the value of the input parameféris is another deficiency which is
realized in the related studies. To overcome thesecsimoings, in this research, three GAs are proposed for
the GTFS problem. The two of the GAs are developed basdwaelective breeding concept. The third GA
is proposed based on the natural evolutionary process ligatevdhe solution improvement of the selective
breeding with respect to the natural breeding. An extercgivgputational experiment including a factorial-
ANVOA is conducted for assessing the solution improvemertteosélective breeding algorithms as well as
the effects of the verities of input parameters insthl@tion improvement.

3 The Proposed Solution Algorithms

Due to the combinatorial nature of the mathematical magielproposed a natural evolutionary and two

variants of the selective breeding GA for solving theppsed problem. The concepts of the two variants GA
are similar to the natural evolutionary GA except thatihitial population of one of the parents is selected
from a set of schedules with better genes. The procetssefoping these algorithms will be described in the
following subsections.

3.1 Algorithm 1. The natural evolutionary GA

We proposed the following procedures for generation of th@lirpopulation as well as the required
operators.

3.1.1 Initial population

For generation of the initial population a chromosomeoissidered as a permutation schedule of the Flow
shop model. Therefore, in a model withHobs andm machines there amm chromosomes, each having
genies which represent the job’s sequences. Using pseudo rgedenation, a uniform density function of

[Lm]is employed, and by eliminating the repeated numbmrsistinct machines are generated. Then

another uniform off, N],is used, and again by eliminating the repeated numhegahs are assigned to
each of than machines randomly. Now for generating a permutation schedhke same sequence is used
for all other machines. By repeating this procedure faryewm generated machines, we constructed
permutation schedules as the initial population.
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3.1.2 GA operators

As in general practice a GAs consists of three majorabpes, namely; selection / reproduction, crossover,
and mutation operators. Each of these operators can txbessn the following subsections.

3.1.2.1 Selection/Reproduction operator

The elitist and roulette wheel selection operators are greglfor the proposed GA. A probability according
to its fittingness values is assigned as a basis fordleeton for the further reproduction. In proposed
algorithm, them permutation schedules are first sorted by the values oftdrdiness in a non-decreasing
order. By assigning the rank, from O to m1l to the sorted schedule, we defined the function

W(K) =2(m—K)/m(m+ 1) for assigning a weight to each of the schedules. Now by assigning a
corresponding probability according to the defined weightsdb papulation member, and using the density

function of P(x) = % we can obtain the cumulative density function (CDF). Byegating a random

variable x from a uniform density function of [On+1], the selection of each schedule is accomplished
according to the inverse of the CDF as bellow:

F™*(x) = 2m-1-[(1-2m)"* = 4m(m-1-(m+D(1-x))]"?)/2 (1)

In the proposed GA, the parents’ selection for mutagiod crossover operators are also conducted using the
roulette wheel selection mechanism. Then all generatemimdsomes by crossover and mutation operator
are replaced with those having worst objective functionesin the current population.

3.1.2.2 Crossover operator

In proposed GA, a crossover ratesgh,  is used. We let thesaver rate takes different values from 0.70 to

0.90. The Modified Order Crossover (MOX) is employed as thesowes operator. In MOX operator by a
random number generation mechanism a cut point is detedmirhen the genes in the left segment of the
cut from first (second) parent are copied to the genegbdarleft segment of the cut in the first (second)
offspring. The genes from second (first) parent, ateitting the selected genes are designated and mapped
to right of the cut of the first (second) offspringtire same order. Through this procedure two offspring are
generated and kept in a file to be considered after th@atiom process. Fig. 1 presents an illustrative
example of the crossover operator.

3.1.2.3 Mutation operator

In the proposed algorithm, the mutation is applied apgr=100* (1— p,) percent, in whictp, is the

percentage of crossover iterations. The mutation i®peed by the one point inversion method. First, we
generated a random variable from a uniform density funafd®, n]. The value of this random variable
specifies the cut point in the string of the genes. Thergenes in the left segment of the cut of the parent
are copied to the left segment of the cut of the gehéwe offspring in the same order. The remaining genes
of the parent are then reversed and mapped to right ofitleff the offspring. Fig. 2 presents an illustrative
example of the mutation operator.

It is to be noted that, we select 20 as the numbéeiations. This is due to the fact that in the process of
conducting the computational experiment, we performed ansixe analysis on different factors, such as
number of jobs, number of machines, crossover rate, argfatiff factor levels. The computation process
failed for the most of the higher factors levels whereitbetion numbers are set to the greater than 20.
Therefore, in order to have a consistence results fatiffdrent factor levels, the number of iterationsét

to 20.
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3.1.3 Steps of the GA

The steps of the proposed GA can be summarized by the fiofj@hgorithmic procedures.

Stepl. Generate the initial population and calculateattténess of the parents.
Step2. Letp, = 070 andit =1

Step3. Perform crossover iteration, and calculate thlentss of the offspring to save it in HI#-C.
Step4. Perform Mutation iteration, and calculate the tasdiof the offspring to save it in FiIFM.

Step5.  Select offspring with the rate BD0p_ from OFC and offspring with the rate k00— p.)
percent fromOFM, and select the leasttardy schedules.
Step6. If It =20, go to Step7, otherwise ldt = It +1, and go to Step3.

Step7. Designate the sequence with the smallest tardinesiseainal solution for thig,. If

p. = 090, stop. Otherwise lep, = p, + 005 and go to Step 3.
3.2 Selective breeding algorithms

Three different sequencing rules of shortest procgssime (SPT), earliest due date (EDD), and combined
SPT-EDD, are employed for generation of the initialllested parent and two algorithms each with three
variants of one of the initial parent are proposed. Beifarstrating the outlines of these algorithms let us
first describe the generation of the selected initiglytation.

3.2.1 Generation of the selected initial parent

To generate the selected initial population, we employed dwudstic sequencing rules, such as SPT,
EDD, and combined SPT-EDD. Since in the generalized &sdifilow shop problem a due date is defined
for every operation of the jobs, it would be worthwhile taldeach of the machines distinctly as a single
machine tardiness problem for developing some simpleeseing rules. Let us first propose the following
definitions and theorems.

Definition 3.2.1.1: Let S represents a schedule in which job i proceeds job j amdp&sents another
schedule which is identical to S except that job j procgdxls

Definition 3.2.1.2:Let the total tardiness of job i and j in schedule S and sdbedl are denoted by,
T ; respectively. By letting B(i) and B(j) as the availabteetiof job i and j to be processed respectively,

then the value oT-

and

j»and T ; can be determined as follows:

T, =T,(S) +T,(S) = max{B(i) +t, - d, 0} + max{B(j) +t, - d, 0}. @

T, =T,(S) +T,(S) = max{B(j) +t, - d,,0} + max{B(i) +t, - d, 0}. @)

Since the rest of jobs in both schedules have the samermeq only different values of , andT ; alter
the total tardiness of the both schedules.

Based on the above definitions the following theorems areopeap
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Parent 1

1

5|11 3| 2|9 8|4|T7]|6

Parent 2

L

6|2 |3|4|8]|5
48| 7|9

Off spring 1 5| 1 36| 2
Parent 1 Parent 2
1
3 1 2 7 5 9 4 6 8 4 7 519 1 2
E. 3 F_ 3 - L - - -
Off spring 2 6 8 3 1 217 4

Fig. 1. An example of the crossover operator

Parent 1

|

4| 5|, 8]6 |39 2

w

Off spring 1

or

(&0 4

Fig. 2. An example of the mutation oper ator

Theorem 3.2.1Assumingt; > t;andd; > d,,then SPT provides a schedule, which is better than or equal to
the non SPT schedule with the objective of minimizing thetéothhess of the jobs.

Proof. Based on the values of the total tardiness of Scheduid Schedule S’ which are determined by the

following equation, it can be verified thet > T ;.

T, =max{B(i) +t, +t, —d,0}.

T; =max{B(j) +t; —d; 0} + max{B(i) +t +t; - d, 0}

(4)

®)
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It B(i) +t <d,,it can be deducted tha >T,. Therefore, it is preferable to have job j with smaller

processing time (or at most equal processing time to)jqoeicede job i. By using the same reasoning for
every other two jobs we can conclude that the SPT scheduleegasup the non SPT schedule. Now if

B(i) +t; >d,. Then,

Tij :B(j)+ti_di+B(j)+ti+tJ_dj' ©)

T; =max{B(j)+t; =d; 0} + B(i) +t, +t, - d,. (7)

We then hava, —T, = B(i) +t, —d; —max{B(j) +t; —d;,0}. If the maximum in the last term is zero,
then the condition implies that, > T;; and if the maximum in the last term is positive, then

T, -T; =B(i))+t, —d; - B(j) +t; —d; =t —t; > 0. Therefore, it can be concluded thgf > T, so it

is preferable to have job j with smaller processing t{meat most equal processing time to job i) precede
job i. By using the same reasoning for every other two yabscan conclude that the SPT schedule is
superior to the non SPT schedule.

Theorem 3.2.2. Assuming t; >t;,andd; <d,,then EDD provides a schedule, which is better than or
equal to the non EDD schedule with the objective of minimihiegotal tardiness of the jobs unless for the

case thatB( N*y>dj, in which SPT provides a better schedule.

Proof.
Tij =B(i)+t, —d. ®)
T, =B(j)+t, +t —d,. 9)

If B(j)+t; >d;,and B(i) +t, +t; <d,. thenT,
the earlier due date) precede job j. NowBfi) +t; >d;. and B(j) +t; <d; <B(i) +t; +t;.Then we

have,

> Tij . So it is preferable to have job i (the job with

Ty =B(i)+t —d, +B(j)+t +t; -d,. (10)
T, =B(j)+t, +t, —-d, (11)

TherT, —=T; =B(i) +t;, —d,. Therefore, we can conclude that, it is preferable to halwe (the job with
the earlier due date) precede job j unleBg) +t; > d;, in which case job j (the shorter job) may precede

job i. This due to the fact that, B(j) +t; > d, then we will have:
T, =B(i) +t, —d, +B(j) +t, +t; —d, (12)

T, =B(j)+t, —-d,; +B(i)+t, +t, —d.. (13)
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ThenT, —=T; =t, —t; 20, and Therefore, Case 2.2.3 yielJs> T, , so it is preferable to have job j (the

shorter job) precede job i. Again by using the same reasoming\ery other two jobs the proof is
completed.

If B(i) +t, < d,, based on the values of the total tardiness of Schedule S and ScBédutéch are
determined by the following equation, it can be verified ithean be deduct tha, > T;.

T, =max{B(i) +t, +t, —d,0}. (14)

T; =max{B(j) +t; —d; 0} + max{B(i) +t, +t, —d,,0}. s

Therefore, it is preferable to have job j with smaller gsging time (or at most equal processing time to job
i) precede job i. By using the same reasoning for evigigrdwo jobs we can conclude that the SPT schedule
is superior to the non SPT schedule.

Now if B(i) +t; >d,. Then
T, =B()+t —d, +B(j)+t +t, - d,. (16)
T, =max{B(j) +t, —d, 0} + B() +t, +t, —d,. (17)

We then hava; -T; = B(i) +t, -d; - max{B(]j) +t; - d,,0}. If the maximum in the last term is zero,
then the condition implies thaly >T;; and if the maximum in the last term is positive, then
T, =T; =B(i))+t, —d; =B(j) +t; =d; =t, —t; = 0. Therefore, it can be concluded thgt > T,

is preferable to have job j with smaller processing t{meat most equal processing time to job i) precede
job i. By using the same reasoning for every other two jolban conclude that the SPT schedule is
superior to the non SPT schedule.

so it

Based on these theorems if one considers each machine wwhehbp model distinctively, SPT and EDD
sequencing rules can provide a near optimal tardiness aif eechine. This could be a reasonable
assumption due to the fact that there is a due date for eperation of the jobs in the permutation schedule.
Now in obtaining the permutation schedules, if we apply thdss ta all machines of the generalized flow
shop we obtaim distinct permutation schedules and from those we canajertée initial population of one
of the parents. To distinguish the job number and its positioreisghjuence, it would be convenient to use
brackets to indicate position of job in the sequence. Usiisgconcept, §] = | means that th&"job in the
sequence is joh Similarly, t refers to the processing time of i job in sequence being processed on

machinel. Based on the above sequencing rules three subroutinesopmsgut for generating one of the
initial populations. These subroutines are presented dslitbwings:

Subroutine 1. SPT schedules

Step 1. Lek=1.

Step 2. Schedule jobs in non-decreasing orddf of  tj;e.< t; < <ty

Step 3. Use this sequence for all thanachines and calculate the total tardiness of this gation
schedule.

Step 4. Ifk=m, go to step 5, otherwise letk+1, and, then go to step 2.
Step 5. Select the generatadchedules for one of the selective parent, and stop.
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Subroutine 2. EDD schedules

Step 1. Lek=1.
Step 2. Schedule jobs in non-decreasing ordef i.e. dyyy, < dpp <+ < dppy,.

Step 3. Use this sequence for all thenachines and calculate the total tardiness of this permutation
schedule.

Step 4. Ifk=m, go to step 5, otherwise letk+1, and, then go to step 2.

Step 5. Select the generatedchedules for one the selective parent, and stop.

Subroutine 3. Combined SPT-EDD schedules

Step 1. Lek=1.
Step 2. Schedule jobs in non-decreasing ordd of.e. t;, <t < <t

Step 3. Use this sequence for all thenachines and calculate the total tardiness of this permutation
schedule.

Step 4. Schedule jobs in non-decreasing ordetof i.e. Ak < dpoge <+ < dpe-

Step5. Use this sequence for all themachines and calculate the total tardiness of this permutation
schedule.

Step 6. Ifk=m, go to step 7, otherwise letk+1, and, then go to step 2.

Step 7. Selecin schedules with the lowest tardiness from the generatedhedules and designate
them as one of the selective parent, and then stop.

As it is mentioned earlier, evaluation of the effecthe selected breading on the solution of the GA is the
major purpose of this study. To achieve this goal, tworo@®a algorithms, in addition to the natural
evolutionary GA (Algorithml), are proposed. In Algorithm r&daAlgorithm 3, contrary to the customary
random selection, one of the initial parents is nominatetthdypest schedule, presumably as parent with the
better genes. In Algorithm 2, the selected initial paremaies unchanged throughout the all evolutionary
process of the generating new populations. In Algorithm 3Jetvéhat the initially selected parent to be
evolved throughout the evolutionary genetic process. A moial aigscription of the algorithms will be
illustrated in the following subsections.

3.2.2 Algorithm 2-Selective breeding algorithm (unchanged initially selected parent)

Algorithm 2 differs from the proposed natural evolutionary G¥g6rithm 1) by the generation of the
population of one of the parents. In Algorithm 1 both parentsgererated randomly and the next
populations are generated through the use of the crossovéreanditation process. However, in Algorithm

2 we let one of the parents is selected from the populatitmbetter genes. For a better evaluation, three
versions of GA are considered for the initial selecpogulation with better genes. Bellow, designates these
versions:

Version 1. GA with the SPT schedules.
Version 2. GA with the EDD schedules.
Version 3. GA with the best of SPT and EDD schedules.

To begin with, the above three subroutines are first exe@anddamong their solutions, the best schedule
with the minimum tardiness is nominated as the initiallgcted parent for each version. Using the selected
schedules as one of the parents, the other proceduregyofitAdn 2 are similar to Algorithm 1. The
following summarizes the steps of Algorithm 2.

Stepl. Lek=1
Step 2. Generate the initial selected parent usirgjorek.

Step3. Generate the other initial parent randomly. peE 070 andlt =1
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Step4. Perform crossover iteration and calculate theneslto save it in FIlOFC.
Step5. Perform Mutation iteration and calculate the nas$i to save it in FilOFM.

Step6. Select offspring with the rate 0, from OFC and offspring with the rate €001 — p,)

percent fromOFM, and select the least tardy schedules as one of the new parents, and the
initially selected parent as the other new parent.

Step7. IfIt = 20, go to Step 8, otherwise ldt = It +1, and go to Step 4.

Step8. Designate the sequence with the smalledinéms as the final solution for thg. If

p. = 090, go to Step 9, otherwise Igd, = p, + 005 and go to Step 4.
Step 9. k=3 stop, otherwise lé¢e=k+1, go to Step 2.

3.2.3 Algorithm 3-Selective breeding algorithm (evolving initially selected par ent)

Similar to Algorithm 2, three versions of GA arensi@lered for the initial selecting population witter
genes. Algorithm 3 differs from Algorithm 2 by lietty both of the initially selected parents origemform
selecting populations with better genes. Other thamthe rest of algorithmic procedures of Algamit 3 are
similar to Algorithm 2. The following summarizestbkteps of Algorithm 3.

Stepl. Lek=1
Step 2. Generate the initial selected parent ugéngjonk.
Step3. Chose the two initial parents by the sedacprocedure (described in Sectidrl.2.1) Let

p. = 070 andit =1

Step4. Perform crossover iteration and calculagahdiness to save it in Fi@FC.

Step5. Perform Mutation iteration and calculatetérdiness to save it in FileFM.

Step6. Select offspring with the rate b0p,_ from OFC and offspring with the rate €00(1— p,)
percent fromOFM, and select the leasttardy schedules.

Step7. IfIt = 20, go to Step 8, otherwise ldt = It +1, and go to Step4.

Step8. Designate the sequence with the smalledinéms as the final solution for thig. If

p. = 090 go to Step 9, otherwise Igd, = p, + 005 and go to Step 4.
Step 9. k=3 stop, otherwise ld¢e=k+1, go to Step 2.

4 Computational Experiments

An extensive computational experiment, based otofet analysis of variance (ANOV) is conducted for
evaluating the effect of different factors on thgprovement of the initial solution for differentrgeons of
the proposed algorithms. The improvement is detezthiby the difference of the final solution and the
initial solution by the fowling relation:

%l =(IT-FT)*100T. 8)

Where %, designates the percentage improvement in thedatthéardiness obtained by applying each
individual GA, IT represents the initial tardiness of the scheduteeabegging of the corresponding GA, and
FT indicates tardiness of the final schedule obtaafésr termination of the corresponding GA.

An extensive computational experiment consistin@2$0 randomly generated scenarios are perfornred fo
evaluating the effects of different factors at eiéint level to test the hypothesis of the equaditythe
improvement obtained by the different algorithmsor# precisely a factorial ANOVA is conducted for
algorithm 1, in which the number of job, the numbE&machine, and the crossover rate are desigetéde
independent variables and the percent improvensedesignated as the dependent variable. Also,e® thr

10



Ghassemi-Tari and Meshkinfam; BIJMCS, 22(3): 1-B1,72 Article no.BIJIMCS.33498

factorial ANOVA is performed for evaluating the eft of three factors, such as the number of job, th
number of machines and the type of the initiallgseed schedule (STP, EDD, or combine STP-EDD)nes o
of the parents on the equality of the percentagmpfovement (%l) obtained by Algorithm 2 and Algbm

3. To perform the ANOVA, five test problems aredamly generated for each instance. Then, the pszbos
algorithms are coded by C++ and run on a Core i5M€ 8 GB Ram, using SAS software. The following
subsections describe the generation of the tebtqars and the results of these experiments respécti

4.1 Generation of thetest problems

For generating an unbiased set of the test problérasconcept of pseudo random generation is eragloy
The test problems are randomly generated with uargizes, in terms of both the number of jobs ded t
number of machines and are respectively classif@brding to the values afi= 3, 5, 7, 9, 10, and= 15,
25, 50, 100, 200, 400. For each combination ofgotl machine, five instances are randomly genegated
solved by 20 iterations with the crossover rateBsj of 0.70, 0.75, 0.80, 0.85, and 0.90. It is tonbé&d
that, several computational experiments are alsowcted on the different factor levels with the femof
iteration greater than 20. However due to computat complexity of the higher factor level valuespst
of them are failed. Therefore, in order to haveaststence results for all different factor levélts number
of iterations is set to 20.

For the number of jobs, the following sizes aresidered: 8, 10, 12, 15, 17, 20, 25, 30, 40, 50,195, 200,
300, 400 and 500. For the machines, we considexadagms with 5, 10 and 20 machines. For each jub, t
processing times on the various machines are gedefiom a uniform distribution over the integergol
100, while an integer weight is obtained from aferm distribution [1,10]. Finally, for each job, ameger
due date was generated from the uniform distrilbbuti®oth the tardiness factor and the range of daiesd
parameters were set at 0.2, 0.4, 0.6, 0.8 andFhbO.each combination ai and m, 50 instances were
randomly generated. As the result, a total of lidStances were generated for each problem size.

For each job, the processing times on the varioashines, an integer value is generated from a Horma
distribution with {4/ =4 and ¢ = 5. Finally, for each job, an integer due date was g&rd from the normal

distribution with // =9 andJ = 4.
4.2 Computational results

The tables illustrating the results of ANOV are ganeted in the Appendix 1. In this appendix, a clafss
experiments are devoted to the hypothesis on thaliggof %d with respect to the effect of different factors.
Table Al-1, in the appendix, presents the resuANOVA on effect of the three factors on the petege
improvement (% for Algorithm 1. The three factors A, B and C megent the number of jobs)( the
number of machinesr)), and the different crossover rate€3Rj, respectively. This table reveals that the
equality of the percentage improvement accordingh different levels of the three factors and rthei
interactions is rejected with the probability okgter than .9999 (1-.0001). Considering a disttinassover
rate, a similar analysis is conducted on Algorithmand algorithm 2. For each individual crossovée,ra 3-
factorial analysis conducted in which factor A, &)d C respectively designates the number of jdies, t
number of machines, and the different initial seddcparent IGP) with the levels of SPT, EDD, and
combined SPT-EDD. The results are illustrated abl& Al-2 through Al-7 of Appendix 1. Based on the
content of these tables, it can be concluded Hehypothesis of the equality of the percentagedongment

is rejected for all of the individual design withopability of greater than .9999 (1-.0001).

It would be worthy, to illustrate how the percemtprovement obtained by the different algorithmsiesr
according to different input parameters. To revba variations Table 1 and Table 2 are provideabl&@ 1

presents the percent improvement of Algorithm hwéspect to the variations of the crossover ratelsthe

number of machines. The efficiency of this algaritis ranked for the variation of the crossovergatad

the number of jobs, based on the values of theepeimprovement. In this table, there is a consisteon

the efficiency of Algorithm1 and the crossover satie can be realized that the crossover rateghas the
first ranking and as the crossover rate incredse&fficiency decreases uniformly. Similarly, as ttumber
of machines increase the efficiency virtually irases.
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Table 2 provides the percent improvement of Aldgponitl with respect to the variations of the crossoates
and the number of jobs. Likewise, the efficiencytlut algorithm decrease as the crossover rateases
uniformly. However, as the number of jobs increidmeefficiency decrease consistently.

To illustrate the percent improvement on the soluiwf Algorithm 2 according to the number of maesin
and the number of jobs Table 3, and Table 4, issttoated respectively. Table 3 illustrates the @etc
improvement obtained by Algorithms 2 according lie variations of the initially selected parent dahd
number machines. The percent improvement is alskedhaccording to the number of machines and the
type of the initially selected parent. It can balimed selection of the initial parent by the STRerseems to
have a better efficiency and as the number of nmashincrease the efficiency virtually increases.

Table 4 presents the percent improvement obtainedlforithms 2 according to the variations of the
initially selected parent and the number jobs. Peecent improvement is also ranked according to the
number of jobs and the type of the initially sedetparent. In this case the selection of the inizaent by

the STP-EDD rule appears to have a better effigieamd as the number of jobs increase the efficiency
consistently decrease.

Similarly, to illustrate the percent improvementtbe solution of Algorithm 3 according to the numioé
machines and the number of jobs Table 5, and Tébles created. Table 5 demonstrates the percent
improvement of on the solution of Algorithm 3, fdifferent initially selected parent, according teet
number of machines. The percent improvement is rasked according to the number of machines and the
type of the initially selected parent. It can balimed that the performance of the percent imprav@non the
solution of Algorithm 3 executes very similar tetherformance of Algorithm 2. More clearly, théeséon

of the initial parent by the STP rule seems to habetter efficiency and as the number of machimagase

the efficiency virtually increases.

Table 1. Percent improvement of Algorithm 1 and ranking per the number of machines and the CRs

m CR Total Ranking
0.70 0.75 0.80 0.85 0.90

3 6.77 6.2¢ 6.24 6.4z 6.14 6.37 5

5 9.00 8.56 8.50 8.52 7.93 8.50 4

7 11.32 9.63 9.97 9.63 9.34 9.98 3

9 9.95 11.44 9.94 10.25 10.71 1046 1

10 11.24 9.79 9.85 10.23 9.85 1019 2

Average 8.1¢ 7.7¢% 7.5¢ 7.6t 7.4¢ 9.1C

Ranking 1 2 4 3 5

Table 2. Percent improvement of algorithm 1 and ranking per the number of machinesand the CRs

n CR Total Ranking
0.70 0.75 0.80 0.85 0.90

15 17.05 16.28 16.55 17.41 16.50 16.76 1

25 13.21 14.37 13.08 13.41 12.80 13.37 2

50 9.41 9.54 9.5¢ 8.8:2 8.72 9.21 3

100 6.45 6.27 6.03 6.28 6.56 6.32 4

200 6.41 4.84 4.60 4.73 4.62 5.04 5

400 5.42 3.57 3.57 3.42 3.56 3.91 6
Ranking 1 2 4 3 5

Table 6 describes the percent improvement of orstheation of Algorithm 3, for different initiallyedected
parent, according to the number of jobs. The périceprovement is also ranked according to the nurobe
machines and the type of the initially selecteceparlt can be realized that the performance ofpireent
improvement on the solution of Algorithm 3 accogliio the number of jobs performs very similar te th

12
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performance of Algorithm 2. More clearly, as thenber of jobs increase the efficiency virtually aeses.
However, the selection of the initial parent by 81 P-EDD rule seems to have a better efficiency.

Table 3. Percent improvement and ranking of Algorithm 2 per initial parent and m

m Initial selected parent Total Ranking
SPT EDD SPT-EDD
3 7.70 6.88 7.66 7.42 5
5 9.2C 8.8¢ 9.4t 9.17 4
7 9.92 10.03 10.34 10.10 3
9 9.59 10.13 10.73 10.15 1
10 9.4¢ 9.9¢ 10.5¢ 10.01 2
Ranking 1 3 2
Table 4. Percent improvement and ranking of Algorithm 2 per theinitial parent and n
n Initial selected parent Total Ranking
SPT EDD SPT-EDD
15 18.11 17.1% 18.8:¢ 18.02 1
25 13.33 13.73 14.42 13.82 2
50 9.68 9.89 9.65 9.74 3
100 5.89 6.22 6.73 6.28 4
200 4.44 4.58 4.77 4.60 5
40C 3.6: 3.52 4.11 3.7¢ 6
Ranking 2 3 1

Table 5. Percent improvement and ranking of Algorithm 3 according to theinitial parent and the
number of machines

m Initial selected parent Total Ranking
SPT EDD SPT-EDD

3 13.31 5.75 474 7.93 5

5 14.05 7.92 6.83 9.60 4

7 13.91 9.66 7.80 10.46 3

9 14.89 10.86 9.18 11.64 1

10 15.32 11.81 8.6: 11.92 2

12 14.29 9.20 7.44 10.31

Ranking 1 2 3

Table 6. Percent improvement and ranking of Algorithm 3 according to theinitial parent and the
number of jobs

n Initial selected parent Total Ranking
SPT EDD SPT-EDD

15 18.63 16.20 11.95 15.59 1

25 17.61 13.71 10.17 13.83 2

50 14.33 9.60 8.50 10.81 3

100 13.15 6.79 6.10 8.68 4

200 11.36 5.60 4.56 7.17 5

400 10.69 3.31 3.34 5.78 6

500 14.29 9.20 7.44 10.31

Ranking 1 2 3
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Finally, to conclude the computational experimerdbl@ 7 is provided. In this table, the percent
improvements selective breeding algorithms (Aldorit2 and Algorithm 3) with respect to the natural
breeding algorithm (Algorithm 1), for different weds ofn, m, andCR are determined and reported. Based
on the content of this table, it can be globallpdaded that the performance of the algorithm @resatly
better than Algorithm2. Another notable inferense¢he growth on the percent improvement as thdtresu
the increase on the value @GR This result somehow would be predictable dueh® dtructure of the
proposed GA. In the proposed GA, We let a mutatiiohe is performed for every other iteration. Sitioe
mutation may reverse the progress of optimizatibe,higherCR and therefore the lower mutation rate, (1-
CR), would be preferable.

Table 7. Percent improvement of the Algorithm 2 and 3 with respect to Algorithm 1 for different CR

n m % 70.00 % 75.00 % 80.00 % 85.00 % 90.00
Alg.2 Alg.3 Alg.2 Alg.3 Alg.2 Alg.3 Alg.2 Alg.3 Alg.2 Alg.3
15 5.81 10.98 13.66 15.85 10.83 16.77 12.10 17.47 8.704.37
25 13.65 1856 1857 20.54 22.83 23.64 24.79 28.33.69 31.40
50 18.13 26.51 66.39 29.30 5.95 17.73 24.24 29.77.452 33.33
100 3 15.07 24.68 23.55 31.06 20.86 30.46 10.14 20.8%49 17.26
200 1.12 5.17 10.60 11.93 14.00 19.18 1.02 10.32.8025 23.01
400 24.02 34.14 33.20 38.03 25.07 31.18 20.11 21.98.73 33.64
15 13.19 17.07 15.04 20.80 16.09 21.91 13.79 19.12 1119.23.11
25 15.06 14.40 0.00 6.82 11.65 11.02 12.99 14.56.1610 12.36
50 3.82 10.21 8.42 1452 8.72 1549 8.35 13.83 R23.827.32
100 5 -456  8.43 4.83 17.74 455 484 417 11.01 3.08.93
200 -5.68 3.10 3.24 477 546 741 957 11.95 10.8®17
400 12.38 9.47 1290 792 989 7.67 1753 843 718.8.03
15 11.65 9.62 17.29 1563 7.31 6.27 9.56 11.37 15.138.32
25 14.08 17.29 5.56 557 912 890 0.74 241 6.64.939
50 4.47 6.56 14.74 16.41 347 759 491 12.04 12.47.71
100 7 -3.62 -4.00 -036 -4.46 6.44 377 5.80 2.06 17.32.39
200 -329 321 4.76 172 113 823 -789 -285 2.521.89
400 -6.00 -6.94 16.67 1527 2.16 -3.05 14.04 11.45.13 7.48
15 14.48 19.48 6.19 15.38 9.86 15.71 5.41 11.48 1.69.60 6
25 3.57 14.16 0.86 13.48 155 1461 0.59 10.86 6-3.37.23
50 7.49 15.78 18.16 42.43 294 839 10.37 16.37 9 9.716.70
100 9 50.53 2.77 -3.67 1426 0.00 15.68 0.73 8.19 80-4. 6.17
200 -391 5251 -3.10 -391 873 279 479 4.11 084. 5.04
400 6.50 14.77 10.19 19.02 20.39 21.77 15,55 20.8335 11.20
15 5.18 10.19 19.29 23.11 15.77 20.15 2.33 10.59 12.37.11
25 21.02 22.05 0.60 826 -7.25 -1.13 -0.87 490 215. 6.13
50 0.46 1232 -021 451 277 915 496 10.87 9.591.91
100 10 11.03 10.73 10.84 14.03 1.02 10.30 0.80 0.34 .02-2 0.17
200 -0.12  4.46 -1.14 -444 -0.26 223 812 8.28 53.6 7.53
400 12.39 25.78 -12.77 10.17 6.49 23.05 16.48 25.73%8 24.31

Average percent 7.17 13.78 6.34 1419 6.80 12.72 6.72 12.56 8.91 .9213
Improvement

Additional experiment is conducted to evaluate tewiation of the average solutions of Algorithm 1,
Algorithm 2, and Algorithm 3 from the optimal sdlrt. To conduct this experiment, 24 additional test
problems are randomly generated and classifiediigenumber of jobs and the number of machines.dJsin
the crossover rate of %90, the test problems dreddy the proposed algorithm and CPLX. V12. The
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results of this experiment are depicted in Tablen&his table, the percentage of deviations ofgbkitions
of Algorithm 1, Algorithm 2, and Algorithm 3 fromhé optimal solution are determined by the following
relation:

theproposedlgorithmsolution— theoptimalsolution
theproposedalgorithmsolution

%Deveatior

The result revealed that the deviation of the smtubf Algorithm 3 from the optimal solution, in enage, is
% 1.5 which is considerably smaller than the ottver algorithms. This indicates that the Algorithmvah
the evolving initially selected parent GA perforbretter than the natural evolving GA (Algorithm ¥)wsell
as the selective breeding algorithm in which thgailly selected parent remains unchanged througtiau
algorithm iteration’s (Algorithm?2).

To evaluate the performance of the proposed apprioacomparing to the existing works, the only alale
work considering GA for the GTFS problem is selddtem the cited literature [], Then the cited aigom
(CA) is compared with Algorithm (3) and the reswte summarized in Table 9.

Table 8. Deviation of Algorithml, Algorithm 2, and Algorithm 3 from the optimal solution

Problem m n Solution Solution Solution The Per cent Per cent Per cent
no. of Alg.1 of Alg.2 of Alg.3 optimal deviation deviation deviation
solution  of Alg.1 of Alg.1 of Alg. 1

fromthe fromthe fromthe

optimal optimal optimal

1 5 179 17.2 17.1 17.1 4.47 0.58 0.00
2 6 29.7 28.6 27.9 27.6 7.07 3.50 1.09
3 5 7 426 43 42.1 40.7 4.46 5.35 3.44
4 9 481 47.5 46.3 46.1 4.16 2.95 0.43
5 10 49.9 49.9 49.1 48.7 2.40 2.40 0.82
6 12 741 75.2 69.8 69.1 6.75 8.11 1.01
7 5 231 23 22.2 21.3 7.79 7.39 4.23
8 6 304 30.3 29.5 28.8 5.26 4.95 2.43
9 7 7 498 48.8 47.9 47.5 4.62 2.66 0.84
10 9 685 65.1 64.4 63.7 7.01 2.15 1.10
11 10 87.1 86.2 83.2 82.7 5.05 4.06 0.60
12 12 1122 109.7 109.7 - - - -

13 5 521 51.1 50.4 50.1 3.84 1.96 0.60
14 6 69.7 69.6 69.2 68.5 1.72 1.58 1.02
15 9 7 895 89.1 88.2 87.6 212 1.68 0.68
16 9 100.1 99.8 99.3 95.1 5.00 4.71 4.42
17 10 115.9 116.7 109.6 - - - -

18 12 1723 165.8 164.9 - - - -

19 5 558 53.6 52.3 51.2 8.24 4.48 2.15
20 6 76.8 73.6 70.7 70 8.85 4.89 1.00
21 10 7 99.6 98.9 98.1 96.5 3.11 243 1.66
22 9 1045 101.7 100.1 98.2 6.03 3.44 1.93
23 10 119.7 119.9 117.4 - - - -

24 12 134.6 132.3 130.8 - - - -

Average 5.16 3.65 1.55
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Table 9. Comparing the solution of Algorithm 3 with the selected algorithm (CA) from the literature

Problemno. m n Solution Solution The Per cent Per cent Per cent
of CA of Alg.3 optimal deviation deviation deviation
solution  of CA of Alg.3 of CA
fromthe fromthe fromalg.3
optimal optimal

1 5 17.4 17.1 17.1 1.75 0 1.75

2 6 27.9 27.9 27.6 1.09 1.09 0

3 5 7 42.¢ 42.1 40.7 5.41 3.44 1.9C

4 9 47.7 46.3 46.1 3.47 0.43 3.02

5 10 51.€ 49.1 48.7 5.9t 0.82 5.0¢

6 12 70.4 69.8 69.1 1.88 1.01 0.86

7 5 234 22.2 21.3 9.86 4.23 5.41

8 6 31.4 29t 28.¢ 9.0: 2.4z 6.44

9 7 7 48.7 47.9 47.5 2.53 0.84 1.67

10 9 67.5 64.4 63.7 5.97 1.10 4.81

11 10 88.1 83.2 82.7 6.5z 0.6C 5.8¢

12 12 114.4 109.7 - - - 4.28

13 5 52.7 50.4 50.1 5.19 0.60 4.56

14 6 73.1 69.2 68.5 6.72 1.0Z 5.64

15 9 7 92.3 88.2 87.6 5.37 0.68 4.65

16 9 101.1 99.: 95.1 6.31 4.4z2 1.81

17 10 113.6 109.6 - - - 3.65

18 12 171.6 164.9 - - - 4.06

19 5 57.1 52.z 51.Z 11.5Z 2.1t 9.1¢

20 6 74.7 70.7 70 6.71 1.00 5.66

21 100 7 1015 98.1 96.5 5.18 1.66 3.47

22 9 103.9 100.1 98.2 5.80 1.93 3.80

23 10 121.3 117.4 - - - 3.32

24 12 137.1 130.¢ - - - 4.82

5 Conclusions

In present work, an attempt has been made to coredtiworough evaluation of the effect of the sélect
breeding concept on the solution of GAs. To ases®ffect a GTFP problem is selected as a normaneke
two selective breeding are proposed for the problEne SPT, EDD and STP-EDD rules are employed to
generate a set of schedules which construct oleeahitial populations of the proposed selectiveelling
GAs. A natural breeding GA with the same structisralso developed and used as the reference for thi
evaluation. Then, an extensive numerical experim@nttotal of 2250 randomly generated scenarios is
conducted to compare the effects of selective limgesiechanism. The effects of the varieties facsorsh

as the number of jobs, the number of machinestyibe of the initially selected parent and the défa
value of the crossover rates on the solution optioposed algorithms are analyzed by the factdiNDVA.

A broad computational experiment is also conductedhe mean values of the solutions obtained by the
proposed algorithms. In this experiment, the ihigalution and the final solution of each algorithisn
compared their associated percent improvementsacelated. The effect of the input parametershen t
percent improvement as well as the improvement ifferént proposed algorithms are determined and
compared. The computational results reveal thagrafieant improvement can be reached if one emplay
initial population with better genes as one of lagents. It is also revealed that using an infiigbulation
with better genes as one of the parents perfornmehrbetter when we let the initial selected parsrdlso
being evolved throughout the progress of evolution.
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Additionally, evaluation of the deviations of theligion of the proposed algorithms from the optimal
solution disclose that all the proposed algorithpnavide the near optimal solutions, while Algorith3n
performs much better than the other two-proposgarghms.
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Appendix 1

Theresults of the factorial-ANOVA

Table Al-1. Theresult of 3-factorial (n, m, CR ANOVA for Algorithm 1

Dependent variable: Result

Source DF Sum of squares Mean squares  Fvalue Pr>F
Model 149 1. 93176136 0. 01296484 10.10 <0.0001
Error 600 0. 77053880 0. 00128423
Corrected 749 2.70230016

R-Square Coefficient variance  Root MSE Result mean

0.714858 39. 37394 0. 035836 0. 091015
Sour ce DF ANOVA SS Mean square F value Pr>F
A 5 1. 60148556 0. 32029711 249.41 <.0001
B 4 0. 17423186 0. 04355797 33.92 <.0001
C 4 0. 00680253 0. 00170063 1.32 0.2595
A*B 20 0. 06209585 0. 00310479 2.42 0.0002
A*C 20 0. 01407101 0. 00070355 0.55 0.9457
B*C 16 0. 01228248 0. 00076766 0.60 0.8867
A*B*C 80 0. 06079206 0. 00075990 0.59 0.9979

Table A1l-2. Theresult of 3-factorial (n, m, CR) ANOVA for ISP = STP of Algorithm 2

Dependent variable: Result

Source DF Sum of squares  Mean squares  Fvalue Pr>F
Model 149 2.13594515 0.01433520 12.53 <0.0001
Error 600 0. 68626469 0. 00114377
Corrected total 749 2. 82220984

R-square  Coefficient variance Root M SE Result mean

0. 756834 36. 80532 0. 033820 0. 091888
Source DF ANOVA SS Mean square F value Pr>F
A 5 2. 01130297 0. 40226059 351.70 <.0001
B 4 0. 04538443 0. 01134611 9.92 <.0001
C 4 0. 00155339 0. 00038835 0.34 0.8513
A*B 20 0. 04099177 0. 00204959 1.79 0.0184
A*C 20 0. 00767002 0. 00038350 0.34 0.9974
B*C 16 0. 00363802 0. 00022738 0.20 0.9997
A*B*C 80 0. 02540455 0. 00031756 0.28 1.0000
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Table A1-3. Theresult of 3-factorial (n, m, CR ANOVA for ISP = EDD of Algorithm 2

Dependent variable: Result

Sour ce DF Sum of squares Meansquares Fvalue Pr>F
Model 149 2. 02048040 0. 01356027 18.08 <0.0001
Error 600 0. 44990766 0. 00074985
Correctectotal 749 2. 4703880

R-square Coefficient variance  Root M SE Result mean

0.817880 29.84111 0. 027383 0.091764
Source DF ANOVA SS Mean sguare F value Pr>F
A 5 1. 82850990 0. 36570198 487.70 <.0001
B 4 0. 1146019 0. 0286504 38.21 <.0001
C 4 0. 00101875 0. 00025469 0.34 0.8512
A*B 20 0. 0577902 0. 0028895 3.8t <.0001
A*C 20 0. 00238333 0. 00011917 0.16 1.0000
B*C 16 0. 00313348 0. 00019584 0.26 0.9985
A*B*C 80 0. 01304270 0. 00016303 0.22 1.0000

Table Al-4. Theresult of 3-factorial (n, m, CR) ANOVA for ISP = STP-EDD of Algorithm 2

Dependent variable: Result

Source DF Sum of squares Mean squares Fvalue Pr>F
Model 149 2. 33695266 0. 01568425 13.13 <0.0001
Error 60C 0. 71659846 0. 0011943
Corrected total 749 3. 05355112

R-Square  Coefficient variance  Root M SE Result mean

0.765323 35. 44298 0. 034559 0. 097506
Source DF ANOVA SS M ean square F value Pr>F
A 5 2.1244310 0. 4248862 355.7¢ <.0001
B 4 0. 09668035 0. 02417009 20.24 <.0001
C 4 0. 0032290 0. 0008072 0.6¢ 0.608¢
A*B 20 0. 06134522 0. 00306726 257 0.0002
A*C 20 0. 00736230 0. 00036811 0.31 0.9986
B*C 16 0. 00455956 0. 00028497 0.24 0.9991
A*B*C 80 0. 03934509 0. 00049181 0.41 1.0000

Table A1-5. Theresult of 3-factorial (n, m, CR) ANOVA for ISP = STP of Algorithm 3

Dependent variable: Result

Sour ce DF Sum of square  Meansquares F Value Pr>F
Model 14¢ 0.74745810 0. 00501650  9.07 <0.000:
Error 600 0.33176744 0. 00055295
Corrected Total 749 1. 0792255

R-square  Coefficient variance Root M SE Result mean

0. 692587 16. 44972 0. 023515 0. 142949
Source  DF ANOVA SS M ean square F value Pr>F
A 5 0. 65865082 0. 13173016 238.23 <.0001
B 4 0. 0385518 0. 0096379 17.4: <.0001
C 4 0. 00003834 0. 00000958 0.02 0.994
A*B 20 0. 0422158 0. 0021107 3.82 <.0001
A*C 20 0. 00180286 0. 00009014 0.16 1.0000
B*C 16 0. 00055526 0. 00003470 0.06 1.0000
A*B*C 80 0. 0056431 0. 0000705 0.1z 1.000(
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Table A1-6. The result of 3-factorial (n, m, CR) ANOVA for ISP = EDD of Algorithm 3

Dependent variable: Result

Sour ce DF Sum of squares Meansquares  Fvalue Pr>F
Model 149 2. 02637112 0. 01359981 16.31 <0.0001
Error 600 0. 50043850 0. 00083406
Corrected Total 749 2. 5268096

R-square  Coefficient variance Root MSE Result mean

0.801948 31. 38935 0. 028880 0. 092006
Source DF ANOVA SS M ean square F value Pr>F
A 5 1. 53819704 0. 30763941 368.84 <.0001
B 4 0. 3494298 0. 0873574 31048.7 <.0001
C 4 0. 00204869 0. 00051217 0.61 0.6527
A*B 20 0. 0997246 0. 0049862 5.9¢ <.0001
A*C 20 0. 00672956 0. 00033648 0.40 0.9909
B*C 16 0. 00514515 0. 00032157 0.39 0.9857
A*B*C 80 0. 02509621 0. 00031370 0.38 1.0000

Table A1-7. Theresult of 3-factorial (n, m, CR) ANOVA for ISP = STP-EDD of Algorithm 3

Dependent variable: Result

Source DF Sum of squares Mean squares  Fvalue Pr>F
Model 149 0. 95166631 0. 00638702 9.15 <0.0001
Error 60C 0. 41879107 0. 0006979
Corrected Total 749 1. 37045738

R-square  Coefficient variance Root M SE Result mean

0.694415 35.53341 0. 026419 0. 074351
Source DF ANOVA SS Mean square F value Pr>F
A 5 0. 6970716 0. 1394143 199.7¢ <.0001
B 4 0. 18395334 0. 04598833 65.89 <.0001
C 4 0. 0020485 0. 0005121 0.7¢ 0.569:
A*B 20 0. 04093752 0. 00204688 2.93 <.0001
A*C 20 0. 00506512 0. 00025326 0.36 0.9955
B*C 16 0. 00508895 0. 00031806 0.46 0.9663
A*B*C 80 0. 01750118 0. 00021876 0.31 1.0000
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