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Abstract 
The research of removing rain from pictures or videos has always been an 
important topic in the field of computer vision and image processing. Most 
noise reduction methods more or less remove texture details in rain-free 
areas, resulting in an over-smoothing effect in the restored background. The 
research on image noise removal is very meaningful. We exploit the powerful 
generative power of a modified generative adversarial network (CGAN) by 
enforcing an additional condition that makes the derained image indistin-
guishable from its corresponding ground-truth clean image. An efficient and 
lightweight attention machine mechanism NAM is introduced in the genera-
tor, and an IDN-CGAN model is proposed to capture image salient features 
through attention operations. Taking advantage of the mutual information in 
different dimensions of the features to further suppress insignificant channels 
or pixels to ensure better visual quality, we also introduce a new fine-grained 
loss function in the generator-discriminator pair, predicting and real data de-
gree of disparity to achieve improved results. 
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1. Introduction 

In this era of ubiquitous use of mobile phones, images captured by mobile phone 
cameras in adverse weather conditions will degrade, greatly affecting the visual 
quality of the images. To improve the overall quality of these degraded images 
and ensure the performance of enhanced vision algorithms. Commonly used 
computer vision algorithms, such as autonomous driving [1], semantic segmen-
tation [2], and object tracking [3], all require clean images as input and thus 
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tend to fail in bad weather conditions. Image deraining and noise removal to re-
store clean images are indispensable preprocessing processes for these computer 
vision algorithms. Specifically, image deraining and noise removal focus on re-
moving rain streaks [4] and denoising [5] from images, respectively, by solving a 
linear decomposition problem. Mathematically, a rainy image can be decom-
posed into two separate images: one corresponding to the rain streaks and the 
other corresponding to the clean background image (see Figure 1). 

Recent studies on image noise removal are based on data-driven methods. 
Whereas data-driven methods, such as [6], enable models to learn more robustly 
and flexibly with the help of large labeled datasets, which often results in robust 
models with better performance. But it is not very friendly to the details of rain 
removal. In this paper, we study the effectiveness of conditional generative ad-
versarial network (GAN) in solving this problem. Specifically, we propose an in-
tegrated attention mechanism NAM’s De-raining NAM Conditional Generative 
Adversarial Network (IDN-CGAN) uses a conditional GAN framework to vi-
sually enhance images degraded by rainfall.  

2. Related Theories 
2.1. Generative Adversarial Networks: Generative Adversarial  

Nets 

Generative Generative Adversarial Nets [7] (Generative Adversarial Nets, GAN) 
is the product of the combination of game theory and deep learning. It is an un-
supervised probability distribution learning method that learns the distribution 
of real data, generating new datasets with high similarity. GAN consists of gene-
rator and discriminator. The generator learns the distribution of real sample da-
ta and generates the most realistic fake data. The discriminator is essentially a 
dual classifier that needs to identify whether the input data is a real sample or 
fake data generated by the generator. The main purpose of the generator is to try 
to generate fake data that is similar to the real data, and the main purpose of the 
discriminator is to try to distinguish the real data from the fake data. Therefore, 
the training process of Generative Adversarial Network is like a game game. In 
all possible function sums, find the equilibrium solution of both sides. 

In order to learn the data distribution of the generator on the data x, first de-
fine a random noise variable z, which can be mapped to the corresponding data  
 

   
(a)                      (b)                       (c) 

Figure 1. Removing rain streaks in an image. The rain image (a) can be seen as a super-
position of the clean background image (b) and the rain streak image. 
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space by the generator, which is defined as the function of the multi-layer per-
ceptron representation in the generative adversarial model. Because it is the func-
tion represented by the second multilayer perceptron. Where D(x) represents 
the real data x. When training the model, we use Dl to take the maximum value 
of the probability value of the real sample and the generated sample, so it can be 
minimized to the training summation. In this case, the value function is played 
by the discriminator and the generator. The optimal solution has been reached, 
and an equilibrium solution for both sides is found. 

~ ( ) ~ ( )min max ( , ) [log ( )] [log(1 ( ( )))]
data zx p x z p zG D

V D G E D x E D G z= + −      (1) 

2.2. Conditional Generative Adversarial Networks 

The CGAN is the abbreviation of Conditional Generative Adversarial Nets [8], 
also known as Conditional Generative Adversarial Network. CGAN is an ex-
tended model of the original GAN, which adds a condition to the Generative 
Adversarial Network, making the Generative Adversarial Network a supervised 
learning. Both the generator and the discriminator add the corresponding in-
formation y as the training condition. In the generative model, the prior input 
noise p(z) and the conditional information y together form the joint hidden 
layer representation. In this way, in the Formula (2) mentioned above, a condi-
tion is added to allow the network to perform a minimax game under the condi-
tion y: 

~ ( ) ~ ( )min max ( , ) [log ( / )] [log(1 ( ( / )))]
data zx p x z p zG D

V D G E D x y E D G x y= + −   (2) 

2.3. Attention Mechanism NAM 

Attention mechanism is one of the hotspots of research in recent years. It helps 
deep neural networks suppress less significant pixels or channels. The Attention 
Mechanism (Normalization-based Attention Module, NAM) [9] proposed in 
2021 is to use the contribution factor of the weight to improve the attention 
mechanism. Using a batch-normalized scale factor, utilizes a variance measure of 
the weights of the trained model to highlight salient features. This avoids adding 
the fully connected and convolutional layers used in (Bottlenet Attention Mod-
ule, BAM) and (Convolutional Block Attention Module, CBAM). 

NAM as an efficient and lightweight attention mechanism. The module inte-
gration from CBAM was adopted and the channel and spatial attention submo-
dules were redesigned. A NAM module is embedded at the end of each network 
block. For residual networks, it is embedded at the end of the residual structure. 
For the channel attention submodule, a scale factor from batch normalization 
(BN) is used, as shown in publicity (3). The scale factor measures the variance of 
the channels and indicates their importance. 

2
( ) in

out in
B

B BN B Β

Β

−
= = +

−

µ
γ β

σ ε
                   (3) 

Among them, Βµ  and Βσ  are the mean and standard deviation of the mini-
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mum batch B, respectively γ  and β  are trainable affine transformation pa-
rameters (scale and displacement). The channel attention sub-module is shown 
in Figure 2 and Equation (4), where cM  represents the output feature. γ  is 
the scale factor of each channel, and the weight is 0i jjW

=
= ∑γ γ γ . A scale fac-

tor of BN is applied to the spatial dimension to measure the importance of pix-
els. Name it Pixel Normalization. The corresponding spatial attention sub-module 
is shown in Figure 3 and Equation (5), where the output is represented as Ms, 
λ  is the scale factor, and the weight is 0i jjW

=
= ∑λ λ λ . 

To suppress less significant weights, we add a regularization term to the loss 
function, as shown in Equation (6). where x is the input, y is the output, and W 
is the network weight, ( )l ⋅  represents the loss function, ( )g ⋅  is the 1l -norm 
penalty function, and p is the penalty function of the balance functions ( )g γ  
and ( )g λ . 

1( ( ( )))cM sigmoid W BN F= γ                       (4) 

2( ( ( )))s sM sigmoid W BN F= λ                       (5) 

( , )
( ( , ), ) ( ) ( )

x y
loss l f x W y p g p g= + +∑ ∑ ∑γ λ              (6) 

3. The Proposed Method 
3.1. Defining the Loss Function 

Generative Adversarial Networks are not stable during training, we address this 
problem by introducing a perceptual loss into the network. A new refinement  
 

 

Figure 2. Channel attention mechanism. 
 

 

Figure 3. Spatial attention mechanism. 
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loss function is proposed. Specifically, we combine pixel-to-pixel loss, perceptual 
loss, and adversarial loss with appropriate weights to form our new refinement 
loss function. The new loss function is then defined as follows:  

RP e E a A p PL L L L= + +λ λ λ                       (7) 

where AL  represents the adversarial loss (loss of the discriminator D) function, 

pL  is the perceptual loss function, EL  is the normal per-pixel loss function. 
Here, eλ , aλ , and pλ  are the predefined weights for perceptual loss and ad-
versarial loss, respectively. If we set both aλ  and pλ  to 0, then the network 
reduces to a normal CNN configuration. If pλ  is set to 0, the network will re-
duce to a normal GAN. If aλ  is set to 0, the network reduces to the structure 
proposed in [10]. The three loss functions are defined as follows. Given an image 
{ , }bx y  with C channel. Given an image { , }bx y  with C channel, width W and 
height H (i.e. C W H× × ), where is the input image x and by  is the corres-
ponding ground truth, the per-pixel loss function is defined as: 

2, , , ,
21 1 1

1 ( ) ( )
C W H

c w h c w h
E b

c x y
L E X y

CWH = = =

= Φ −∑∑∑              (8) 

where EΦ  is the learning network G used to generate the derained image 
output. Suppose the output size of some advanced layers is i i iC W H× × . Like-
wise, the perceptual loss is also defined as: 

2, , , ,
21 1 1

1 ( ( )) ( )
i i iC W H

c w h c w h
P b

c w hi i i

L V E X V y
C W H = = =

= Φ −∑∑∑           (9) 

Among them, V represents a nonlinear CNN transformation. Our goal is to 
minimize the distance between features. Given a set of N rain images. 

3.2. Generators with Symmetrical Structure 

Since the goal of single image rain removal is to generate pixel-level rain removal 
images, the generator should be able to remove rain streaks as much as possible 
without losing the detailed information of the background image. Therefore, the 
key to removing rain from a single image is to design a good generated by gene-
rator 1{ ( )}N

iE X =Φ , the entropy loss of the discriminator is defined as: 

1

1 log( ( ( )))
N

A
i

L D E X
N =

= − Φ∑                  (10) 

Conditional Generative Network Incorporating Attention Mechanism  
NAM 
In this section, we design a generative adversarial network model by incorporat-
ing the conditional generative network of the attention mechanism NAM for the 
problem of image rain removal. The entire network model architecture consists 
of two main parts, the first part generates images that are similar to the original 
images. The second part is to judge the most similar generated image by the 
contextual semantics of the original image, and iterate the first two steps through 
back-propagation. In this paper, the conditional generation network incorpo-
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rating the attention mechanism NAM for image deraining model IDN-CGAN is 
shown in Figure 4, which clearly expresses the core idea of this chapter. The 
image features obtained by IDN-CGAN have good generality and generalization 
ability. 

Since the goal of single image rain removal is to generate pixel-level rain re-
moval images, the generator should be able to remove rain streaks as much as 
possible without losing the detailed information of the background image. There-
fore, the key to removing rain from a single image is to design a good structure 
to generate a rain-removing image. Existing solutions, such as sparse coding- 
based methods [11] [12] [13], and neural network-based methods [14], all adopt 
a symmetric (encoding-decoding) structure. In these methods, a symmetric 
structure is used to form the generator network. The generator G directly learns 
the end-to-end mapping from the input rain image to the corresponding ground 
truth. In contrast to existing adversarial networks that use U-Net [15] [16] or 
ResNet [17] for occlusion-image-to-image translation in the generator, we use 
the recently introduced densely connected block [18]. These dense blocks allow 
gradients to flow, increasing parameter efficiency. Each layer in the dense block 
consists of three consecutive operations, batch normalization (BN), leaky recti-
fied linear unit with leaky linear rectification function (Leaky ReLU), and 3 × 3 
convolution. Each dense block is followed by a transition block (T) that func-
tions as an upsampling (Tu), downsampling (Td), or no-sampling operation 
(Tn). 

Furthermore, we embed a NAM module at the end of the generator network 
to effectively utilize different levels of features and guarantee better convergence. 

3.3. Multi-Scale Discriminator 

This paper proposes a new multi-scale discriminator. This is inspired by the 
use of multi-scale features in objection detection [19] and semantic segmenta-
tion [20]. Similar to the structure proposed in [15], a convolutional layer with 
batch normalization and PReLU activation is used as the basis throughout the  
 

 

Figure 4. IDN-CGAN network frame diagram. 
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discriminator network. Then, multi-scale pooling modules with different scale 
features are stacked at the end of the discriminator. The merged features are 
then upsampled and concatenated, followed by a 1 × 1 convolution and a sig-
moid function to produce a normalized probability score between [0, 1]. By us-
ing features at different scales, we explicitly incorporate global hierarchical con-
text into the discriminator. A scaling operation weights the normalized weights 
to the features of each channel, and prevents the adversarial network from col-
lapsing and oscillating during training, improving stability. 

4. Experiments and Results 

In this section, we detail the experiments and experimental results used to eva-
luate the proposed IDN-CGAN method. And the proposed method is compared 
with the recent state-of-the-art methods. 

4.1. Dataset 

The Due to the lack of large datasets for single-image rainfall training and evalu-
ation, in order to verify the effectiveness of the proposed algorithm, we use not 
only real datasets but also synthetic datasets in our experiments. The training set 
consists of 800 images in total, divided into two types: severe rain images and 
light rain images, to ensure rain pixels with different intensities and directions, 
and generate different training and test sets. To demonstrate the effectiveness of 
the method on real-world data, we download a dataset of 50 rain images from 
the Internet. When creating this dataset, we took every care possible to ensure 
that the collected images differ in content, intensity and orientation of rain pix-
els. A more comprehensive effect has been achieved. 

4.2. Evaluation Method 

We employ Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) 
[21], and Visual Information Fidelity (VIF) [22] to evaluate the performance of 
different methods. All of these quantitative measurements are calculated using 
the luminance channel. These three criteria are often used to verify the perfor-
mance of the network model and the robustness of the model. The peak signal to 
noise ratio (PSNR) of an image is given by the following formula: 

2

10
MAXPSNR 10log ( )
MSE

=                    (11) 

SSIM is used to judge whether the image is distorted, the objective standard of 
image noise level, and the maximum unit is expressed in decibels. The structural 
similarity index [21] (Structural similarity index, SSIM) is shown in the follow-
ing formula: 

1 2
2 2 2 2

1 2

(2 )(2 )
SSIM

( )( )
x y x y

x y x y

C C
C C

+ +
=

+ + + +

µ µ σ σ
µ µ σ σ  

            (12) 

where x, y are the uncompressed undistorted image and the image contrasted by 
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x, x yµ µ  is a function of brightness, x yσ σ  is a function of contrast, the con-
stant C1 is to ensure the stability of the system at 2 2 0x y+ ⇒µ µ , and C2 is also a 
constant C3 = C2/2. In the evaluation index, the larger the value of PSNR, VIF 
and SSIM, the better the image restoration and the smaller the image distortion. 

4.3. Experimental Results 

The experimental parameter settings in this paper are done on the Tensorflow 
learning platform. The experiment was performed on a desktop computer, In-
tel-i5 3.3G CPU, 8GB RAM, Windows 10, TensorFlow 1.1, Opencv2.0, the learn-
ing rate was set to 0.5, the number of iterations was 50, and the batch size was 2. 
This paper selectively samples heavy rain images to show that our method per-
forms well under difficult conditions. The performance of the proposed method 
and recent state-of-the-art methods is evaluated on real-world rainfall test im-
ages. The deraining results of all methods on the derained images input by two 
samples are shown in Figure 5. By comparing the proposed method with other 
methods, by observation, we can clearly observe that GMM [23] tends to add ar-
tifacts on derained images. Although CCR [24] is able to remove rain streaks, it 
produces blurry results, which are not visually appealing. JORDER [25] can re-
duce the intensity of rain or remove streaks in some areas, however, they cannot 
completely remove rain streaks. Raindrops are still visible in the magnified re-
gion of interest despite other methods, and good visual performance can be 
achieved. Compared with other methods, this method is able to successfully re-
move most of the rain streaks while maintaining the details of the derained im-
ages.  

The three evaluation parameters PSNR, SSIM, UQI and IDN-CGAN are all 
learned by using training images of synthetic training datasets. Using the test 
images of the synthetic datasets discussed earlier, as shown in Table 1, it can be  
 

 

Figure 5. Comparison of experimental results. 
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Table 1. Comparison with other methods using three different evaluation criteria for 
heavy rain images and light rain images. 

heavy rain images GMM [23] JORDER [25] CCR [24] IDN-CGAN 

PSNR 20.21 22.98 21.45 23.76 

SSIM 0.7657 0.8012 0.7964 0.8317 

VIF 0.2821 0.3327 0.3873 0.39582 

light rain image GMM [23] JORDER [25] CCR [24] IDN-CGAN 

PSNR 20.97 20.83 22.26 24.67 

SSIM 0.7865 0.8263 0.8077 0.8256 

VIF 0.3654 0.3264 0.4002 0.4158 

 
seen that the introduction of adversarial loss improves the visual quality com-
pared to the traditional CNN architecture. For comparison: the first indicator is 
the peak signal-to-noise ratio (PSNR). The PSNR of the model IDN-CGAN 
proposed in this paper is significantly higher than the other three methods in the 
heavily derained image and the lightly derained image. The second indicator is 
The estimated overall structural similarity index (SSIM), the SSIM values of 
GMM [23] and CCR [24] are both lower than JORDER [25], while the SSIM 
value of IDN-CGAN is slightly higher than that of JORDER [25]; Authenticity 
(VIF), although IDN-CGAN performs better than the other three models, the 
difference is not large, the reason may be that the proposed method misses some 
rain patterns in the output image. (The higher the PSNR and VIF evaluation in-
dicators and the higher the SSIM indicator, the clearer the model repair results 
and the better the effect.)  

5. Summary and Outlook 

To achieve clearer image deraining, we propose a conditional generative net-
work (IDN-CGAN) incorporating an attention mechanism NAM for image de-
raining. In IDN-CGAN, we first use the generator fused with the attention me-
chanism NAM to generate sharper images, and then propose a refinement loss 
function that enables the discriminator model to discriminate between real im-
ages and derained images. To validate the proposed IDN-CGAN, experiments 
on synthetic and real datasets demonstrate the superiority and effectiveness of 
IDN-CGAN with limited training data. It is worth noting that there is room for 
further research on IDN-CGAN. One direction is to use IDN-CGAN in real-world 
scenarios where we can only collect a few examples. Another direction is to con-
struct a learning task of n-frequency k-shots by dynamically clustering image 
patches from data batches instead of pre-clustering all image patches.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

https://doi.org/10.4236/jcc.2022.102006


F. Y. Zhang et al. 
 

 

DOI: 10.4236/jcc.2022.102006 81 Journal of Computer and Communications 
 

References 
[1] Andreas, G., Philip, L. and Raquel, U. (2012) Are We Ready for Autonomous Driv-

ing? The Kitti Vision Benchmark Suite. Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 3354-3361. 

[2] Sachin, M., Mohammad, R., Anat, C., Linda, S. and Hannaneh, H. (2018) Espnet: 
Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation. Pro-
ceedings of the European Conference on Computer Vision, 552-568. 

[3] Dorin, C., Visvanathan, R. and Peter, M. (2003) Kernel-Based Object Tracking. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 25, 564-577.  
https://doi.org/10.1109/TPAMI.2003.1195991 

[4] Fu, Y.-H., Kang, L.-W., Lin, C.-W. and Hsu, C.-T. (2011) Single-Frame-Based Rain 
Removal via Image Decomposition. Proceedings of the IEEE International Confe-
rence on Acoustics, Speech, and Signal Processing, 1453-1456.  
https://doi.org/10.1109/ICASSP.2011.5946766 

[5] Kai, Z., Zuo, W. and Zhang, L. (2018) Ffdnet: Toward a Fast and Flexible Solution 
for CNN-Based Image Denoising. IEEE Transactions on Image Processing, 27, 4608- 
4622. https://doi.org/10.1109/TIP.2018.2839891 

[6] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X. and John, P. (2017) Removing Rain 
from Single Images via a Deep Detail Network. Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 3855-3863.  
https://doi.org/10.1109/CVPR.2017.186 

[7] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al. (2014) Generative Adversarial 
Networks: Advances in Neural Information Processing Systems. 3, 2672-2680. 

[8] Radford, A., Metz, L. and Chintala, S. (2015) Unsupervised Representation Learning 
with Deep Convolutional Generative Adversarial Networks.  

[9] Liu, Y.C., Shao, Z.R. and Teng, Y.Y. (2021) NAM: Normalization-Based Attention 
Module.  

[10] Johnson, J., Alahi, A. and Li, F.F. (2016) Perceptual Losses for Realtime Style Transfer 
and Super-Resolution. European Conference on Computer Vision, Springer, 694-711.  
https://doi.org/10.1007/978-3-319-46475-6_43 

[11] Starck, J.-L., Elad, M. and Donoho, D.L. (2005) Image Decomposition via the Com-
bination of Sparse Representations and a Variational Approach. IEEE TIP, 14, 
1570-1582. https://doi.org/10.1109/TIP.2005.852206 

[12] Kang, L.-W., Lin, C.-W. and Fu, Y.-H. (2012) Automatic Single-Image-Based Rain 
Streaks Removal via Image Decomposition. IEEE TIP, 21, 1742-1755.  
https://doi.org/10.1109/TIP.2011.2179057 

[13] Bobin, J., Starck, J.L., Fadili, J.M., Moudden, Y. and Donoho, D.L. (2007) Morpho-
logical Component Analysis: An Adaptive Thresholding Strategy. IEEE Transactions 
on Image Processing, 16, 2675-2681. https://doi.org/10.1109/TIP.2007.907073 

[14] Xie, J., Xu, L. and Chen, E. (2012) Image Denoising and Inpainting with Deep Neural 
Networks. NIPS, 341-349.  

[15] Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A.A. (2017) Image-to-Image Translation 
with Conditional Adversarial Networks. CVPR.  
https://doi.org/10.1109/CVPR.2017.632 

[16] Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks 
for Biomedical Image Segmentation. International Conference on Medical Image 
Computing and Computer-Assisted Intervention, Springer, 234-241.  
https://doi.org/10.1007/978-3-319-24574-4_28 

https://doi.org/10.4236/jcc.2022.102006
https://doi.org/10.1109/TPAMI.2003.1195991
https://doi.org/10.1109/ICASSP.2011.5946766
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/CVPR.2017.186
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/TIP.2005.852206
https://doi.org/10.1109/TIP.2011.2179057
https://doi.org/10.1109/TIP.2007.907073
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1007/978-3-319-24574-4_28


F. Y. Zhang et al. 
 

 

DOI: 10.4236/jcc.2022.102006 82 Journal of Computer and Communications 
 

[17] Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, 
A., Tejani, A., Totz, J., Wang, Z., et al. (2017) Photo-Realistic Single Image Su-
per-Resolution Using a Generative Adversarial Network. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 1-8.  
https://doi.org/10.1109/CVPR.2017.19 

[18] Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K.Q. (2017) Densely Con-
nected Convolutional Networks. Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2017.243 

[19] He, K., Zhang, X., Ren, S. and Sun, J. (2014) Spatial Pyramid Pooling in Deep Con-
volutional Networks for Visual Recognition. European Conference on Computer 
Vision. Springer, 346-361. https://doi.org/10.1007/978-3-319-10578-9_23 

[20] Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. (2017) Pyramid Scene Parsing Network. 
Proceedings of the IEEE International Conference on Computer Vision, 1-8.  
https://doi.org/10.1109/CVPR.2017.660 

[21] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image Quality As-
sessment: From Error Visibility to Structural Similarity. IEEE TIP, 13, 600-612.  
https://doi.org/10.1109/TIP.2003.819861 

[22] Sheikh, H.R. and Bovik, A.C. (2006) Image Information and Visual Quality. IEEE 
TIP, 15, 430-444. https://doi.org/10.1109/TIP.2005.859378 

[23] Li, Y., Tan, R.T., Guo, X., Lu, J. and Brown, M.S. (2016) Rain Streak Removal Using 
Layer Priors. 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), June 2016, 2736-2744. https://doi.org/10.1109/CVPR.2016.299 

[24] Zhang, H. and Patel, V.M. (2017) Convolutional Sparse and Low-Rank Coding-
based Rain Streak Removal. 2017 IEEE WACV, IEEE, 1-9.  
https://doi.org/10.1109/WACV.2017.145 

[25] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z. and Yan, S. (2017) Deep Joint Rain 
Detection and Removal from a Single Image. Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 1357-1366.  
https://doi.org/10.1109/CVPR.2017.183 

 

https://doi.org/10.4236/jcc.2022.102006
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/CVPR.2016.299
https://doi.org/10.1109/WACV.2017.145
https://doi.org/10.1109/CVPR.2017.183

	Image Rain Removal Using Conditional Generative Networks Incorporating
	Abstract
	Keywords
	1. Introduction
	2. Related Theories
	2.1. Generative Adversarial Networks: Generative Adversarial Nets
	2.2. Conditional Generative Adversarial Networks
	2.3. Attention Mechanism NAM

	3. The Proposed Method
	3.1. Defining the Loss Function
	3.2. Generators with Symmetrical Structure
	Conditional Generative Network Incorporating Attention Mechanism NAM

	3.3. Multi-Scale Discriminator

	4. Experiments and Results
	4.1. Dataset
	4.2. Evaluation Method
	4.3. Experimental Results

	5. Summary and Outlook
	Conflicts of Interest
	References

