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ABSTRACT 
 

Path loss modeling is a crucial consideration in radio engineering for wireless networks. Over the 
years, diverse techniques have been implemented in attempts to accurately predict path loss 
across a given terrain. In this study, path loss predictors created on the bases of artificial neural 
networks (ANN) were used to estimate path loss across a rural section of the Nigerian middle-belt 
grassland. The ANN structures considered were the Generalized Regression Neural network 
(GRNN) and the Radial Basis Function Neural Network (RBFNN), which exhibit a few differences 
and similarities. These ANN based predictors were trained, validated and tested for path loss 
prediction using path loss values computed from received power measured at 900MHz from six 
Base Transceiver Stations (BTSs) situated along the rural terrain. Findings show that the RBFNN 
predictor with a Root Mean Squared Error (RMSE) of 5.17dB and the GRNN with 4.9dB are slightly 
more accurate than the COST 231 Hata model with 6.64dB, while the Hata-Okumura with 25.78dB 
is simply not suitable for the terrain under investigation. Overall, the GRNN, which proffers a 
26.21% improvement over the COST 231 Hata is recommended for the terrain in question. 
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1. INTRODUCTION 
 

An artificial neural network (ANN) is basically a 
computational structure, created by 
interconnecting multiple artificial neurons. They 
are essentially Deep Learning (DL) mathematical 
models that are similar in structure and 
functionality to biological neural networks [1]. As 
described in [2], Deep Learning (DL) structures 
are similar to the human brain in terms of 
processing ability. Given adequate amounts of 
data, they have the ability to learn complex 
problem solving unsupervised. Due to their 
amazing versatility, ANNs are applicable to a 
variety of problem solving areas such prediction, 
functional approximation, pattern recognition etc. 
[3]. In this study, consideration is given to two 
ANN architectures capable of effectively handling 
prediction and functional approximation 
problems. These include the Radial Basis 
Function Neural Network (RBFNN) and the 
Generalized Regression Neural Network 
(GRNN).  
 
Although the RBFNN and the GRNN are similar, 
they differ in certain respects. For instance, they 
both use the Gaussian function as activation 
function to effectively handle function 
approximation and prediction. But while the 
RBFNN implements back-propagation or hybrid 
learning and requires large amounts of training 
samples, the GRNN implements single pass 
learning, requiring few training samples in order 
to converge to the underlying data function. 
Hence, one of the aims of this study is to 
determine the architecture more suited to 
predicting radio signal attenuation across a rural 
mobile communication network. 
 
Attenuation is the loss of intensity of radio signals 
as they propagate from a transmitter through 
space. Wireless communication networks must 
be well planned in order to ensure quality 
connectivity and proper network coverage. A key 
issue in mobile network planning is the 
availability of formulations that can accurately 
estimate radio signal attenuation across a given 
terrain. A wireless network is essentially an 
integration of cells. A cell basically comprises of 
a transmitter and multiple receivers. As radio 
signals propagate from transmitter to receiver 
they undergo attenuation. Path loss is the most 
common measure of attenuation widely 
considered by network planners. Path loss refers 
to the difference in intensity between transmitted 

and received signals. According to Deme [4], 
path loss occurs as a result of wave phenomena 
such as reflections, diffraction, refractions, 
scattering, free space loss, etc. Other factors  
that significantly impact on path loss includes 
terrain clutter, operating frequency, height of 
transceiver, distance between transmitter and 
receiver, etc. 
 
For the purpose of accurately determining 
adequate network coverage through prediction of 
path loss, various formulations have been 
adopted by radio engineers over the decades. 
The most commonly used formulations are 
deterministic and empirical. According to 
Callistus et al. [5], deterministic models 
implement the ray tracing technique, which can 
predict signal strength within short distances. 
Moreover, according to Hammed Lasisi et al.              
[6], “the accuracy of the technique is dependent 
on detailed environmental information”. “On the 
other hand, empirical models, which are 
mathematical formulations that are dependent  
on in-depth field measurements [7], are 
preferable because of their simplicity”. However, 
recent approaches to path loss modeling such as 
[2,4,8-11] are based on soft computing 
techniques. 
 
In this study, the RBFNN and the GRNN based 
predictors are compared for path loss prediction 
accuracy with two widely used empirical models: 
The COST 231 Hata and the Hata Okumura. The 
terrain under consideration is a section of the 
Nigerian Middle-Belt grassland, situated between 
the cities of Jos and Makurdi. The terrain is 
basically a rural area with clutter comprising of 
tall grasses, scattered houses mostly below 3 
meters, and trees mostly below 15meters 
averagely.  
 

2. THE RADIAL BASIS FUNCTION 
NEURAL NETWORK 
 

According to Popescu et al. [12], the RBFNN is a 
variant of ANN, suitable for solving forecasting 
and functional approximation problems. As the 
name implies, the RBFNN uses a radial basis 
function (RBF) as activation function, and the 
RBF value is dependent on the separation 
between input and a fixed point referred to                  
as the center. The RBFNN has the capacity to 
efficiently generalize through the implementation 
of a multi-dimensional surface for test data 
interpolation. 
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Fig. 1. The radial basis function neural network structure [13] 
 
As further described by Popescu et al. [12], the 
RBFNN architecture comprises of three distinct 
layers as shown in Fig. 1: The first is the input 
layer, whose function is data input, the second is 
the hidden layer, meant for non-linear data 
transformation, and the third is the output layer, 
through which an output is produced. Each 
predictor variable corresponds to 1 neuron in the 
input layer. It is pertinent to note that where 
categorical variables are concerned, n-1 neurons 
are used, with n being the number of categories. 
The number of neurons in the hidden layer is not 
fixed, with every neuron consisting of a radial 
basis activation function centered on a point 
dimensionally equal to the number of predictor 
variables. The output layer is responsible for 
producing the network output by computing the 
weighted sum of hidden layer outputs. According 
to Popescu et al. [13], “the hidden-nodes outputs 
are determined by the closeness of the input 
vector X to an M-dimensional vector µk , which is 
associated with the k

th
 hidden node. It is further 

stated that the suitable choice for the function  
is a multivariate Gaussian function which has a 
corresponding suitable mean and an auto 
covariance matrix”. The RBFNN output is 
expressed as (1) 
 

                
                (1)

           
Where, 
 

- X represents the input vector 
- Wik represents the connection weight from 

the hidden layer to the output layer 
- k is the number of hidden nodes 
- i represents the i-th hidden node and 
- φk is the activation function. 

As further described by Tsung-Ying et al. [14], 
the Gaussian function is a radial basis function 
variant given expressed as (2) 
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Where, 
 

- µk is the center vector and 
- σk represents the spread of the function 

 
The training procedure of the RBFNN involves 
two phases [13]: 
 

1. Gaussian center and spread width 
determination.  

2. The use of supervised learning to 
determination the output weight.  

 

The learning procedure involves locating a 
suitable surface within the multidimensional 
space that ensures the training data has the best 
fit. 
 

3. THE GENERALIZED REGRESSION 
NEURAL NETWORK 
 

“The GRNN, proposed by Specht [15] is a variant 
of the RBFNN. The GRNN is used to solve a 
variety of problems such as prediction, control, 
plant process modeling or general mapping 
problems”. Given few data samples, the GRNN is 
capable of handling functional approximation as 
well as prediction problems. While back-
propagation neural networks may require large 
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data samples and high numbers of iteration in 
order to generate the desired output, the GRNN 
may require just a fraction [15].  
 
As depicted in Fig. 2, the GRNN architecture has 
four layers [16]: “the first is the Input layer which, 
captures and sends inputs to the second layer 
called the pattern layer”. The pattern layer is 
responsible for computing the activation function 
and the Euclidean separation between the input 
vector X and the training data. The third layer is 
the summation layer and it has two parts: the 
Numerator, whose function to sum up products of 
training data, and the Denominator, which is 
responsible for summing up activation functions. 
And finally, the fourth layer is the output layer, 
whose single neuron produces the desired output 
by dividing the third layer Numerator by the 
Denominator. 

“A description of the general regression 
proposed by Specht [15] is as follows: Consider 
a vector random variable, x, and a scalar     
random variable, y”. If X is a particular             
measured value of the random variable y,                
then the regression of y on X can be expressed 
as (3) 
 

       
          
 

  

         
 

  

                 (3)    

 

The unknown probability density function         
is computed from the samples of observations x 

and y. The probability estimator        , 
expressed as (4) is dependent on the sample 

values    and    of the random variables x and y, 
where n represents the number of sample 
observations and    is the dimension of the 
vector variable x. 
 

        
 

                    
 

 
     

       
 
       

         
       

     
             (4)                   

 

For each sample    and     , the probability estimator        assigns a sample probability of width   
(called the spread constant or smoothing factor), and the sum of those sample probabilities is the 

probability estimate. The scalar function   
  is expressed as (5). 

 

  
                           (5)  

 

A combination of (3) and (4) and an interchange of integration and summation order generates the 

desired conditional mean      , expressed as (6) 
 

      
        

  
 

   
  

   

      
  

 

   
  

   

                                  (6) 

 

The spread constant is the only free network parameter. During network training the optimal value of 
the spread for the minimal mean squared error is obtained. Unlike other feed-forward NN, the GRNN 
always locates the global minimum and hence, has no issues with local minima. For a large spread , 
the estimated density becomes smooth and in the limit, becomes a multivariate Gaussian with 

covariance   . On the contrary, a small spread makes the estimated density to assume non-Gaussian 
shapes. 
 

 
 

Fig. 2. Generalized regression neural network architecture [16] 
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4. THE COST 231 HATA MODEL 
 

The COST 231 Hata as the name implies is an 
extension of the widely used Hata-Okumura 
empirical model. As described by Deme [17], the 
model incorporates a wider frequency range 
(500MHz to 200MHz) than the Hata-Okumura 
model and it was formulated essentially to suit 
the European terrains.  Taking a variety of terrain 
types into account, the COST 231 Hata model 
has appropriate correction factors for urban, 
semi-urban, suburban and rural terrains, and the 
model expression is given by (7) 
 

                                 
                                               (7)                             

 
Where,  
 

- L is the Median path loss in Decibels (dB) 
- C assumes the value 0 for medium cities 

and suburban areas, and 3 for 
metropolitan areas 

- f is the transmission frequency in 
Megahertz (MHz)(500MHz to 200MHz) 

- hB is the Base Station Transmitter height in 
Meters (30m to 100m) 

- d is the transmitter – receiver separation in 
Kilometers (km) (not more than 
20kilometers) 

- hm is the Mobile Station height in meters 
(m) (1 to 10metres) 

- a(hm) is the correction factor for mobile 
station height as described in the Hata 
Model for Urban Areas. 
a(hm) = 3.20(log10(11.75hr))

2
−4.97, for f > 

400 MHz, for urban areas, while  
a(hR) = (1.1log(f) - 0.7)hR - 1.56log(f)-0.8 
for sub-urban and rural areas. 

 

5. THE HATA-OKUMURA MODEL 
 

The Hata-Okumura as described by Yuvraj [18] 
model incorporates graphical information from 
the Okumura Model. Unlike the COST 231 Hata,  
the Hata-Okumura Model considers a narrower 
frequency Range: 150 MHz to 1500 MHz.                 
But similar to the COST 231 Hata, the Hata-
Okumura model is valid for the Transmitter 
Height range of 30 m to 200m, link distance 
range of 1 km to 20 km, and Mobile Station (MS) 
height range of 1 to 10 meters. The model also 
has correction factors for urban, suburban and 
open/rural areas. The model expression is 
formulated as (8)  
 

                                 
                                 (8) 

 
For small or medium sized cities (where the 
mobile antenna height is not more than 10 
meters), 
 

                                    
 
and for  large cities, 
 

        
                                                                                                     

                                                                                                 
  

 
Where, 
 

- LU is the Urban Area Path loss 
- hB is the base station height in meters (m) 
- hM is the mobile station height in meters (m) 
- f is the transmission frequency in megahertz (MHz). 
- CH is the antenna height correction factor 
- d is the transmitter-receiver separation in kilometers (km). 

 
The model expression for Suburban Areas is given by (9) 
 

            
 

  
                     (9) 

 
For open areas the expression is given by (10), 
 

                                              (10) 
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6. MATERIALS AND METHODS 
 

The data acquisition procedure involved the use 
of a Cellular Mobile Network Analyser (SAGEM 
OT 290), capable of measuring signal strength in 
decibel milliwatts (dBm), as measurement 
instrument. Received power measurements were 
obtained from six different Base Transceiver 
Stations (BTSs) scattered along the rural terrain 
between the middle-belt grassland cities of 
Makurdi and Jos, Nigeria. The Received power 
(PR) values were recorded within the 900MHz 
frequency band at intervals of 0.2km away from 
the BTS, after an initial separation 0.1km. The 
Mobile Network Parameters obtained from the 
Network Provider (MTN - Nigeria) included the 
Mean Transmitter Height of 33 meters, and the 
Mean Effective Isotropic Radiated Power (EIRP) 
of 46dBm. Path loss values (PL) were computed 
from the received power values using (11) 
 

                                 (11) 
 

7. RESULTS AND ANALYSIS 
 

The ANN based model predictors were, trained, 
validated and tested using path loss data derived 
from the power readings. The simulation 
procedure involved analyzing each BTS data 
separately by randomly splitting the data into 
50% training, 5% validation and 45% testing.  
 

The performance metrics considered for the 
evaluation of model predictors include the Root 
Mean Square Error (RMSE), expressed as (12), 
and the Coefficient of Determination (R

2
), 

expressed as (13). RMSE is a measure of the 
difference between predicted and observed data. 
The lower the RMSE value, the higher the 
model’s prediction accuracy.  The R

2
 is an 

indication of the proportion of variance and 
ranges between 0 and 1, but can also be 
negative.  Values close to 1 indicate acceptable 
model accountability of greater variance 
proportion. However, if the value is negative, the 
model is deemed inappropriate for the data.  
 

       
       

 

 
                     (12)  

 

Where,  
 

- M is the observed path loss value 
- P is the predicted path loss value 
- N is the number of paired values 

 

     
         

  
   

         
  

   

             (13)  

 

Where  
 

- yi is the observed path loss value 
-     is the predicted path loss value and 
-     is the mean of the observed path loss 

values. 
 

Graphical simulation results for the six different 
BTSs are presented in Figs. 3-8. There is a clear 
indication that the Hata-Okumura model is 
divergent from other contenders by significantly 
undervaluing the path loss across all six BTSs. 
Fig. 3 shows that the GRNN is convergent with 
the test data at distances closer to the BTS while 
all predictors are convergent at farther distances. 
Figs. 4 and 5 show that the ANN based models 
and the COST 231 Hata are convergent in 
prediction simulation. However, Figs. 6, 7 and 8 
indicate that the COST 231 Hata slightly 
overvalues the path loss. Overall, it can be 
clearly observed that GRNN is most convergent 
with the test that across all six BTSs. 

 

  
 

Fig. 3. BTS1 comparison of predictors 
 

Fig. 4. BTS2 Comparison of Predictors 
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Table 1 presents the statistical evaluation metrics 
for all the Predictors. The table indicates that on 
the average, the ANN based predictors with 
RMSE values of 5.17dB and 4.9dB for the 
RBFNN and the GRNN respectively, are more 
accurate than their empirical counterparts. It can 

as well be noticed that the COST 231 Hata with 
an RMSE value of 6.64dB is slightly less 
accurate than the ANN based models, while the 
Hata-Okumura model significantly undervalues 
the path loss by an RMSE value of 25.78 dB. 
Interestingly, the table clearly shows that the 

 

  
 

Fig. 5. BTS3 comparison of predictors 
 

 

Fig. 6. BTS4 comparison of predictors 
 

  
 

Fig. 7. BTS5 comparison of predictors 
 

Fig. 8. BTS6 comparison of predictors 
 

Table 1. Statistical evaluation metrics of predictors across all base transceiver stations 
 

Model STATISTICS BTS 1 BTS 2 BTS 3 BTS 4 BTS 5 BTS 6 Mean 

RBFNN 
 

RMSE(dB) 4.83 4.53 5.50 5.95 5.38 4.84 5.17 
R

2
 0.86 0.89 0.86 0.74 0.86 0.85 0.84 

GRNN 
 

RMSE(dB) 3.73 4.53 6.83 4.37 5.42 4.53 4.90 
R

2
 0.92 0.89 0.78 0.86 0.86 0.87 0.86 

COST 
231 Hata 

RMSE(dB) 6.22 5.98 6.38 8.07 6.70 6.47 6.64 
R

2
 0.85 0.87 0.86 0.74 0.84 0.82 0.83 

Hata – 
Okumura 

RMSE(dB) 25.15 26.25 27.56 24.33 26.20 25.16 25.78 
R

2
 -1.51 -1.57 -1.67 -1.35 -1.41 -1.73 -1.54 
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ANN based predictors and the COST 231 Hata 
exhibit high correlation with the test data, with R

2
 

values above 0.8. On the other hand, the 
negative R

2
 value of the Hata-Okumura indicates 

that it is just not suitable for the terrain under 
consideration. Overall, the most accurate of all 
the predictors is the GRNN, which proffers a 
26.21% improvement over the COST 231 Hata. 
Hence, the GRNN based predictor is 
recommended for the terrain in question. 
 

8. CONCLUSION 
 
In this study, two similar, but yet different ANN 
architectures, namely the RBFNN and the 
GRNN, were compared for prediction accuracy 
with the widely used empirical COST 231 Hata 
and Hata-Okumura models. Findings show that 
although ANN based models are convergent in 
terms of performance, the GNN is slightly more 
accurate than the RBFNN. But on the average, 
the ANN based models proffer a slight 
improvement over the COST 231 Hata model, 
while the Hata-Okumura is simply not suitable for 
the terrain under investigation. Overall, the most 
accurate of all the predictors is the GRNN, which 
proffers a 26.21% improvement over the COST 
231 Hata. Hence, the GRNN based predictor is 
recommended for the terrain in question. 
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