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Abstract 
 

In this article, the research proposed by the author, the approach to the construction of methods and 
algorithms of bilateral approximations to the eigenvalues of nonlinear spectral problems, is continued. On 
the basis of Newton's method, some new algorithms of the bilateral approximations to their eigenvalues 
are constructed and substantiated. 
 

 
Keywords: Nonlinear eigenvalue problem; numerical algorithm; matrix determinant derivatives; bilateral 

approximations; alternating approximations; including approximation. 
 

1 Introduction  
 
Nonlinear eigenvalue problems arise in many fields of natural sciences and engineering sciences. Quite a 
complete literature on this problem can be found in the works [1–4]. However, eigenvalue problems that are 
important to practice can very rarely be solved in a closed form and, as a rule, numerical methods need to be 
used to solve them. A good overview of numerical methods for nonlinear spectral problems, see, for 
example, [2,5]. Most numerical methods simply provide approximation to their eigenvalues, but they do not 
allow to determine how far the calculated actual value from the exact. The class of self-adjoine eigenvalue 
problems is perhaps the most important class of the problems, because the numerous problems that arise in 
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practice belong to this class. Since self-adjoint eigenvalue problems can have only real eigenvalues, the 
problem of obtaining approximation and the corresponding estimates of the accuracy of the approximation is 
equivalent to the definition (calculation) of the upper and lower bounds of eigenvalues. 
 
As a rule, it is impossible to apply (generalize) those methods that exist for linear problems to find the upper 
and lower bounds of eigenvalues of nonlinear spectral problems. Namely: various variants of the method of 
intermediate problems (Weinstein's method) (see, for example [6,7,8,9,10], as well as a bibliography in 
Gould [10], [11]), the Fichera method [12], as well as methods and algorithms based on inclusion theorems 
(see, for example, G. Temple [13], L. Collatz [14], and N. J. Lehmann [15,16], H. Behnke [17], M. G. 
Marmorino [11]). Therefore, the concept and apparatus of interval analysis are used to construct methods of 
bilateral approximations (see, for example [18,19]). 
 
This article is a continuation of the study proposed by the author of the approach to the construction of 
methods and algorithms of bilateral approximations to the eigenvalues of nonlinear with respect of spectral 
parameters the eigenvalue problems [20,21,22,23]. This approach does not use the concepts and apparatus of 
interval analysis. 
 
The idea of the proposed approach is that for a continuous monotone in the neighborhood of a simple zero 

[ , ]a b   of some function : [ , ]f a b R  that describes the nonlinear equation, is constructed and 

explored some auxiliary function : [ , ]g a b R  that has the same zero as the function f  and the necessary 

properties that allows to constract the iterative processes, which give monotone bilateral (alternate or 
inclused) approximations to the root of nonlinear equation [24,25,26,27]. 
 
In the framework of this approach, algorithms of the bilateral analogues of the Newton method for finding 
eigenvalues of nonlinear spectral problems are constructed and grounded. The conditions for the initial 
approximation are obtained, which ensure the alternate of approximations to the eigenvalue from both sides 
and guarantee the convergence of the iterative process. 
 

2 Statement of the Problem and Some Preliminary Results 
 
We consider the nonlinear eigenvalue problem  
 

( ) 0y D ,                                                          (2.1) 

 

where ( )D  is a square matrix of order n , all elements of which are sufficiently smooth (at least twice 

continuously differentiable) functions of the parameter R  , ny R . The eigenvalues is sought as 

solutions of determinant equation  
 

( ) det ( ) 0f    D .                                                        (2.2) 

 

To determine the isolated eigenvalue of matrix ( )D  we proposed and justify the Newton-type iterative 

processes that give the alternate approximations to the root  of the equation (2.2), ie  
 

0 2 2 2 1 3 1... ... ... ...m m


                  

or                                 (2.3) 

1 3 2 1 2 2 0... ... ... ...m m


                  
 

and the included monotonous bilateral approximations to the root, i.e. 
 

                                        (2.4) 0 1 2 2 1 0... ... ... ...m m
                
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without revealing in so doing the determinant det ( )D . This means that the left hand side of equation (2.2) 

in explicit form is not set, but the algorithm of finding the functions ( )f   and thein derivatives ( )f    and 

( )f    at a fixed value of the parameter  , using the LU-decomposition of the matrix ( )D  is proposed. 

This algorithm is based on the fact that the matrix ( )D  of the order n , in which at any given value m    

the principal minors of all orders from 1 to ( 1)n   differ from zero, by LU - decomposition can be written as 

 

( ) ( ) ( )   D L U ,                                                        (2.5) 

 

where ( )L  is the lower triangular matrix with single diagonal elements, and ( )U  is the upper triangular 

matrix. Then  
 

 

 

Since the elements of a square matrix ( )D  (and, therefore, the matrix ( )U ) are differentiable function, 

with respect to  , then for any   we obtain that 
 

1 1,

( ) ( ) ( )
nn

k k i i
k i i k

f v u
  

      , 

 

1 1,

( ) ( ) ( )
nn

k k i i
k i i k

f w u
  

      
1 1, 1, ,

( ) ( ) ( )
nn n

k k j j i i
k j j k i i k i j

v v u
     

 
   

 
                            (2.6) 

 

where ( ) ( )i i i iv u     and ( ) ( )i i i iw v    are the elements of matrices ( )V  and ( )W  in such 

decompositions 
 

( ) ( ) ( ) ( ) ( ) ( )         D B M U L V , 

 

( )          D C = N U + M V + L W . 

 
In practice, the use of formulas (2.6) allows us to numerically calculate derivatives only for a given fixed 

parameter  . Therefore, for calculation ( )mf  , ( )mf    and ( )mf    it is necessary compute, for a fixed 

m   , decompositions 

 

,

D = LU,

B = MU + LV ,

C = NU + 2MV + LW

                                                        (2.7) 

 

whence we obtain 
 

,    
1 1,

( )
nn

m k k i i
k i i k

f v u
  

     , 

1 1,

( )
nn

m k k i i
k i i k

f w u
  

      
1 1, 1, ,

nn n

k k j j i i
k j j k i i k i j

v v u
     

 
 
 

   .                         (2.8) 

 

The matrix elements in the decompositions (2.7) can be calculated using the corresponding recurrence 
relations written in Podlevskyi [28] (see also [20,29,30]). 

1

( ) det ( ) det ( ) ( )
n

ii
i

f u


     L U

1

( )
n

m i i
i

f u


  
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Consequently, in order to calculate the derivatives in N  points m   , 1, 2,..,m N  it is necessary to 

calculate N  times the decomposition (2.7) and derivatives for each fixed m   , 1, 2,..,m N  using 

formulas (2.8). 
 

So, not knowing the explicit dependence ( )f   on  , for any fixed   we can find the value of ( )f   and its 

derivatives. Therefore, for solving (2.2) we can use the methods that apply the derivatives, in particular, to 
construct the Newton-type methods, which give the bilateral approximation to the solution. This requires 

further study of the function ( )f  , which are realized later in the work. 

 

3 Auxiliary Function and Its Properties 
 

Further, we demand ( )f   to be a three times continuously differentiable function of real variable. By   we 

denote an accurate simple root of equation (2.2) ( ( ) 0f   ), in some neighborhood of which such 

behaviour of function ( )f   is possible. 

 

(A). Function ( )f   is convex ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(B). Function ( )f   is concave ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(C). Function ( )f   is convex ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(D). Function ( )f   is concave ( ( ) 0f    ) and its derivative is ( ) 0f    . 

 

Along with ( )f   we consider also a function 

 
2( ) ( ) /[ ( )]q f f     ,                                                        (3.1) 

 

which obviously has the same zeros as the function ( )f  . It is easy to verify that ( )z   is twice 

continuously differentiable at the point of   for which the relation 
 

1
( )

( )
q

f



  

 
  

2

( )
( ) 3

[ ( )]

f
q

f






 
   

 
                                        (3.2) 

 
is satisfied and which has the following properties. 
 

Theorem 3.1.  Let   be a simple real root of equation (2.2) in some neighborhood U  of which for the 

function ( )f   one of the conditions (A) - (D) is satisfied. Then there is a neighborhood of the root U U  , 

in which: 
 

1) when the condition (A) is satisfied, the function 2( ) ( ) /[ ( )]q f f      is a concave and monotonically 

decreasing function, its derivative ( ) 0q    and it decreases monotonically;  

2) when the condition (B) is satisfied, the function 2( ) ( ) /[ ( )]q f f      is a convex and monotonically 

decreasing function, its derivative ( ) 0q    and it increases monotonically. 

3) when the condition (C) is satisfied, the function 2( ) ( ) /[ ( )]q f f      is a concave and monotonically 

increasing function, its derivative ( ) 0q    and it decreases monotonically;  

4) when the condition (D) is satisfied, the function 2( ) ( ) /[ ( )]q f f      is a convex and monotonically 

increasing function, its derivative ( ) 0q    and it increases monotonically. 
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Proof. Let ( )f   be a decreasing and convex with respect to   on U function, that is, ( ) 0f     and 

( ) 0f     (the case (A)). 

 
Since the function 
 

 

 

at the point     is equal to zero, then because of continuity of ( )s   there is such neighborhood of the 

root 
 

 ( ) :U  
        , 

 
in which 
 

2

2 ( ) ( )
( ) 1

( ( ))

f f
s t

f

 
   

 
. 

 

It follows that in the neighborhood ( )U 
   the function is ( ) 0q   , since 

 

2

1 2 ( ) ( )
( ) 1

( ) ( ( ))

f f
q

f f

  
       

.                                          (3.3) 

 

Now from the mean value theorem, applied to differentiable functions ( )q   on the interval  , ( )U 
     

we obtain 
 

, , 

 
whence it follows that the function  is a decreasing one. 

 

Consider now the behavior of function  in the neighborhood , taking into account its image 

(3.3). For any  and  we obtain, respectively, the ratios 
 

, 

                    (3.4) 

. 

 
Since the first and second terms in (3.4) are positive, then from (3.4) it follows that in the neighborhood 

( )U U 
   the derivative ( )q   is decreasing, and therefore, the function ( )q   is concave in this 

neighborhood of the root. 
 
Similar statements about the function ( )q   and its derivatives we obtain also for the cases (B), (C) and (D). 

But unlike the cases (A) and (C), in the cases (B) and (D) the function ( )q   is convex. The theorem is 

proved.  

2

2 ( ) ( )
( )

( ( ))

f f
s

f

 
 

 

( ) ( ) ( )( )q q q         [ , ]   

( )z 

( )q   ( )U 
 

     

3 3

1 1 2 ( ) ( ) ( ) ( ) 2 ( ) ( )
( ) ( )

( )( ) ( ( )) ( ) ( ) ( ( ))

f f f f f f
q q

ff f f f f




 

         
        

        

3 3

1 2 ( ) ( ) 1 ( ) ( ) 2 ( ) ( )
( ) ( )

( ) ( ( )) ( ) ( ) ( ( ))

f f f f f f
q q

f f f f f




 

          
                   



Thus, Theorem 3.1 determines the properties of the function 

on the properties of function ( )q   in some neighborhood of the root 
 

Fig. 1. Behavior of the functions 

Such character of the behavior of a function 

 

1

( )

( )
m

m m

m

q

q



   

 
, m

to get a monotone sequence of approximations to the root, moreover the iterative processes (3.5) and
 

have such monotonic properties. 
 

Theorem 3.2. If conditions (A) or (D) are satisfied in the 

1m  , the sequence { }m , defined by (3.5), monotonically decreases, and the sequence 

(3.6), monotonically increases. 
 

Theorem 3.3. If conditions (B) or (C) are satisfied in the 

1m  , the sequence { }m , defined by (3.5), monotonically increases, and the sequence 

(3.6), monotonically decreases. 
 

The proofs of Theorems 3.2 and 3.3 are based on Theorem 3.1 and carried out by the method of 
mathematical induction according to a known scheme (see, for example, [14]).
 

4 Bilateral Analogues of Newton Method
 
Using the properties of the function q

For cases (A) and (D) we write the iterative process in the form
 

1 2

( )

sgn [ ( )]
m

m m

m

f

f f



   

  

2 2
2 1 2 2

2 2 2

2 1
2 2 2 1

2 1

( ) ( )

( ) 2 ( ) ( )

( )

sgn [ ( )]

m m
m m

m m m

m
m m

f f

f f f

f

f f




 

 
        


   

   

Podlevskyi; JAMCS, 31(6): 1-20, 2019; Article no.

Thus, Theorem 3.1 determines the properties of the function ( )z  , and Fig.1 illustrates its behavior depends 

( ) in some neighborhood of the root  . 

 
 

Behavior of the functions ( )f   and ( )q   in the neighborhood of a simple real root 

functions ( )f   
 

Such character of the behavior of a function ( )q   allows for us from the iterative formula 

0, 1, ... ,m                                                        

to get a monotone sequence of approximations to the root, moreover the iterative processes (3.5) and

, 0, 1, ... ,m                                          

If conditions (A) or (D) are satisfied in the neighborhood of the root  , then, starting with 

, defined by (3.5), monotonically decreases, and the sequence { }m

If conditions (B) or (C) are satisfied in the neighborhood of the root  , then, starting with 

, defined by (3.5), monotonically increases, and the sequence { }m

proofs of Theorems 3.2 and 3.3 are based on Theorem 3.1 and carried out by the method of 
mathematical induction according to a known scheme (see, for example, [14]). 

Bilateral Analogues of Newton Method 

( )q  , we construct a sequence of { }m , which has the property (2.3).

For cases (A) and (D) we write the iterative process in the form 

                                                      

2sgn [ ( )] 

2 2

2 2 2

2 1

2
2 1

( ) ( )
,

( ) 2 ( ) ( )

( )
,

sgn [ ( )]

m m

m m m

m

f f

f f f

f f




 

    

  

 
 
 

; Article no.JAMCS.48492 
 
 
 

6 
 
 

, and Fig.1 illustrates its behavior depends 

in the neighborhood of a simple real root   of 

                                                   (3.5) 

 
to get a monotone sequence of approximations to the root, moreover the iterative processes (3.5) and 

                                     (3.6) 

 

, then, starting with 

{ }m , defined by 

, then, starting with 

{ }m , defined by 

proofs of Theorems 3.2 and 3.3 are based on Theorem 3.1 and carried out by the method of 

, which has the property (2.3). 

                                                   (4.1) 
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and for the cases (B) and (C) - in the form 
 

2
2 1 2 2

2

2 1 2 1
2 2 2 1 2

2 1 2 1 2 1

( )
,

sgn [ ( )]

( ) ( )
,

( ) 2 ( ) ( )

m
m m

m

m m
m m

m m m

f

f f

f f

f f f



 
 

  


      


    

     

                                        (4.2) 

 

. 

 

Remarks 4.1. If the initial approximation is 
0 ( , )       , then for the cases (A) and (D) iteration 

process (4.2) is required, and for cases (B) and (C) iteration process (4.1). 
 
The following two theorems justify the bilateral convergence of iterative processes 
 

Theorem 4.1. Let   is a simple real root of the equation (2.2) and let in some neighborhood of the root 
 

, 

 
in which 
 

2

2 ( ) ( )
1

[ ( )]

f f

f

 


 
 

 

for the three times continuously differentiable function ( )f   that describes equation (2.2), the condition (A) 

or (D) is fulfilled, and for the function 2( ) ( ) / sgn [ ( )]q f f f       the conditions 
 

0

0 2

( ) 2

( )

q

q M




 
       for   

0 ( , )       ,                                         (4.3) 

 

1

1

( )
N

q


 
           for   

1 ( , )       ,                                         (4.4) 

 

where 

2 2
( ) ( )

min | ( ) | , max | ( ) |
U U

m q M q
 

    
     ,                                        (4.5) 

 

2
( , )

( ) ( )
max

( )

q q
N

q    

 


 
. 

 

is holds. 
 
 

In addition, let the conditions to be met 
 

,                                      (4.6) 

 

* *
00,1, 2, ... , ( , )m       

* *
00,1, 2, ... , ( , )m       

( ) { : | | }U  
        

1 1
3 32 2

1 2 2 1
0 0 1 12 2

1 2 2 1

1 1
| | 1 , | | 1

2 2

M M M M
t t

m m m m
    

            
   
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Where 
 

.                                        (4.7) 

 

Then the iterative process (4.1), starting with 
0 ( , )       , coincides to the   on both sides 

 

, 

 

moreover, for the errors on the left hand and on the right hand from the root   the  estimations 
4 1

2 0 0| | | |
m

m t        ,                                          (4.8) 

 
and  

4 1
2 1 1 1| | | |

m

m t  
      .                                          (4.9) 

 
are satisfied, respectively. 
 
Proof. The application of Theorem 3.2 to the iterative process (4.1) guarantees placement of even 
approximations on the left of the root, and odd ones on the right of it. It is necessary to prove that the even 
approximations are monotonically increasing, while the odd ones are monotonically decreasing.. To do this, 

we first consider 2 2 2m m   . From (4.1) we obtain 

 

2 2
2 2 2 2

2 2

( ) ( )
sgn

( ) ( )
m m

m m m

m m

q q
f q

q q


  
        

   
                                      (4.10) 

 
or 

2 2 2
2 2 2

2 2

( ) ( ) ( )
1 sgn

( ) 2 ( )
m m m

m m

m m

q q q
f

q q


   
          

 ,                                    (4.11) 

 

2 2 2 1m m m      . 

 
We will prove that 
 

2 2 2 0m m                                                                        (4.12) 

 
for any m  by induction. For 0m   we have 
 

,                                                   (4.13) 

 

0 0 1      . 
 

By the condition of the theorem 
0 ( , )       , therefore 

 

for case (A) we have 
 

0

0

( )
0

( )

q

q


 

 
, sgn 1f     and 0( ) 0q    for any 0 U    (Theorem 3.1). 

1 1
( ) ( )

min | ( ) | , max | ( ) |
U U

m f M f
 

    

    

0 2 2 2 2 2 1 2 1 3 1... ... ... ...m m m m


                      

0 0 0
2 0

0 0

( ) ( ) ( )
1 sgn

( ) 2 ( )

q q q
f

q q

   
            
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Now, taking into account that 0 2| ( ) |q M   , as well as the condition (4.3), we obtain 

 

0 0 0 0 0 0 0

0 0 0 2

( ) ( ) ( ) ( ) | ( ) | ( ) | ( ) |
1 sgn 1 1 1 0

2 ( ) 2 ( ) 2 ( )

q q q q q q q
f

q q q M

          
         

     
. 

 

Hence, from (4.13) it follows that 2 0 0   . 

 
In the case of (D) we have 
 

0

0

( )
0

( )

q

q


 

 
, sgn 1f     and 0( ) 0q    for any 0 U   (Theorem 3.1). 

 

and, taking into account that 0 2( )q M   , as well as the condition (4.3), we obtain similarly 

 

0 0 0 0 0

0 0 2

( ) ( ) ( ) ( ) ( )
1 sgn 1 1 0

2 ( ) 2 ( )

q q q q q
f

q q M

      
      

  
. 

 

Hence, from (4.13) it follows that 2 0 0   . 

 

Assume now that (4.11) is performed for 1 0m l   , that is, inequalities  

 

0 2 2... l                                                            (4.14) 

 

are satisfied, and we will prove that they are executed for m l , i.e. 

2 2 2 0l l    .                                                                     (4.15) 

 

For m l , the expression (4.11) takes the form 
 

2 2 2
2 2 2

2 2

( ) ( ) ( )
1 sgn

( ) 2 ( )
l l l

l l

l l

q q q
f

q q


   
           

.                                                  (4.16) 

 

From the fact that 
2 ( , )l

       , the inequalities (4.14)  is true , and also  Theorem 3.1 is satisfied, we 

obtain that 
 

2

2

( )
0,

( )
l

l

q

q


 

 
 2 0

2 0

( ) ( )

( ) ( )
l

l

q q

q q

 


  
   for any 2l U   .                                                  (4.17) 

 
The case (A). 
 

Taking into account that 0f   , and from the fact that 2( ) 0lq    for any 2l U   (Theorem 3.1) and 

2 2| ( ) |lq M   , as well as conditions (4.3) and (4.17), we obtain 

 

. 

 
Consequently, from (4.16) we obtain the inequality (4.15), which was necessary to prove for case (A). 

2 2 2 2 2

2 2 2

( ) ( ) | ( ) | ( ) | ( ) |
1 sgn 1 1 0

2 ( ) 2 ( )
l l l l l

l l

q q q q q
f

q q M

      
        

  
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The case (D). 
 

In this case, 0f    and 2( ) 0lq    for any 2l U    (Theorem 3.1) therefore (4.16) can be written as 
 

 

 

Now, taking into account that 2 2( )lq M   , as well as the condition (4.3), we obtain the inequality (4.15), 

which was necessary to prove for the case (D). Consequently, the even approximations for cases (A) and (D) 
increases monotonically. 
 

Similarly, we prove that odd approximations are monotonically decreasing. To do this we consider 

2 1 2 1m m    . From (4.1) we obtain 
 

2 1 2 1
2 1 2 1 2 1

2 1 2 1

( sgn ( ))
sgn ( )

( sgn ( ))
m m

m m m

m m

q f q
f q

q f q
 

  

 

   
     

    
 

 

or 

2 1 2 1 2 1
2 1 2 1 2 1 2

2 1 2 1

( ) ( ) ( )
sgn ( )

( ) ( )
m m m

m m m

m m

q q q
f q

q q
  

  

 

  
     

  
,                                     (4.18) 

 

and by induction we will prove that  
 

2 1 2 1 0m m     .                                                                    (4.19) 
 

For  1m    we get 
 

1 1 1
1 3 1 2

1 1

( ) ( ) ( )
sgn ( )

( ) ( )

q q q
f q

q q

  
     

  
.                                                    (4.20) 

 
The case (A). 
 

In this case, 0f   . Since 1 ( , )        (Theorem 3.2), taking into account the properties of ( )q   and 

its derivatives (Theorem 3.1), we have 
 

, 

 
Then from (4.20) it follows that  
 

                                                     (4.21) 

 

for any 1  of the interval . It follows from this that 1 3 0    for any 1  from the interval 

1 1
     . 

 

If 1  belongs to interval 
1

        , then 1( ) 0q   . Now, taking into account the condition (4.4), the 

relation (4.20) can be given in the form 
 

,                      (4.22) 

2 2 2 2 2 0
2 2 2

2 2 2 0

( ) ( ) ( ) ( ) ( ) ( )
1 1 .

( ) 2 ( ) ( ) 2 ( )
l l l l l

l l

l l l

q q q q q q

q q q q


         
            

            

1( ) 0, ( ) 0 , ( ) 0 , ( )q q q U 


         

1 1 1
1 2

1 1

( ) ( ) ( )
( ) 0

( ) ( )

q q q
q

q q

  
  

  

1 1
    

1 1 1 1 1
1 2 2

1 1 11 1

( ) ( ) ( ) ( ) ( )1 1
( ) 0

( ) ( ) ( )( ) ( )

q q q q q
q N

q q qq q

     
      

      
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from which it follows that 1 3 0    for 1  from the interval 
1

        . Consequently, 1 3 0    

on the entire interval 0 1 1     . 

 
The case (D). 
 

In this case, 0f   . Since 
1 ( , )        (Theorem 3.2), that taking into account the properties of ( )q   

and its derivatives (Theorem 3.1), we have 
 

, 

 
Then from (4.20) it follows that 
 

1 1 1
1 2

1 1

( ) ( ) ( )
( ) 0

( ) ( )

q q q
q

q q

  
  

  
                                                     (4.23) 

 

for any 1  from the interval 1 1
      on which 1( ) 0q   . From this it follows that 1 3 0    for any 

1  from the interval 
1 1

     . 

 

If 1  belongs to the interval 
1

        , on which 1( ) 0q   , then, taking into account condition (4.4), 

the relation (4.20) can be given as (4.22), from which it follows that 1 3 0    and on the interval 

1
        . So, 1 3 0    over the entire interval 0 1 1     . 

 

If 1  belongs to the interval 
1

        , on which 1( ) 0q   , then, taking into account condition (4.4), 

the relation (4.20) can be given as (4.22), from which it follows that 1 3 0    and on the interval 

1
        . So, 1 3 0    over the entire interval 0 1 1     . 

 
Suppose now that (4.18) is fulfilled for 1 0m l   , that is, inequalities are satisfied 
 

2 1 2 1 1...m m                                                             (4.24) 

 

and we prove that it is satisfied for m l , that is, 
 

2 1 2 1 0l l    .                                                                     (4.25) 

 
For m l , the expression (4.18) takes the form 
 

2 1 2 1 2 1
2 1 2 1 2 1 2

2 1 2 1

( ) ( ) ( )
sgn ( )

( ) ( )
l l l

l l l

l l

q q q
f q

q q
  

  

 

  
     

  
. 

 

2 2 1 2 1l l l       

 

Since 
2 1 ( , )l

 
       (Theorem 3.2), and also the expression (4.24) and Theorem 3.1 are satisfied, we 

obtain that 
 

 

1( ) 0, ( ) 0 , ( ) 0 , ( )q q q U 


         

2 1 2 1 1

1 1 1
...

( ) ( ) ( )l lq q q 

  
    
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Again, since 
2 1 ( , )l

 
       (Theorem 3.2), then, taking into account the properties of the function ( )q   

and its derivatives (Theorem 3.1), as well as the fulfilment of condition (4.4), the inequality (4.25) is 

satisfied for any 2 1 2 2 1( , )l l l     . Consequently, odd approximations are monotonically decreasing. 

 
Thus, we proved that the even approximations are monotonically increasing, while the odd ones are 
monotonically decreasing. It remains to prove that these approximations coincide to the root of both sides. 
 
To do this, we again consider the relation (4.10). Note that (4.10) can be regarded as a partial case of a 
simple iteration method 
 

2 2 2( ), 0,1,...,m m m      

 
Where 
 

( ) ( )
( )

( ) ( )

q q
q

q q

  
           

. 

 
As you know, the iterative process is a process of n n-th order, if 
 

( 1) ( )( ) 0 , ( ) 0, ... , ( ) 0, ( ) 0k k                 . 

 

Since ( )     , then (4.10) we write in the form 

 

2 2 2( ) ( )m m
 

          

 
and, using the Taylor formula, we obtain 
 

                       (4.26) 

 
It's easy to make sure that in our case 
 

( )( ) 0, ( ) 0, ( ) 0, ( ) 0IV                  . 

 

Since the function ( )    does not change the sign on the segment of integrating, you can use the formula 

of the mean value and (4.26) write in the form 
 

4

2 2 2

1
( ) ( ) ( )

4!
IV

m m m
            .                                                    (4.27) 

 

On the other hand, the function ( )   can be regarded as the iterated function [31], i.e. 

 

1 2( ) ( ( )),       

 

where 2
1 2( ) ( ) /[ ( )] , ( ) ( ) / ( )x f f q q              . 

 

2

2
2 2 2

3 3
2 2

1
( ) ( ) ( )( ) ( )( )

2!

1 1
( )( ) ( )( ) .

3! 3!

m

m m m

IV
m m dx



    



  



                 

          
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Since for Newton's method, taking into account (4.7) and (4.5) the inequalities  
 

2
1

1

1

( ) ( )
2

m m

M

m
        , 

 
2

2
2

2

( ) ( )
2

m m

M

m

        , 

 

are valid, then for the iterated function ( )   we get that 

 
2

4
1 2

2
1 2

( ) ( )
2 4

m m

M M

m m
        . 

 
Consequently, (4.27) will be written in the form 
 

2
4

1 2
2 2 2 22

1 2

( ) ( )
8

m m m

M M

m m
  

            . 

 
Now, when the first of the conditions (4.6) of Theorem is satisfied, we obtain the estimate (4.8), from which 
it follows the convergence from the left hand of the root. The estimate (4.8) is proved by the method of 
induction according to the known scheme [see, for example, [14]]. 
 
Similarly, an estimate (4.9) is established, from which it follows the convergence of the right hand of the 
root. Consequently, the Theorem is proved. 
 
The Theorem on the convergence of the iterative process (4.2) for cases (B) and (C) is formulated as 
follows. 
 

Theorem 4.2. Let   is a simple real root of the equation (2.2) and let in some neighborhood of the root 
 

( ) { : | | }U  
         , 

in which 

2

2 ( ) ( )
1

[ ( )]

f f

f

 


 
 

for the three times continuously differentiable function ( )f   that describes equation (2.2), the condition (A) 

or (D) is fulfilled, and for the function 2( ) ( ) / sgn [ ( )]q f f f       the conditions 

1

0

1

( )
N

q


 
       for  0 ( , )       , 

 

1

1 2

( ) 2

( )

q

q M




 
      for  

1 ( , )       ,) 

 
where 

2 2
( ) ( )

min | ( ) | , max | ( ) |
U U

m q M q
 

    
     , 
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1 2
( , )

( ) ( )
max

( )

q q
N

q    

 


 
. 

 
is holds. 
 
In addition, let the conditions to be met 
 

1 1
3 32 2

1 2 2 1
0 0 1 12 2

1 2 2 1

1 1
| | 1 , | | 1

2 2

M M M M
t t

m m m m
    

          
   

, 

 
Where 
 

1 1
( ) ( )

min | ( ) | , max | ( ) |
U U

m f M f
 

    

     . 

 

Then the iterative process (4.2), starting with 
0 ( , )       , coincides to the   on both sides 

 

0 2 2 2 2 2 1 2 1 3 1... ... ... ...m m m m


                       , 

 

moreover, for the errors on the left hand and on the right hand from the root   the  estimations 
 

4 1
2 0 0| | | |

m

m t        , 

 
and  
 

4 1
2 1 1 1| | | |

m

m t  
      . 

 
are satisfied, respectively. 
 
The scheme of proof of Theorem 4.2 is similar to the scheme of proof of Theorem 4.1. 
 
Remark 4.2. Two different iterative processes (4.1) and (4.2) have been used above to justify alternate 

approximations, starting with 0n  , ideally, when the behaviour of a function ( )f   is known or easily 

investigated. 
 
In practice, one of them can be used for all cases (A) - (D) and regardless of which side (left or right of the 

root  ) is the initial approximation 0 , but then the alternate approximations comes at least from 1n  . 

 

For example, if, to the ( )f   that satisfying the condition (A) or (D), apply the iterative process (4.2), we 

obtain an alternate approximations to the root   in the form 
 

0 1 3 2 1 2 1 2 2 2 4 2... ... ... ...m m m m


                          

 

provided that 
0

    and 

 

1 3 2 1 2 1 2 2 2 4 2 0... ... ... ...m m m m


                         , 

 

if 
0

   . 
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5 Algorithms and Discussion 
 

Note that the iterative process, for example (4.1), which provides a bilateral approximation to its own 
value, taking into account the relations (2.8), will take the form 

 

, 

 
2

0 0
2 2 2 1

1 11, 1

sgn / ,  
n nn n

kk
m m kk ii ii

k ki i k i kk

v
v u u

u
 

   

   
       

  
                              (5.1) 

 
, 

 

where , ,kk kk kku v w  are elements of the matrices U, V  and W  in the decompositions (2.7) for fixed 2m   , 

and ,kk kku v  and 0 0,kk kku v  are elements of the matrices of U, V  in the decompositions (2.7) for fixed 

2 1m    and 0   , respectively. 
 

So, the algorithm can be written as follows: 
 
Algorithm 1. Iterative process of alternating approximations 
 

1. We set the initial approximation 0  to the s -th eigenvalue of the problem (2.2) 

2. for 0,1,2,m    until the accuracy is achieved do 

3. if m  is even 

4. than calculate the values , ,kk kk kku v w from the decomposition (2.7) for 2m    

5. calculate approximation to the eigenvalue 2 1m  by the formula (5.1) 

6. else calculate the values ,kk kku v  from the decomposition (2.7) for 2 1m    

7. calculate approximation to the eigenvalue 2 2m  by the formula (5.1) 

8. end for m . 
 

From the algorithm it is seen that in order to obtain alternate approximations in each step of the algorithm it 
is necessary to refer to the algorithm of calculating the expansion (9). 
 

In some cases, the algorithm constructed on the basis of iteration process of enclosing approximations is 
more optimum as to the number of accesses to the calculation of decomposition (9) [20]: 
 

1 2

( ) ( )
,  

( ) ( ) ( )
m m

m m

m m m

f f

f f f


 
   

    
 

 

1

( )
, 0, 1, 2, ...

( )
m

m m

m

f
m

f



    

 
,      (5.2) 

with the help of which we obtain the approximation of the enclosing approximations in the form 
                                       (5.3) 

 

or in the form 
 

, 
 

using one initial approximation 0 0    (in this case to the left hand of of the root  ). 

2

2 1 2
1 1 1,

/ 2 2
n n n

kk kk kk kk ii
m m

k k i i kkk kk kk kk ii

v v w v v

u u u u u


   

     
           
       

  

0, 1, 2, ...m 

0 0 1 2 2 1m m                       
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If now again replace the values of the function and its derivatives at the desired points by the relations (2.8), 
then the iterative process (5.2) will look like 
 

 

 

                                        (5.4) 

 

0, 1, 2, ...m  , 
 

where , ,kk kk kku v w  is the elements of the matrices U, V  and W  in the decompositions (2.7) at the fixed 

2m    and 0 0,kk kku v  are elements of the matrices of U, V  in the decompositions (2.7) for fixed 0   . 
 

So, it is proposed the following algorithm for finding the eigenvalues of a nonlinear spectral problem: 
 

Algorithm 2. An iterative process of enclosed approximations 
 

 1. We set the initial approximation 0 0    to the s-th eigenvalue of the problem (2.2) 

 2. for 0,1,2,m    until the accuracy is achieved do 

 3. calculate the values , ,kk kk kku v w from the decomposition (2.7) at the m    

 4. calculate approximation to the eigenvalue 1m and 1m  by the formula (5.4) 

 5. end for m . 
 

Consequently, we see that by algorithm 2, unlike algorithm 1, two approximations (from left hand of the root 
and from righ thand of the root) are calculated, for one access to the calculation of decomposition (2.8). 
Now, we consider the application of the proposed algorithms to finding the generalized eigenvalues of a 
linear homogeneous integral equation, whose kernel analytically (nonlinear) depends on the spectral 
parameter [28]: 
 

1

01

( )
( , ) ( ) ( , ) ( , , ) ( , )

( , )

F
v T v K v d

f


              

  , 

 

where ( )F   is a continuous on the interval 1, 1 [ ]  a real nonnegative function, 
 

sin ( )
( , , )

( )
K

   
   

  
, 

 
1

0

1

( , ) ( ) ( , , )f F K d


          . 

 

The equation arises in finding the points of a possible branching of the connections of a nonlinear integral 
equation 

1

1

( , ) ( ) ( , , ) exp arg ( , )f F K i f d


              { } , 

 

which is obtained as a result of variational formulation of the synthesis problems  , in particular, of linear 
antennas for a given amplitude directivity pattern. 
 

Having made not complicated transformations and applying the Quadrature Gaussian formula to integral 

operator ( )T  , we obtain a matrix self-adjoined eigenvalue problem [28] 

2
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( ) ( )n n nD u T u I u    , 

 

where nI is a unit matrix in n -dimensional space. 

 
Eigenvalues are sought as solutions to a determinant equation 
 

( ) det ( ) 0nf D    .                                                                      (5.5) 

 

To illustrate the operation of the algorithms 1 and 2 for a given function ( ) 1F   , in Table. 1 shows the 

value of successive approximations of the parameter to the first root of the equation (5.5). For the function 

( ) 1F   , the first root of equation (5.5) can be calculated precisely and it is equal  , which allows us to 

compare the approximate solution with the exact one. 
 

Table 1. Successive approximations to the first eigenvalue ( 3.141593    ) 
 

(m) Algorithm 1 Algorithm 2 
( )m  ( )m  ( )m  ( )m  

0 2.0 2.0   
1 3.087993 3.087993 3.186991 3,137492 
2 3.178098 3.137563 3.168124 3,152844 
3 3.139249 3.141567 3.141618 3.141593 
4 3.141601 3.141593 3.141593 3.141593 
5 3.141593 - - - 
6 3.141593    

 
From Table 1, we see that algorithms 1 and 2 are effective both in the rate of convergence and in the 
generation of successive bilateral approximations to the eigenvalue. 
 

6 Conclusion 
 
Approbation of the constructed algorithms on model and physical problems, in particular on the one 
presented in the article, shows their reliability and efficiency, as well as the advantages compared with the 
usual method of Newton in the sense that at each step of the iterative process, we obtain two-sided estimates 
of the required solution, and therefore, at each step we get comfortable a posteriori estimates of errors. 
 
The proposed approach can be applied also to the linear eigenvalue problems with respect to the spectral 
parameter, and if its is compared with existing approaches mentioned in the introduction for obtaining lower 
bounds of eigenvalues of self-adjoint spectral problems, then this approach has significant advantages which 
are mentioned in Podlevskyi  [22], namely: does not require construction an auxiliary operator with a known 
spectrum as in the method of intermediate operators, and also does not require knowledge of the lower 
bound of the next eigenvalue (assuming that the eigenvalues  are arranged in ascending order) as in the 
algorithms, based on inclusion theorems. 
 
It should be noted that for solving nonlinear equations, in particular algebraic ones, similar algorithms are 
constructed in Zanlav et al. [32]. 
 

Competing Interests 
 
Author has declared that no competing interests exist. 



 
 
 

Podlevskyi; JAMCS, 31(6): 1-20, 2019; Article no.JAMCS.48492 
 
 
 

18 
 
 

References 
 
[1] Andriychuk MI, Bulatsyk OO, Voitovich NN. Comparing different approaches to linear 

antenna synthesis problems according to power radiation pattern. Proceeding of XIXth 
International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and 
Acoustic Wave Theory (DIPED’14). Tbilisi, Georgia. 2014;15-18. 
DOI: 10.1109/DIPED.2014.6958307 

 
[2] Schreiber K. Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh 

functionals. PhD thesis, Department of Mathematics, TU Berlin; 2008. 
 
[3] Daniel YS, Aziz ZA, Ismail Z, Salah F. Entropy analysis in electrical magneto-hydro-

dynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and 
chemical reaction. Theoretical and Applied Mechanics Letters. 2017;7(4):235-242. 

 
[4] Daniel YS, Aziz ZA, Ismail Z, Salah F. Thermal stratification effects on MHD radiative 

flow of nanofluid over nonlinear stretching sheet with variable thickness. Journal of 
Computational Design and Engineering. 2018;5(2):232-242. 

 
[5] Mehrmann V, Voss H. Nonlinear eigenvalue problems: a challenge for modern eigenvalue 

methods. GAMM Mitt. Ges. Angew. Math. Mech. 2004;27:121–152. 
 
[6] Weinstein A, Stenger W. Methods of intermediate problems for eigenvalues. Theory and 

ramifications. New York, London: Academic Press; 1972. 
 
[7] Bazley NW, Fox DW. Truncations in the method of intermediate problems for lower bounds 

to eigenvalues. J. Res. Nat. Bur. Standarts. Sec. B. 1961;65B(2):105-111. 
 
[8] Beattie CA. An extension of Aronszajn's rule; slicing the spectrum for intermediate 

problems. SIAM J. Numer. Anal. 1987;24(4):828-843.  
DOI: 10.1137/0724053 

 
[9] Beattie CA, Greenlee WM. Convergence theorems for intermediate problems. II. Proc. Roy. 

Soc. of Edinburg: Sec. A. 2002;132(5):1057-1072. 
 
[10] Gould SH. Variational methods for eigenvalue problems. London: Oxford University Press; 

1966.  
 
[11] Marmorino MG, Bauernfeind RW. Approximate lower bound of the Weinstein and Temple 

variety. Inter. J. Quantum Chemistry. 2007;107(6):1405-1414.  
DOI: 10.1002/qua.21268   

 
[12] Fichera G. Numerical and quantitative analysis. London, San Francisco, Melbourne: Pitnam 

Press; 1978. 
 
[13] Temple G. The theory of Rayleigh's principle as applied to continuous systems. Proc. Roy. 

Soc. London Ser. A. 1928;119:276-293.  
DOI: 10.1098/rspa.1928.0098  

 



 
 
 

Podlevskyi; JAMCS, 31(6): 1-20, 2019; Article no.JAMCS.48492 
 
 
 

19 
 
 

[14] Collatz L. Eigenwertaufgaben mit technischen Anwendungen. Leipzig: Akademische 
Verlagsgesellschaft Geest & Portig K.-G.; 1963. 

 
[15] Lehmann NJ. Beitrage zur losung linearer eigenwertpromleme I. Z. Angew. Math. Mech. 

1949;29:341-356. 
 
[16] Lehmann NJ. Beitrage zur losung linearer eigenwertpromleme II. Z. Angew. Math. Mech. 

1950;30(1-2):1-16. doi:10.1002/zamm.19500300101.  
 
[17] Behnke H. The calculation of guaranteed bounds for eigenvalues using complementary 

variational principles. Computing. 1991;47(1):11-27.  
DOI: 10.1007/BF02242019  

 
[18] Alefeld G, Herzberger J. Introduction to interval computations. New York: Academic Press; 

1983. 
 
[19] Neumaier A. Interval methods for systems of equations. Cambridge: Cambridge University 

Press; 1990. 
 
[20] Podlevskii BM. On certain two-sided analogues of newton’s method for solving nonlinear 

eigenvalue problems. Comput. Math. Math. Phys. 2007;47(11):1745-1755. 
DOI: 10.1134/S0965542507110024.  

 
[21] Podlevs’kyi BM. Bilateral analog of the newton method for determination of eigenvalues of 

nonlinear spectral problems. J. Mathematical Sciences. 2009;160(3):357-367. 
DOI: 10.1007/s10958-009-9503-2  

 
[22] Podlevskyi BM.  One approach to construction of bilateral approximations methods for 

solution of nonlinear eigenvalue problems. American Journal of Computational 
Mathematics. 2012;2(2):118-124. 
DOI: 10.4236/ajcm.2012.22016 

 
[23] Podlevskyi BM. One approach to construction of bilateral approximations methods for 

solution of nonlinear eigenvalue problems. Canadian Open Mathematics Journal. 2014;1(2): 
1-17.  

 
[24] Podlevskyi BM. On one approach to building bilateral iterative methods for solving 

nonlinear equations. Report NAS of Ukraine. Ukraine. 1998;5:37-41. 
 
[25] Podlevskyi BM. About one way to build bilateral iterative methods for solving nonlinear 

equations. Math. Meth. and Phys. Mech. Fields. 1999;42(2):17-25.  
 
[26] Podlevskyi BM. On the bilateral convergence of Halley's method. ZAMM. 2003;83(4):282-

286.  
DOI: 10.1002/zamm.200310035  

 
[27] Podlevskyi BM. One approach to the construction of the bilateral approximations methods 

for the solution of nonlinear equations. Proceeding of Dynamic Systems & Applications IV. 



 
 
 

Podlevskyi; JAMCS, 31(6): 1-20, 2019; Article no.JAMCS.48492 
 
 
 

20 
 
 

Ladde GS, Madhin NG, Sambandham M, editors. Atlanta: Dynamic Publishers, Inc., U.S.A; 
2004;542-547.  

 
[28] Podlevskyi BM. Bilateral methods for solving of nonlinear spectral problems. Kyiv: Nauk 

dumka; 2014. Ukraine.  
 
[29] Podlevskyi BM. Calculating the exact derivatives of matrix determinant. Visnyk Lviv 

Univer. – Ser. Appl. Math. Inform. 2013;20:42-48. Ukrainian. 
 
[30] Podlevskyi BM, Khlobystov VV, Yaroshko VV. Multiparameter eigenvalue problems: 

Methods and algorithms. Lambert Acad. Publish; 2017.  
 
[31] Traub JF. Iterative methods for the solution of equations. New York: Chelsea Publishing 

Company; 1982.  
 
[32] Zanlav T, Chuluunbaatar O, Ulziibayar V. Two-sided approximation for some Newton’s 

type methods. Applied Mathematics and Computation. 2014;236:231–246. 
DOI: 10.1016/j.amc.2014.03.068 

_______________________________________________________________________________________ 
© 2019 Podlevskyi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 

 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle3.com/review-history/48492 


