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Abstract

Exact solutions which contain periodic solutions, soliton solutions and rogue wave solutions for
two the modified derivative nonlinear Schrödinger equations, are obtained by means of solutions of
a known derivative nonlinear Schrödinger equation. Two solutions’ images are displayed, which
can help one understand their dynamical behavior better. These results enrich the solutions’
structural diversity for the modified derivative nonlinear schrödinger equations.
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1 Introduction

The derivative nonlinear Schrödinger equation(DNLSE)

iut + εuxx + iα(|u|2u)x = 0, (1)
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where ε = ±1, α ̸= 0 is a arbitrary constant. This equation has a rich application background in
plasma physics and nonlinear optics [1-4], and has been studied by many scholars from two aspects:
mathematical theory and physical application [1-10].

When ε = −1 and α = 1, Eq.(1) is rewritten into

iQT −QXX + i(|Q|2Q)X = 0, (2)

Steudel H obtained the following exact solutions for Eq.(2)[9]

Q(X,T ) =

− 4MN(M cos(4NM(X−4(N2+M2)T ))+iN sin(4NM(X−4(N2+M2)T )))3

(M2+(N2−M2) sin2(4NM(X−4(N2+M2)T )))2
e(−i(2(N

2+M2)X−4(N4+M4+6N2M2)T )),

(3)
and

Q(X,T ) =
4MN(M cosh(4NM(X−4(N2−M2)T ))+iN sinh(4NM(X−4(N2−M2)T )))3

(M2+(N2+M2) sinh2(4NM(X−4(N2−M2)T )))2
e(−i(2(N

2−M2)X−4(N4+M4−6N2M2)T )),

(4)
where M,N are arbitrary constants.

Xu S. W. et al constructed following rogue wave solutions for Eq.(2)[10]

Q(X,T ) = 4K(4iK2(4K2T−X)−1)3

(16K4(4K2T−X)2+1)2
e−2iK2(X−2K2T ) (5)

where K is a arbitrary constant.

Many researchers have studied the modified derivative nonlinear Schrödinger equation(MDNLSE)

iut = uxx + iα(|u|2u)x + 2(|u|2 − ω)u, (6)

where α and ω are real constants, which has applications in nonlinear optics [11,12] and plasma
physics [13]. Rich results have been obtained for MDNLSE, such as the homoclinic orbit, etc.[14-17].
However, as far as we know, the rogue wave solution of Eq.(6) has not been reported yet.

In present work, we consider the following modified derivative nonlinear Schrödinger equation

iut + εuxx + iδα(|u|2u)x + 2β|u|2u+ 2γωu = 0, (7)

where ε = ±1, δ = ±1, α, β, γ and ω are real constants. Obviously, Eq.(7) contains Eq.(1) and
Eq.(6). We will convert Eq.(7) into Eq.(2), and then obtain the solutions of Eq.(7) through
expressions (3) to (5). So, periodic solutions, soliton solutions and rogue wave solutions for Eq.(1)
and Eq.(6) will be obtained, which digital images will also be displayed.

2 The Similarity Transformation and Exact Solutions
for Eq.(7)

First, we use a similarity transformation to convert Eq.(7) into Eq.(2)[18]. Assume

u(x, t) = PQ(X(x, t), T (t))eiφ(x,t), (8)

where P is a constant to be determined, X(x, t), T (t) and φ(x, t) are the functions to be determined.
Substituting Eq.(8) into Eq.(7) ( the tedious calculation process is omitted ), we can obtain solutions
about φ(x, t),X(x, t) and T (t) as follows

φ(x, t) = 2δαβx+2(δ2α2ωγ−2εβ2)t

δ2α2 + C1, X(x, t)

= − δαP2

ε
x+ 4βP 2t+ C2, T (t) = − δ2α2P4

ε
t+ C2,

(9)
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where P, C1 and C2 are arbitrary real constants.

Now, we substitute Eq.(9) into Eq.(3)-Eq.(5), periodic solution, soliton solution and rogue wave
solution are obtained for Eq.(7), which are written as follows

Periodic solution:

u(x, t) = − 4MN(M cos(K(x,t))+i N sin(K(x,t)))3

(M2+(N2−M2) sin2(K(x,t)))2
e−iψ(x,t). (10)

where K(x, t) = 4NM(− δαP2

ε
x + 4βP 2t + C2 − 4(N2 +M2)(− δ2α2P4

ε
t + C2)), ψ(x, t) = 2(N2 +

M2)(− δαP2

ε
x+4βP 2t+C2)−4(N4+M4+6N2M2)(− δ2α2P4

ε
t+C2)+

2δαβx+2(δ2α2ωγ−2εβ2)t

δ2α2 +C1.

soliton solution:

u(x, t) = 4MN(M cosh(L(x,t))+i N sinh(L(x,t)))3

(M2+(N2+M2) sinh2(L(x,t)))2
e−iϕ(x,t), (11)

where L(x, t) = 4NM(− δαP2

ε
x + 4βP 2t + C2 − 4(N2 −M2)(− δ2α2P4

ε
t + C2)), ϕ(x, t) = 2(N2 −

M2)(− δαP2

ε
x+4βP 2t+C2)−4(N4+M4−6N2M2)(− δ2α2P4

ε
t+C2)+

2δαβx+2(δ2α2ωγ−2εβ2)t

δ2α2 +C1.

Rogue wave solution:

u(x, t) =
4K(4iK2(4K2(− δ2α2P4

ε
t+C2)−(− δαP2

ε
x+4βP2t+C2))−1)3

(16K4(4K2(− δ2α2P4

ε
t+C2)−(− δαP2

ε
x+4βP2t+C2))2+1)2

e
−i(2K2((− δαP2

ε
x+4βP2t+C2)−2K2(− δ2α2P4

ε
t+C2))+

2δαβx+2(δ2α2ωγ−2εβ2)t

δ2α2 +C1).

(12)

In Eq.(10) - Eq.(12), M,N,K,P,C1 and C2 are arbitrary real constants.

3 Solutions for Eq.(1) and Eq.(6)

In Eq.(10) - Eq.(12), setting δ = 1 and β = γ = 0, three solutions of Eq.(1) are obtained as follows

u1(x, t) = − 4MN(M cos(K(x,t))+i N sin(K(x,t)))3

(M2+(N2−M2) sin2(K(x,t)))2
e−iψ(x,t), (13)

whereK(x, t) = 4NM(−αP2

ε
x+C2−4(N2+M2)(−α2P4

ε
t+C2)) and ψ(x, t) = 2(N2+M2)(−αP2

ε
x+

C2)− 4(N4 +M4 + 6N2M2)(−α2P4

ε
t+ C2) + C1.

u2(x, t) =
4MN(M cosh(L(x,t))+i N sinh(L(x,t)))3

(M2+(N2+M2) sinh2(L(x,t)))2
e−iϕ(x,t), (14)

where L(x, t) = 4NM(−αP2

ε
x+C2 − 4(N2 −M2)(−α2P4

ε
t+C2)), ϕ(x, t) = 2(N2 −M2)(−αP2

ε
x+

C2)− 4(N4 +M4 − 6N2M2)(−α2P4

ε
t+ C2) + C1.

u3(x, t) =
4K(4iK2(4K2(− δ2α2P4

ε
t+C2)−(− δαP2

ε
x+4βP2t+C2))−1)3

(16K4(4K2(− δ2α2P4

ε
t+C2)−(− δαP2

ε
x+4βP2t+C2))2+1)2

×

e
−i(2K2((− δαP2

ε
x+4βP2t+C2)−2K2(− δ2α2P4

ε
t+C2))+

2δαβx+2(δ2α2ωγ−2εβ2)t

δ2α2 +C1).

(15)

Similarly, in Eq.(10) - Eq.(12), setting ε = −1, δ = −1, β = −1 and γ = 1, three solutions of Eq.(6)
are obtained as follows

u1(x, t) = − 4MN(M cos(K(x,t))+i N sin(K(x,t)))3

(M2+(N2−M2) sin2(K(x,t)))2
e−iψ(x,t). (16)
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where K(x, t) = 4NM(−αP 2x − 4P 2t + C2 − 4(N2 + M2)(α2P 4t + C2)), ψ(x, t) = 2(N2 +

M2)(−αP 2x− 4P 2t+ C2)− 4(N4 +M4 + 6N2M2)(α2P 4t+ C2) +
2αx+2(α2ω+2)t

α2 + C1.

u2(x, t) =
4MN(M cosh(L(x,t))+i N sinh(L(x,t)))3

(M2+(N2+M2) sinh2(L(x,t)))2
e−iϕ(x,t), (17)

where L(x, t) = 4NM(−αP 2x−4P 2t+C2−4(N2−M2)(α2P 4t+C2)), ϕ(x, t) = 2(N2−M2)(−αP 2x−
4P 2t+ C2)− 4(N4 +M4 − 6N2M2)(α2P 4t+ C2) +

2αx+2(α2ω+2)t

α2 + C1.

Fig.1. Behaviour of |u(x, t)| in Eq.(17) with M = 2, N = 3, P = 2, α = 1, ω = 2, C1 = 2 and

C2 = 1.

u3(x, t) =
4K(4iK2(4K2(α2P4t+C2)−(−αP2x−4P2t+C2))−1)3

(16K4(4K2(α2P4t+C2)−(−αP2x−4P2t+C2))2+1)2
×

e
−i(2K2((−αP2x−4P2t+C2)−2K2(α2P4t+C2))+

2αx+2(α2ω+2)t

α2 +C1).

(18)

From Fig.1, we clearly see that Eq.(17) (u2(x, t)) is a soliton solution of Eq.(6), which maintains
a steady state of motion.

Similarly, from Fig.2, we obviously see that Eq.(18) (u3(x, t)) is a rogue wave structure, which
produces large amplitude waves.

4



Liu et al.; JAMCS, 31(6): 1-6, 2019; Article no.JAMCS.48218

Fig.2. Behaviour of |u(x, t)| in Eq.(18) with K = 4, P = 2, α = 1, ω = 2, C1 = 2 and C2 = 1.

4 Conclusion

Two the modified derivative nonlinear Schrödinger equations are unified into a equation to be solved,
then their solutions are obtained by means of solutions of a known equation. The results show that
two the modified derivative nonlinear Schrödinger equations have periodic solution, soliton solution
and rogue wave solution. These solutions help us to understand the dynamics of these equations,
and the problem-solving method can also guide the study of other equations.
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