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Abstract: Any severe motor disability is a condition that limits the ability to interact with the
environment, even the domestic one, caused by the loss of control over one’s mobility. This work
presents RoboEYE, a power wheelchair designed to allow users to move easily and autonomously
within their homes. To achieve this goal, an innovative, cost-effective and user-friendly control
system was designed, in which a non-invasive eye tracker, a monitor, and a 3D camera represent
some of the core elements. RoboEYE integrates functionalities from the mobile robotics field into
a standard power wheelchair, with the main advantage of providing the user with two driving
options and comfortable navigation. The most intuitive and direct modality foresees the continuous
control of frontal and angular wheelchair velocities by gazing at different areas of the monitor. The
second, semi-autonomous modality allows navigation toward a selected point in the environment
by just pointing and activating the wished destination while the system autonomously plans and
follows the trajectory that brings the wheelchair to that point. The purpose of this work was to
develop the control structure and driving interface designs of the aforementioned driving modalities
taking into account also uncertainties in gaze detection and other sources of uncertainty related
to the components to ensure user safety. Furthermore, the driving modalities, in particular the
semi-autonomous one, were modeled and qualified through numerical simulations and experimental
verification by testing volunteers, who are regular users of standard electric wheelchairs, to verify
the efficiency, reliability and safety of the proposed system for domestic use. RoboEYE resulted
suitable for environments with narrow passages wider than 1 m, which is comparable with a standard
domestic door and due to its properties with large commercialization potential.

Keywords: human–machine interface; uncertainty; eye tracker; gaze; wheelchair; autonomous
driving; Augmented Reality; navigation

1. Introduction

The drive-by mean of eyes, gazing at a monitor or any equivalent interface, is an
open research topic studied since the early 2000s. Nevertheless, there is limited technology
transfer through commercial solutions for potential daily users—persons affected by severe
motor disabilities. The literature also shows a similar trend, with a limited number of
references on autonomous mobility topics through assistive solutions.

Mainly due to the few technological options available in the past, such limitations
are recently being reduced thanks to innovative and more commercial hardware and
software solutions developed by both established and new manufactures [1]. Contactless

Technologies 2021, 9, 16. https://doi.org/10.3390/technologies9010016 https://www.mdpi.com/journal/technologies

https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-2110-6360
https://orcid.org/0000-0003-0960-0996
https://orcid.org/0000-0002-8813-215X
https://orcid.org/0000-0003-4940-6792
https://doi.org/10.3390/technologies9010016
https://doi.org/10.3390/technologies9010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/technologies9010016
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies9010016?type=check_update&version=2


Technologies 2021, 9, 16 2 of 17

devices represent one of the most important examples of such improvements, allowing gaze
tracking without any other body-mounted tools. During the last years were presented on
the market a lot of new contactless eye tracking models [2], an index of how this technology
is promisingly growing.

This work addresses the problem of implementing a reliable and efficient driving
strategy based on eye-tracking starting from a standard power wheelchair. That involved
the developed custom hardware and software solutions derived from the mobile robotic
fields, resulting in a semi-autonomous system able to interact with the user smoothly and
comfortably. The reconfiguration of power wheelchairs, already used and known to the
final user offer a larger possibility of commercialization. For this advantage there are other
works that aim to modify the existing structures of wheelchairs and in-sightseeing strollers,
adapting them to the individual needs of the user and his individual degree of disability.
For example, [3,4] worked on a hybrid assisted wheelchair for its propulsion and [5] about
wheelchair parallel control trough electroencephalogram signals or [6] that investigated
how the center of gravity of the human body affects the performance parameters of
a wheelchair.

The aim of our work was to provide an additive module to the wheelchair in order
to make users with severe motor disabilities autonomous in movement. We developed
two driving modalities taking into account the uncertainties of the user’s gaze and the
implemented sensors. In particular, the semi-autonomous modality was tested through
numerical simulations and experimental verification for the passage of the wheelchair
through a door. The results demonstrated that narrow passages can be easily and safely
overcome, and which parameters are more effective than others in reaching a target point.

The paper was organized as follows:

• The first part reports the state-of-the-art references on the eye-driving topic, used in
this work as initial guidelines for the system developed.

• Subsequently, the sections present the original design choices in integrating eye-
tracking technology on a power wheelchair, the automation and functionalities in-
cluded, and the driving strategies and the motion performance of the system, both
evaluated through numerical simulations and experimental tests.

• The final part describes the modalities followed in the experimental campaign, the re-
sults obtained and the related operational outcomes.

RoboEYE combines two technologies: an eye tracker and a power wheelchair. Consid-
ered individually, each of these technologies was well researched in the past, but, in contrast,
the integration of the two represents a topic with a limited number of references in the
literature, [7–9] are examples. The results of these studies suggest that eye-gaze control
may be a solution for wheelchair navigation for users with severe motor disabilities.

Other studies have integrated additional input mechanisms, such as Brain–Computer
Interfaces [10,11] or soft-switch [12], to increase the sensitivity and accuracy of gaze control.

However, our tests prove that it may not be necessary to integrate other functional
inputs, this aided by the semi-autonomous driving modality for more difficult operations.

1.1. Eye Tracking

Eye-tracking technology provides a measurement of the gazed point, or area, on a
monitor. More than the medical and commercial applications [13,14], this technology
has improved to a maturity suitable for its application as an effective human–machine
interface (HMI), exploiting the fact that the eye has one of the fastest human movements,
although mainly conceived for exploration and less for control.

As the main advantage, the usage of eyes as input [15] allows those users who, due
to disease or physiological status, cannot use standard interfaces such as a joystick or a
keyboard, to interact with other people or the environment quite efficiently. The main
disadvantage affecting this technology is the sensibility to various factors such as light
condition, the color of the iris, head movement [16,17]. In this context, [18–20] analyzed
these elements and provided a more detailed characterization of the measurement process
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together with a method to assess and compensate [21,22] for uncertainty in eye track-
ing. The latter element was considered in the proposed solution, and it proved to be a
key element for the smooth control of the wheelchair using a commercial, non-invasive,
eye tracker.

1.2. Eye Driven Wheelchairs

As for wheelchair systems that exploited an eye-tracking technology as a driving
solution, [23] represents the first real attempt: a glass-mounted camera was used to track
eye movement from a short distance. This approach, like many others based on different
technologies [24], foresaw the use of wearable technology, the only one available in the past.
However, these can only provide a limited number of commands, can prove tiring [25],
and therefore not suitable for prolonged use.

As for non-wearable (and less invasive) technology, [26] proposed a solution based
on a webcam and gaze direction analysis. The solution is interesting but both the camera
position (almost in front of the user’s face) and the lack of a video interface could lead to
poor management of the system and to complex driving practice. Other works, such as [27],
used a rather expensive eye-tracking system; definitely more promising and probably more
efficient than the previous one, although the high cost considerably reduces its affordability
for private users.

With regard to the use of these systems, [28] has indeed shown that drive-by mean
of eyes achieves better performance than standard control techniques and interfaces. As
well as [29,30], in which the interaction with the eye tracker was included in a simulated
environment, achieving a safer training environment than a real space, but also useful for
optimizing HMI design and navigation modalities.

A comparison [31] between a screen-based interface and an interface without the use
of a digital screen [32,33] mainly highlighted the limitations and problems related to the
feedback provided to users with the latter.

A work similar to ours is proposed in [34], the main contribution of our paper
comes from the inclusion of the uncertainty information about the gaze position in the
human–machine interaction and therefore the creation of a smart HMI able to adapt to
this parameter. In addition, fatigue and safety issues during driving were considered,
proposing as a solution a semi-autonomous navigation modality that allows the system
to safely navigate through narrow passages. Last but not least, the design of the system
considered the cost-effectiveness of the technology, its ability to be configured, customized
and then transferred to the end-user.

2. Eye Tracking as Driving Interface

A good driving interface should achieve two operational conditions: to minimize
user stress resulting from the intensive use of the system and, at the same time, maximize
driving performances and comfort of motion. The interaction with the technology should
result intuitive for the user and possibly take into account the metrological performances
of the sensing interface, in this case, the eye tracker, and the physiological characteristics of
the users.

These two points, in the form of uncertainties in the measurements and in the user’s
model, are usually not considered in most common driving interfaces, i.e., a joystick,
because the inputs provided to the system are very fast and accurate. In the case of eye-
tracking, the uncertainty in the assessment of the gazed point is instead a critical element:
its magnitude, which is not negligible, tends to decrease the accuracy of the interaction
between the user and mechatronic system. This uncertainty, in the form of both random
and systematic errors in the measurement of the gazed position, should be corrected
before applying any control law for wheelchair navigation to improve the usability and
intuitiveness of the system [22,29].
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3. Materials and Methods

RoboEYE, shown in Figure 1a, was built from a GR558, a power wheelchair of Nuova
Blandino Srl, reconfigured to include some advanced robotic functionalities. It included
two driving modalities: direct and semi-autonomous. These were designed to provide
to the user different driving experiences, resulting from the focus required, the feeling
derived from the amount of control over motion, and the level of safety provided by the
system about the environment. The user at any time can switch from one modality to the
other from an idle state.

(a) The prototype. (b) The general operational framework foreseen by RoboEYE.

Figure 1. RoboEYE.

3.1. Direct Drive

The direct drive modality can be selected by gazing at the corresponding button for 2 s
on the designed interface. It should provide a versatile maneuverability, with reduced jerks,
and a comfortable overall experience [29]. The proposed solution tackles such assumption
by foreseeing the continuous variation of frontal and angular velocities with two different
control laws: a rational one for the forward direction and a linear one for the rotations. In
particular, the speed values increase moving the gaze from the central bottom part of the
screen to the external corners, where it reaches the maximum allowable speed values. For
both, a rest zone is defined, in the central bottom part of the monitor, where the wheelchair
does not move.

The width of the area is defined to be comparable to the maximum eye tracker
uncertainty, 100 pixel in our setup [20].

3.2. Semi-Autonomous Drive

Although direct control is a very natural and effective way of controlling motion,
it may cause fatigue if used for long periods due to the need to keep attention on the
monitor. The drive modality used for the semi-autonomous navigation, from [35], solves
the problem of fatigue by enabling the wheelchair to reach the selected target position
autonomously. It foresees the use of visual markers and Augmented Reality (AR) to localize
a specific Point of Interest (POI) in the domestic environment and then drive the wheelchair
there. The POI detection is performed by searching in the RGB frame through the ArUco
library, something similar to [36,37] who analyze and use the segmentation algorithms in
video-surveillance systems and cluttered environments.

The semi-autonomous navigation technique can be described as follows:

• Detection of POIs in the Field of View (FoV) of the camera through ArUco markers
(each POI is uniquely defined by a couple of markers).

• Localization of the wheelchair with respect to each single POI.
• Planning of the best path to reach each POI.
• Show to the user the result about the path related to the reachable POIs and wait

the choice.
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• Execution of the selected path.

A localization algorithm [35] returns the position and the attitude of all POIs detected
in the frontal FoV and, the AR engine shows pins in correspondence of these plus a
maneuver calculated by a path planning algorithm [38]. The user can select a POI by
gazing at its pin for 2 s while a loading circle marks the selection in time. After that,
the wheelchair performs the maneuver by exploiting the path-following task from [38]. At
the end of the path, the wheelchair automatically stops allowing the user to select a new
POI or switch back to direct ocular driving.

However, in the context of domestic navigation, a fully dynamic path generation
and action could be dangerous from the presence of narrow passages or obstacles. For
this reason, the planning tool foresaw the division of the maneuver into two sub-parts:
(i) a path that brings the wheelchair nearby the POI, and (ii) a fixed conclusive maneuver,
defined for each POI, thus ensuring a safe approach or passage toward the target position.

The first is determined dynamically by exploiting a clothoid [38,39], a curve charac-
terized by a continuous third-order curvature that ensures continuity in the jerk and so
an optimal comfort level in the navigation. On top of that, the curve can be expressed
analytically [40,41], providing as advantages a simple data management for control, HMI
and AR, but also it facilitates the identification of obstacles and thus their avoidance. In this
way, it is possible to evaluate the feasibility of the planned path. As for the final maneu-
ver, this was associated with a graph-based map of the environment containing all POIs’
information. Depending on the type of POI, passage (i.e., through a door) or approach
point (i.e., for reaching a desk), a linear or curvilinear segment was defined considering the
geometry of the enthronement, the position of the markers and POI.

Given a selected POI and the complete path, the HMI checks and notifies the presence
of obstacles along it. If so, the HMI highlights the path in red, preventing the execution of
the maneuver. In this case, it is asked to the user himself to perform a corrective movement
and bring the wheelchair into a suitable condition for a safe maneuver. This strategy stems
from the desire to emphasize the user’s decision rather than the development of a fully
autonomous system.

3.3. Prototype Components

The default electronics of a GR558 power wheelchair were removed and replaced
with a commercial driver to power the original motors and two encoders on the wheels for
odometric localization, Figure 1.

A Time of Flight (ToF) Microsoft Kinect V2 camera was mounted on the front of
the wheelchair, a few centimeters above the user’s legs. The position was identified by
considering the advice from a pool of volunteer testers, regular users of standard and
special powered wheelchairs. They highlighted the importance of seeing their knees inside
the driving interface, resulting in an effective strategy for better depth perception from the
video interface [35].

A monitor was mounted at the front to show the user the HMI and the information
from the TOF about the environment. A Windows PC manages the system logic. It collects
the data from the encoders, calculates the position of the wheelchair and the control
parameters required to pilot the drivers. It also manages the eye tracker (fastened below
the monitor), the HMI and the ToF.

The PC was configured with a real-time Windows Operating System (OS). Both the
HMI and the hardware manager were developed in UNITY, and the communication
between the OS and the driver was structured over RS232 serial communication.

3.4. Navigation

Advanced robotics functionalities, based on video and 3D data processing, represent
a core element of the semi-autonomous navigation modality. These were derived from
specific libraries, which could not be directly coded at the HMI level, and were therefore
coded in a dedicated C++ DLL. It was organized in three levels with two parallel tasks
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performing absolute localization and driver communication. On top of this, a wrapper
class connects the C++ level to the C# of the HMI. Figure 2 shows a general scheme.

Figure 2. A schematic representation of the DLL structure implemented on the prototype.

Wheelchair localization is performed by merging two contributions: encoder odometry
and the custom-designed absolute localization method based on TOF data.

As for the first, this was derived from the odometric recursion from [42]. As for
the second, this was designed differently from the canonical ones, which usually rely
on matching range data with a previously created map [43]. A vision-based solution
foresees the use of AR functionalities [44,45] to locate the wheelchair with respect to the
POIs without the use of a map. The main advantages are: (i) the simplification of the data
structure, (ii) a lower computational cost and (iii) the possible use of low-cost sensors, this at
the only cost of introducing visual tags, as spatial anchors, into the domestic environment.

RoboEYE was designed to work mainly in a domestic environment. In this context,
the furniture is a reliable landmark, as it is unlikely to be moved frequently over time. The
most interesting furniture from an operational point of view, such as doors, tables and so
on, were then referenced using AR tags [46]. For each of them, a POI was defined as a target
pose [x, y, θ]. An operational example is a television: the POI is defined with respect to the
marker, placed nearby the device so that the user can reach with the semi-autonomous
navigation modality a predefined position, and watch it most comfortably.

The steps involved in the localization process are shown in the Algorithm 1 and
detailed here:

1. Data acquisition: the information concerning the color image and the depth stream
data are collected by the ToF camera and passed to the processing block.

2. Kinect position assessment: the system determines the transformation, in terms of
height and attitude, between the sensor and the ground using a RANdom SAmple
Consensus plane fitting (RANSAC) [47]. This task is fundamental to compensate for
the mobility of the camera on the chassis, especially in the attitude.

3. Roto-translation of 3D points: depth frames (3D cloud points) are transformed from
the ToF to the wheelchair reference system. This also allows the organization of a
more versatile ad efficient AR framework.

4. Target detection: an ArUco function analyzes the RGB frames searching for markers.
If present, the algorithm evaluates their 3D positions by isolating the corresponding
3D points at the markers. This strategy, compared to the one based on standard
vision, works without the knowledge of the camera’s intrinsic parameters. The main
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advantage is to avoid a calibration phase, otherwise necessary. The localized markers,
and the corresponding POIs, are then passed to the interface as possible target and
anchor positions for autonomous navigation.

Algorithm 1 Localization algorithm

while KeepRunning do
if CameraConnected then

Acquire RGB and depth frames
Calculate plane equation relative to the floor
Determine camera pose w.r.t. the wheelchair
Transform cloud points into the wheelchair reference system
Search ArUco marker in the RGB image
for EachMarkerDetected do

Determine pose of the POI related to each marker
end for
Send POIs detected information to the HMI

end if
end while

The two concurrent localization modalities are merged to minimize both the influence
of the slow ToF camera localization and the drift error of the odometric localization.
A Bayesian-based approach was considered by [48] for that, resulting in very accurate
navigation, when compared to the single localization options, and thus a safer system.

4. Sources of Uncertainty

The passage through a door, or narrow passage in general, is one of the most important
tasks for the sake of autonomous domestic mobility. In the case of a semi-autonomous
motion, the maneuver depends on the localization of the wheelchair with respect to the
environment, which is a task mostly required to a single, properly organized device. In
RoboEYE, the ToF fulfills such a role in combination with the POIs. Both ToF and POIs
detection are subject to uncertainty.

4.1. Uncertainty of Human–Machine Interface

The front monitor displays the HMI, shown in Figure 3, and presents the navigation
options to the user. They include a video stream from the camera in the background,
buttons to start/stop navigation in the foreground, and, on top of all the detected POIs
with identified the feasible paths.

The graphics engine considers the role of uncertainty from eye-tracking and its effect
on human–machine interaction, proportionally adapting the size of buttons and pins
according to the magnitude of such parameter. It was computed online, exploiting an
exponential moving average of the gazed point on the monitor over time:

∆pk+1 =
(N − 1) · ∆pk + ∆pk

N
(1)

∆pk is the value of the exponential moving average at a step k, ∆Pk is the difference of the
gaze position in two consecutive steps and N is the number of samples considered in the
moving average, set in the proposed application set to 10. A uniform weighting of 1/N
was considered for all the samples in the average.

The presented organization achieved the main advantage of fast, reliable and struc-
tured access from high-level software interfaces to low-level variables, modules and func-
tions, allowing the natural integration of kinematic information into the AR. The result
was a natural, simple and efficient HMI resulting in a smooth and comfortable control of
the motion of the wheelchair.
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Figure 3. The human–machine interface shown on the front monitor with Augmented Reality (AR)
cues activated through ArUco Markers.

4.2. Uncertainty of ToF

The onboard position of the ToF device can be assessed with a limited accuracy since
it has to be fixed at a critical point. From the specifications identified by the testers, to be
effective in driving the ToF has to (i) be frontal to the system, (ii) point toward the floor to
identify possible obstacles and (iii) allow easy repositioning to allow the user to sit in and
get out of the wheelchair even with assistive equipment.

Such a setup implies possible small variations in the position of the device from
the calibrated reference, caused by vibrations, slack in the mounting system, or mechanic
tolerances. This can be modeled as uncertainty in such parameters, resulting in an error that
propagates from the initial path planning, when the wheelchair is stationary, throughout
the maneuver, where the path is automatically updated every time the target POI falls
within the FoV of the ToF. The result is a non-negligible displacement of the wheelchair
from the intended target position, which represents a dangerous condition for the user.
For this reason, an error budget analysis was structured to highlight the influence of the
uncertainty in the ToF position for the performance of the autonomous navigation toward
a target POI.

4.3. Uncertainty of Marker-Based Localization

Any localization process exploited in (semi-)autonomous navigation should include,
for safety reasons, an assessment of the uncertainty of the detected positions. In RoboEYE,
this requirement was achieved through a repeatability analysis involving the measurement
of static positions of multiple markers placed in the FoV of the ToF. The tests considered
two conditions: distance and orientation. In the first, the marker and the wheelchair were
aligned, moving the latter to different distances, Figure 4 reports the measurements as
point-type markers. In the second, represented by the cross-type markers, the attitude of
the wheelchair was changed with respect to the marker, keeping the position fixed.

The experimental evidence highlighted a correlation between the number of 3D points
within the marker area and the covariance of the measure. Such observation was then
exploited to determine the standard deviation of the [x, y] position of the marker as a
function of the number of points detected:

σ(np) =
p1 · np + p2

np + q1
(2)

np is the number of 3D points detected within the marker, and p1, p2, q1 are numerical
coefficients resulting from fitting Equation (2) with the experimental data. Equation (2)
was applied on the main decomposition of the 3D point cloud at the marker, thus deter-
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mining two contributes, frontal and transverse, and subsequently combining them in a
covariance matrix.

Figure 4. The correlation between the standard deviation in marker localization versus the number
of points associated with a marker.

5. Maneuver Modeling with Monte Carlo Simulation

A Monte Carlo simulation [49] was structured to model the influence of the uncertainty
in the position of the ToF along with the maneuver. Figure 5 shows the spatial configuration
considered, which represents an ideal operational scenario: an area starting 2 m away from
the wheelchair, 2 m long and 4 m wide. Within this area, a uniform grid of doors dxy was
defined with fixed steps of 0.5 m in the directions x and y. For each dxy, 5 attitudes ranging
from 0 to 45° were defined. The simulation considered the wheelchair starting from the
origin and the door defined at a position [xyθ]. The target pose Pt was defined as a point
placed 0.5 m in front of the door.

Only the upper part of the area (positive ys) was considered for symmetry. As a further
simplification, only positive angles were considered for the attitude of dxys: negative angles
simulate an approach from a high incidence direction, an unlikely operational condition
given the vision-based structure of the navigation.

Figure 5. The scheme of the tests used in the Monte Carlo simulation.

The simulation included the kinematic model of the wheelchair and the uncertainty
in the kinematic parameters. The result is a set of covariance matrices along the executed
path, which represent the possible true position reached by the wheelchair at a defined
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confidence level [42]. This was set to 99.7% (3σs) to maximize the reliability of the results,
and hence the safety of the system.

Given the nth of the N simulation runs and the dth door, the nominal onboard position
of the ToF is modified by adding a systematic error randomly selected from a pool of
possible uncertainty levels in displacement, named σxy, and attitude, σθ . Such bias remains
fixed for the entire duration of the nth run, and it causes an error in the generation of the
virtual measurements linking the wheelchair to Pt. To reduce the number of factors in
the proposed analysis, the values defined by σxy represent radial displacements and not
independent x and y components. These were instead computed starting from the distance
definition and by randomly selecting a displacement angle (different from θ).

The simulation starts with the initial planning and motion of the wheelchair from
the origin towards Pt. After a defined latency, the simulation performs a data update as
a new measurement of Pt seen from the actual position of the wheelchair. A new path
planning and path following operations are then run, structuring a loop that ends when
the wheelchair is less than 0.3 m away from Pt. After that, a conclusive planning step is
performed and the final pose Pf p and the covariance matrix C f p are recorded. As a final
step, another 100 random seeds are taken from C f p and used to project the position of the
wheelchair towards the door’s line (a segment of 0.5 m length). Figure 6 shows an example
of the simulation.

Figure 6. Simulation example of the wheelchair path from the origin to the target pose Pt: in black
the reference geometry for the door, in red is the liner approach to the door, in blue are both the
ellipses representing the uncertainty propagation along the path for all the simulated paths, the dots
are the seeds from the final curvilinear positions and covariances and in green are the final positions
after the conclusive linear path. The figure also shows histograms of the performance factor Pf as the
final transverse displacement of the wheelchair along the door line.

The kinematic parameters considered for the wheelchair model were a wheelbase of
0.650± 0.005 m and a wheel radius of 0.155± 0.010 m (3σ). Regarding the data acquisition
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process, an update in the planning at 10 Hz was considered, equivalent to a routine every
3 samples from the ToF (native operational frequency of 30 Hz). The wheelchair speed was
set to 0.5 m/s, the fastest speed suitable for safe domestic use. Any lower speed reduces the
influence of the uncertainty in the final position as it implies a slower motion and therefore
more updates and the application of more corrective actions during the approach to the
target position.

The levels of uncertainty considered in the sensor position were chosen based on hard-
ware configurations, mounting and fastening options available with standard (certified)
mechanical mounts:

• σxy = [0.001, 0.005, 0.01, 0.02, 0.05] m
• σθ = [0.1, 1, 2, 5, 10]π/180 [rad]

For each σxy-σθ configuration, 100 trials were run.

5.1. Minimum Door Clearance

The transverse displacement of the wheelchair along the door line was considered
as a performance factor Pf for each seed. From the distribution Pf , the minimum door
clearance dcmin was assessed using the following expression:

dcmin = 2 ·
(

ΣPf +
3 · σPf + Ww

2

)
· 1.2 (3)

Ww is the wheelchair width, while ΣPf and σPf represent the systematic and random errors
in reaching the door: the first is computed as the mean of the distribution of Pf s, the latter
as the standard deviation. The value of 1.2 stands as an additional safety factor (20%).
Figure 7 shows a geometric representation of the formula.

Figure 7. Scheme for the assessment of the minimum door clearance involving the wheelchair width
Ww and the systematic and random errors in reaching the door of the distribution of performance
factors Pf s, respectively ΣPf and σPf .

Given the multidimensional structure of the data, the 2 σs, and the 3 spatial coordinates
of the door, the maximum value among the 5 available was used as a representation of the
identified clearance. This condition is the most precautionary as the widest door clearance
derives from it.

Figure 8 shows the resulting door clearance organized along the tested xy doors’
position at different levels of σxy and σθ . Figure 9a instead reports the maximum clearance
value among the whole tested area.
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Figure 8. Distributions of door clearance.

(a) Minimal door clearance with respect to
the uncertainty level in the sensor position
to achieve safe navigation with a 99.7% confi-
dence interval.

(b) The success rate in the case of a 1 m
wide door

(c) The success rate in the case of a 1.2 m
wide door.

Figure 9. Success rate in door passing, clearance versus σs.

5.2. Success Rate

The success rate in navigating through a door for a given clearance dc was assessed by
computing the percentage of seeds that resulted in a passage without impact, modeled as
Pf (i) <= 0.5 · (dc−Ww). Figure 9 shows the percentages for a door of 1 m (a) and 1.2 m (b),
standard dimensions for domestic environments in which a disabled subject lives [50].

Such results can be used in several ways: (i) to determine the minimum door clearance
given an uncertainty level in the position of the sensor, (ii) to identify the maximum
allowable σs given the doors within a home or (iii) to identify the best trade-off condition
for the design of the wheelchair and the environment in which it will be used.

In this work, the focus was on the latter point, identifying in the 1.0 m clearance the
suitable condition given an assessment of the position of the ToF with σxy and σθ lower
than 0.05 m and 2 deg, respectively. Between the two, the angular condition is the most
restrictive one, and the RoboEYE design was modified accordingly by considering a vertical
rather than horizontal rotating support.
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The highlighted results are specific to the considered geometry and the implementa-
tion of the presented system. However, the definitions and methodology presented are
general and aim to include in the design and modeling of the system all the relevant amount
of interest for a better understanding of the autonomous system, its implications also to the
operational environment. The method can be directly applied to different geometries and
configurations of a wheelchair, or other similar applications, with only minor modifications
in the parameter definition.

6. Experimental Testing

An experimental test campaign was also carried out. Similar to the previous analysis,
the performance of semi-autonomous navigation was assessed through a repeatability
analysis on the final positions reached by the real wheelchair given a set of initial, con-
trolled states.

Two markers were set at a clearance of 1.2 m, Figure 10a shows the considered scheme
and the semi-autonomous navigation activated by pointing as the associated POI. Figure 10
shows the sequence of action followed in the tests. The initial position [X′, Y′, θ] of the
wheelchair was referenced to the reference frame [X, Y], set at the center and aligned along
with the door. The following test conditions were achieved:

• fixed initial position and attitude;
• shifted from the initial reference position along the Y′ direction, from −0.90± 0.01 m

to +0.90± 0.01 m in steps of 0.30± 0.01 m;
• all the tree initial conditions are changed randomly.

Table 1 shows the initial condition of the tests.

θXM
yM

x

y

y'

x'

I

Target

(a) The test scheme considered for
the repeatability analysis.

(b) The activation of the manoeu-
vre.

(c) The autonomous motion to-
wards the POI.

(d) The test ends when the
wheelchair reaches the POI.

Figure 10. An example of a semi-autonomous navigation action sequence, the same adopted for the repeatability analysis.

Table 1. Initial conditions of the repeatability analysis.

N. Test x′ [m] y′ [m] θ [rad]

1 4.26 ± 0.01 0.61 ± 0.01 0.0 ± 0.1
2 4.26 ± 0.01 Variable 0.0 ± 0.1
3 Variable Variable Variable

The outcomes of the test, reported in Figure 11, were:

1. a correlation between the initial shift along the y′ direction and the final position
reached by the wheelchair, visible in Figure 11b with samples grouped accordingly to
their initial starting position;

2. in the case of a variable starting positions, maximum displacements from the target po-
sition of 0.18 m along the transversal direction, and 0.08 m longitudinally, Figure 11c;

3. a systematic displacement between the mean position of the sample set and the target,
probably deriving from the limited knowledge of extrinsic parameters of the ToF with
respect to the wheelchair.
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(a) Fixed starting point. (b) Variable starting point along y’. (c) Random starting pose.

Figure 11. Results of the repeatability analysis.

Table 2 reports the average offset between the target pose and the mean final wheelchair
position, values that confirm the results achieved in simulation.

Table 2. Results of repeatability analysis.

N. Test ∆X [m] ∆Y [m] σMax [m] σmin [m]

1 −0.045 −0.003 0.024 0.014
2 0.034 0.028 0.049 0.013
3 −0.014 −0.054 0.064 0.026

7. Conclusions

A domestic robotic wheelchair driven by the user’s gaze was designed in this work
to allow users with severe motor disability to move easily and autonomously within
their homes. The wheelchair, named RoboEYE, was developed considering commercial
contactless technology to interface the user with its control. This non-invasive technology
and other components are added to a reconfigured power wheelchair of Nuova Blandino Srl.
Compared to other state-of-the-art solutions, RoboEYE offers (i) the minimum invasiveness
to the user, (ii) it integrates functionalities derived from the mobile robotics field, (iii) it
considers the role of the uncertainty in the human–machine interaction and (iv) it is based
on low-cost hardware solutions. The result is an efficient and cost-effective system, suitable
for the technological transfer to its potential users.

Two options are offered to the user: (a) direct eye control, in which the motion of
the wheelchair is directly connected to the gazed point on the monitor, and (b) semi-
autonomous, in which the user only has to select a visual target to allow autonomous
maneuvering towards such point. The main investigation of this work regards the latter,
potentially the most hazardous of the two. This driving modality allows the user to navigate
safely also through narrow passages without fatigue. In particular, the performance of the
system was evaluated in detail by performing both numerical simulations and experimental
verification. The analysis showed a maximum transverse displacement from the target
position of 0.18 m, resulting from uncertainties that inevitably affect the knowledge of
the parameters of the kinematics and the sensor position. For the considered wheelchair,
of 0.62 m width, the operational outcome is a minimum clearance of 0.98 m for autonomous,
reliable and safe navigation through a narrow passage. Such a requirement meets the
standards for a domestic usage of the system, such as a house with doors wider than 1 m,
which is a common dimension for a structured environment for a wheelchair user. Another
evidence obtained from the results is that the angular condition of the ToF σθ has more
impact during the motion than σxy, so more attention should be given to this parameter in
wheelchair design.

The advantage of the methodology presented here is that with minor changes it can be
applied to different geometries and configurations of a wheelchair, or other
similar applications.

The limitations of the proposed approach are related to the fact that RoboEYE is
designed to work mainly in a domestic environment or more generally in indoor environ-
ments. The technologies used for eye-tracking would be affected by sunlight if the system
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were used outdoors. Another issue not discussed here is related to the level of illumination
that can negatively affect the performances of the POIs detection.
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