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Abstract: This work proposes new interface conditions between the layers of a three-dimensional
composite structure in the framework of coupled thermoelasticity. More precisely, the mechanical
behavior of two linear isotropic thermoelastic solids, bonded together by a thin layer, constituted of a
linear isotropic thermoelastic material, is studied by means of an asymptotic analysis. After defining
a small parameter ε, which tends to zero, associated with the thickness and constitutive coefficients
of the intermediate layer, two different limit models and their associated limit problems, the so-called
soft and hard thermoelastic interface models, are characterized. The asymptotic expansion method
is reviewed by taking into account the effect of higher-order terms and defining a generalized ther-
moelastic interface law which comprises the above aforementioned models, as presented previously.
A numerical example is presented to show the efficiency of the proposed methodology, based on a
finite element approach developed previously.

Keywords: interfaces; asymptotic analysis; coupled thermoelasticity

1. Introduction

The use of composite structures, obtained by bonding together simpler structural
members, has spread in all fields of engineering in the last decades. On the one hand, the
structural assembly presents a significant improvement of the mechanical properties and
an enhancement of its performances. On the other hand, the bonded joints among the
composite constituents may cause a jump of the physical fields at the interface level and
radically modify the global mechanical response. Thus, the correct modeling of composite
interfaces is crucial in the understanding and design of complex structures.

From a theoretical point of view, the bonded region is considered as a thin inter-
phase between two adjacent parts. By letting the thickness of this layer tend to zero, the
interphase is reduced into a two-dimensional surface, called imperfect interface, where
ad-hoc transmission conditions in terms of the representative physical fields are prescribed.
The contact laws can be derived by means of classical variational tools and more refined
mathematical techniques, in different physical frameworks, involving uncoupled (thermal
conduction and elasticity) and coupled (piezoelectricity and multiphysics) phenomena.

Concerning the thermal (or electrical) conduction case, two main interface laws have
been formulated: the lowly-conducting (LC) or Kapitza’s model and highly-conducting
(HC) model. The LC model provides a discontinuity of the temperature field (electric po-
tential) and a continuity of the normal heat flow (electric displacement) across the interface
(see, e.g., [1–3]). The HC model gives rise to two-dimensional Young–Laplace equation,
defined on the interface, depending on the jump of the normal heat flow (electric displace-
ment) and maintaining the temperature (electric potential) continuous (see, e.g., [4,5]). A
unifying approach of a general imperfect interface model, involving the concurrent jump
of both the temperature field and the normal heat flow, recovering both the LC and HC
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models, was proposed by [6,7]. Concerning the linear elastic case, three types of imperfect
interfaces have been proposed: the spring-layer interface model (SL) (soft interface), the
coherent interface (CI) (rigid interface), and the general imperfect interface. The SL models
considers that the traction vector is continuous across the interface, while the displacement
presents a jump linearly proportional to the traction vector (see, e.g., [8,9]). The CI model
has been developed for continuum theories with surface effects and nano-sized materials
(see, e.g., [10–12]): the traction vector suffers a jump, while the displacement field is contin-
uous across the interface. Finally, in the general imperfect model, both the displacement
and normal traction fields are discontinuous across the interface [13,14].

The asymptotic expansions method and convergence approaches represent mathemat-
ical tools, usually employed in the derivation and justification of classical thin structures
and layered plates [15–19]. These methodologies are based on the behavior of the problem
solution, when a small parameter ε, related to the thickness of the interphase, tends to
zero. Considering that the material properties of the intermediate layer depend on εp,
different limit behaviors can be derived by means of the asymptotic analysis: for p “ 1, an
SL interface model can be recovered (see, e.g., [20,21]); and, for p “ ´1, the CI interface
model is mathematically justified by means of strong convergence arguments in [22,23].
Within the framework of a higher-order theory, assuming the interphase elastic constants
are independent of the small thickness (p “ 0), the asymptotic analysis yields to a general
stiff imperfect interface condition, prescribing both the jumps of the displacement and
traction vector fields and recovering as a particular case the perfect contact conditions
at the zeroth-order [24–28].The above transmission conditions have been generalized by
considering some multiphysics and multifield couplings, such as in piezoelectricity and
magneto-electro-thermo-elasticity [29,30], poroelasticity [31], and micropolar elasticity [32].

The goal of the present work is to identify the interface limit models of a composite
constituted by a thin thermoelastic layer surrounded by two thermoelastic bodies in the
framework of dynamic coupled thermoelasticity. Different situations are analyzed by
varying the stiffnesses ratios between the middle layer and the adherents: namely, the soft
thermoelastic lowly conducting interface, where the intermediate material coefficients have
the order of magnitude ε with respect to those of the surrounding bodies, and the hard
thermoelastic moderately conducting interface, where the constitutive parameters have the
same order of magnitude. Following the ideas of [33], a generalized interface law is derived,
comprising the aforementioned behaviors. A numerical investigation was performed in
the framework of the finite element method (FEM), employing the approach developed
in [34] for multiphysics problems, in order to assess the validity of the asymptotic models.
Convergence results and a comparison between the full 3D model and the generalized
interface problem are given.

2. Position of the Problem

In the sequel, Greek indices range in the set t1, 2u, Latin indices range in the set t1, 2, 3u,
and the Einstein’s summation convention with respect to the repeated indices is adopted.
Let us consider a three-dimensional Euclidian space identified by R3 and such that the
three vectors ei form an orthonormal basis. Let Mn be the space of nˆ n square matrices.
We introduce the following notations for the inner products: a ¨ b :“ aibi, for all vectors
a “ paiq and b “ pbiq in R3 and A : B :“ AijBij, for all A “ pAijq and B “ pBijq in M3.

Let us define a small parameter 0 ă ε ă 1. We consider the assembly constituted of
two solids Ωε

˘ Ă R3, called the adherents, bonded together by an intermediate thin layer
Bε :“ Sˆ p´ ε

2 , ε
2 q of thickness ε, called the adhesive, with cross-section S Ă R2. In the

following, Bε and S are called interphase and interface, respectively. Let Sε
˘ be the plane

interfaces between the interphase and the adherents and let Ωε :“ Ωε
` Y Bε YΩε

´ denote
the composite system comprising the interphase and the adherents (cf. Figure 1a).
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Figure 1. Initial (a); rescaled (b); and limit (c) configurations of the composite.

Let us assume that Ωε
˘ and Bε are constituted by three homogeneous linear isotropic

thermoelastic materials, whose constitutive laws are defined as follows:
$

’

’

&

’

’

%

σε
ij “ λεeε

ppδij ` 2µεeε
ij ´ βεθεδij,

S ε “ cε
vθε ` βεeε

pp,

qε
i “ ´kεθε

,i,

(1)

where σε “ pσε
ijq is the Cauchy stress tensor, associated with the linearized strain tensor

eε “ peε
ijq :“ 1

2 pu
ε
i,j ` uε

j,iq, S ε represents the thermodynamic entropy and qε “ pqε
i q is the

heat flow field. Constants λε, µε, βε, cε
v, and kε represent the Lamé’s constants, the thermal

stress coefficient, the calorific capacity, and the thermal conductivity, respectively.
The thermoelastic state is defined by the couple sε :“ puε, θεq, where uε and θε are the

displacement field and variation of temperature, respectively. The thermoelastic composite
is subject to body forces fε “ p f ε

i q : Ωε
˘ ˆ p0, Tq Ñ R3 and heat source hε : Ωε

˘ ˆ p0, Tq Ñ R,
applied on the top and bottom bodies, while all thermo-mechanical loadings and inertia
forces are neglected in the intermediate layer Bε. The thermoelastic state sε verifies the
following coupled thermoelasticity system:

#

ρε :uε ´ divεσε “ fε in Ωε
˘ ˆ p0, Tq,

9S ε ` 1
T0

divεqε “ hε in Ωε
˘ ˆ p0, Tq,

#

divεσε “ 0 in Bε ˆ p0, Tq,
9S ε ` 1

T0
divεqε “ 0 in Bε ˆ p0, Tq,

(2)
where 9f “ Bt f denotes the time derivative of f and T0 represents a reference temperature.
The transmission conditions across the interfaces S`,ε and S´,ε implies the continuity of
the state sε and of its normal dual counterpart with respect to S˘,ε, meaning that ruεs “ 0,
rθεs “ 0, rσεe3s “ 0, rqε ¨ e3s “ 0 on S˘,ε ˆ p0, Tq, where r f s stands for the jump function
evaluated at the interface S˘,ε. The boundary conditions are posed on Γε ˆ p0, Tq, with
Γε :“ Γ`,ε Y Γ´,ε; we recall that Γε “ Γε

g Y Γε
u. For simplicity, we assume homogeneous

boundary conditions on Γε
uˆp0, Tq, concerning displacements and temperature, and non-

homogeneous boundary conditions on Γε
g ˆ p0, Tq, concerning surface forces gε “ pgε

i q

and surface heat flow qε. Hence, one has: σεnε “ gε and ´qε ¨ nε “ qε on Γε
g ˆ p0, Tq,

and uε “ 0 and θε “ 0 on Γε
u ˆ p0, Tq, where nε “ pnε

i q is the outer unit normal vector
to BΩε. The initial conditions are posed in Ωε. Let θε

in, uε
in, and 9uε

in be, respectively, the
variation of temperature, the displacement, and velocity fields at time t “ 0; one has
θεpxε, 0q “ θεp0q “ θε

in uεpxε, 0q “ uεp0q “ uε
in and 9uεpxε, 0q “ 9uεp0q “ 9uε

in in Ωε.
Let us introduce the functional spaces VpΩεq :“ tvε P H1pΩεq; vε “ 0 on Γε

uu and
VpΩεq :“ rVpΩεqs3. Given a certain state sε :“ puε, θεq P VpΩεq :“ VpΩεq ˆVpΩεq, for all
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test functions rε “ pvε, ξεq P VpΩεq and for any fixed t P p0, Tq, we introduce the following
bilinear and linear forms:

Aεpsε, rεq :“
ż

Ωε

"

ρε :uε ¨ vε ` σε : eεpvεq ` 9S εξε ´
1
T0

qε ¨∇εξε

*

dxε, (3)

Lεprεq :“
ż

Ωε
˘

tfε ¨ vε ` hεξεudxε `

ż

Γε
g

tgε ¨ vε ` qεξεudΓε. (4)

The variational form of the coupled thermoelastic system defined on the variable
domain Ωε reads as follows:

"

Find sεptq P VpΩεq, t P p0, Tq, such that
Āε
´ps

ε, rεq ` Āε
`ps

ε, rεq ` Âεpsε, rεq “ Lεprεq,
(5)

for all rε P VpΩεq, with initial condition θε
in, uε

in, and 9uε
in. The coupled hyperbolic–parabolic

equations associated with variation problem (5) imply a degenerate system. Hence, the
standard existence theorems are not applicable. For instance, in [35,36], by applying the
pseudo-monotone theory, a weak solution is provided for a sufficiently small thermal stress
coupling coefficient. In [37,38], a solution to the implicit evolution equation is derived after
time-differentiation of the equilibrium equation provided by sufficiently smooth data of
the problem. Under suitable regularity properties of the initial data, source and boundary
values, and constitutive parameters, the well-posedness of thermo-electro-elastic evolution
problem is extensively discussed in [39]: the proof of existence, uniqueness, and regularity
of the solution has been obtained through the Faedo–Galerkin method. The existence
and uniqueness theorems have also been extended to the thermo-electro-magneto-elastic
case [40] and can be easily adapted to the present coupled thermoelastic problem.

Rescaling

To study the asymptotic behavior of the solution of problem (5) when ε tends to zero,
we rewrite the problem on a fixed domain Ω independent of ε. By using the approach
of [15], we consider the bijection πε : x P Ω ÞÑ xε P Ωε given by

πε :
"

π̄εpx1, x2, x3q “ px1, x2, x3 ¯
1
2 p1´ εqq, for all x P Ω˘,

π̂εpx1, x2, x3q “ px1, x2, εx3q, for all x P B,
(6)

where, after the change of variables, the adherents occupy Ω˘ :“ Ωε
˘ ˘

1
2 p1´ εqe3 and

the interphase B “ tx P R3 : px1, x2q P S, |x3| ă
1
2u. The sets S˘ “ tx P R3 : px1, x2q P

S, x3 “ ˘
1
2u denote the interfaces between B and Ω˘ and Ω “ Ω`YΩ´Y B is the rescaled

configuration of the composite. Lastly, Γu and Γg indicate the images through πε of Γε
u

and Γε
g (cf. Figure 1b). Consequently, B

Bxε
α
“ B
Bxα

and B
Bxε

3
“ B
Bx3

in Ω˘, and B
Bxε

α
“ B
Bxα

and
B
Bxε

3
“ 1

ε
B
Bx3

in B. In the sequel, only if necessary, s̄ε “ pūε, θ̄εq and ŝε “ pûε, θ̂εq denote the
restrictions of functions sε “ puε, θεq to Ω˘ and B.

The constitutive coefficients of Ωε
˘ are assumed to be independent of ε, while the

constitutive coefficients of Bε present the following dependences on ε: λ̂ε “ εpλ̂, µ̂ε “ εpµ̂,
β̂ε “ εp β̂, ĉε

v “ εp ĉv, and k̂m,ε “ εp k̂, with p P t0, 1u. Two different limit behaviors are
characterized according to the choice of the exponent p: by choosing p “ 1, a model for a
soft thermoelastic interface with low conductivity is deduced; and, when p “ 0, a model
for a hard thermoelastic interface with moderate conductivity is obtained. Finally, the data,
unknowns, and test functions verify the following scaling assumptions: sεpxεq “ sεpxq,
rεpxεq “ rpxq x P Ω, fεpxεq “ fpxq, hεpxεq “ hpxq x P Ω˘, gεpxεq “ gpxq, qεpxεq “ qpxq,x P Γg.
Thus, Lεprεq “ Lprq.
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According to the previous hypothesis, problem (5) can be reformulated on a fixed
domain Ω independent of ε. Thus, the following rescaled problem (in the sequel, we omit
the explicit dependences on time t of the unknowns and data) is obtained:

"

Find sε P VpΩq, t P p0, Tq, such that
Ā´psε, rq ` Ā`psε, rq ` εp`1 Âpsε, rq “ Lprq,

(7)

for all r P VpΩq, p P t0, 1u, with initial condition θin, uin, and 9uin, where

Ā˘psε, rq :“
ż

Ω˘

"

ρε :uε ¨ vε ` σε : epvq ` 9S εξ ´
1
T0

qε ¨∇ξ

*

dx, (8)

Âpsε, rq :“
1
ε2 a0psε, rq `

1
ε

a1psε, rq ` a2psε, rq, (9)

where

a0psε, rq :“
ż

B

#

K̂uε
,3 ¨ v,3 `

k̂
T0

θε
,3ξ,3

+

dx, (10)

a1psε, rq :“
ż

B

!

pK̂αqTuε
,α ¨ v,3 ` K̂αuε

,3 ¨ v,α ´ β̂θεv3,3 ` β̂ 9uε
3,3ξ

)

dx, (11)

a2psε, rq :“
ż

B

#

K̂αβuε
,β ¨ v,α ´ β̂εθεvτ,τ `

k̂
T0

θε
,αξ,α ` pĉv 9θε ` β̂ 9uε

α,αqξ

+

dx (12)

and

K̂ :“

»

–

µ̂ 0 0
0 µ̂ 0
0 0 2µ̂` λ̂

fi

fl, K̂1 :“

»

–

0 0 λ̂
0 0 0
µ̂ 0 0

fi

fl, K̂2 :“

»

–

0 0 0
0 0 λ̂
0 µ̂ 0

fi

fl, (13)

K̂11 :“

»

–

2µ̂` λ̂ 0 0
0 µ̂ 0
0 0 µ̂

fi

fl, K̂22 :“

»

–

µ̂ 0 0
0 2µ̂` λ̂ 0
0 0 µ̂

fi

fl, (14)

K̂12 :“

»

–

0 λ̂ 0
µ̂ 0 0
0 0 0

fi

fl, K̂21 “ pK̂12qT . (15)

Now, an asymptotic analysis of the rescaled problem (7) can be performed. Since the
rescaled problem (7) has a polynomial structure with respect to the small parameter ε, we
can look for the solution sε of the problem as a series of powers of ε:

sε “ s0 ` εs1 ` ε2s2 ` . . . , s̄ε “ s̄0 ` εs̄1 ` ε2 s̄2 ` . . . , ŝε “ ŝ0 ` εŝ1 ` ε2 ŝ2 ` . . . . (16)

where s̄ε “ sε ˝ π̄ε and ŝε “ sε ˝ π̂ε. By substituting (16) into the rescaled problem (7),
and by identifying the terms with identical power of ε, as customary, a set of variational
problems is obtained to be solved in order to characterize the limit thermoelastic state s0,
the first-order corrector term s1 and their associated limit problem, for p P t0, 1u. The order
1 can be considered as a corrector term of the order 0, giving a better approximation of the
initial model.

3. The Soft Thermoelastic Interface Model

In this section, the limit model for a soft thermoelastic interface model, corresponding
to an adhesive which is weaker with respect to the adherents, is derived. By choosing p “ 1
and injecting (16) into (7), the following set of variational problems Pq is obtained:

$

&

%

P0 : Ā´ps0, rq ` Ā`ps0, rq ` a0ps0, rq “ Lprq,
P1 : Ā´ps1, rq ` Ā`ps1, rq ` a0ps1, rq ` a1ps0, rq “ 0,
Pq : Ā´psq, rq ` Ā`psq, rq ` a0psq, rq ` a1psq´1, rq ` a2psq´2, rq “ 0, q ě 2

(17)
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In the sequel, the limit problems at order 0 and order 1 are presented, by skipping
all the mathematical technicalities involved in the solution of problems Pq (see [33] for a
detailed description of the asymptotic analysis).

• Order 0 model

Governing equations Transmission conditions on S˘
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ :̄u0 ´ divσ̄0 “ f in Ω˘,
9̄S0 ` 1

T0
divq̄0 “ h in Ω˘,

σ̄0n “ g on Γg

´q̄0 ¨ n “ q on Γg,
s0 “ 0 on Γu,

$

’

’

’

’

’

&

’

’

’

’

’

%

rū0s “ K̂´1xσ̄0e3y,

rθ̄0s “ ´
T0
k̂
xq̄0 ¨ e3y,

rσ̄0e3s “ 0,

rq̄0 ¨ e3s “ 0.

(18)

• Order 1 model

Governing equations Transmission conditions on S˘
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ :̄u1 ´ divσ̄1 “ 0 in Ω˘,
9̄S1 ` 1

T0
divq̄1 “ 0 in Ω˘,

σ̄1n “ 0 on Γg

q̄1 ¨ n “ 0 on Γg,
s1 “ 0 on Γu,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rū1s “ K̂´1 xσ̄1e3y ´ pK̂αqTxū0y,α ` β̂xθ̄0ye3
(

,

rθ̄1s “ ´
T0
k̂
xq̄1 ¨ e3y,

rσ̄1e3s “ ´Kαrū0s,α,

rq̄1 ¨ e3s “ ´β̂r 9̄u0
3s,

(19)

where x f y :“ 1
2 p f px̃,`p1{2q`q ` f px̃,´p1{2q´q and r f s :“ f px̃,`p1{2q`q ´ f px̃,´p1{2q´q,

x̃ :“ pxαq P S denote, respectively, the mean value and the jump functions at the interfaces.
The soft thermoelastic interface models at order 0 and order 1 present various similarities,
compared with the linear elastic case [27]. At order 0, from a mechanical point of view,
the interface behaves as linear springs reacting to the jump between the top and bottom
displacements and temperature, while the traction vector and normal heat flow are remains
continuous. The order 1 model provides a mixed contact law, expressed by a concurrent
discontinuity in terms of thermoelastic state, traction vector, and normal heat flow. The
order 1 transmission conditions can be also rewritten in terms of xq̄1 ¨ e3y and xσ̄1e3y,
as follows:

#

xσ̄1e3y “ K̂rū1s ` pK̂αqTxū0y,α ´ β̂xθ̄0ye3,

xq̄1 ¨ e3y “ ´
k̂

T0
rθ̄1s.

(20)

The jump and mean values of the traction vector and normal heat flow at the interface
depend on s0 and are analogous to those obtained for the soft elastic case in [26]. It is
interesting to notice that, at order 1, the jump of the heat flow at the interface inside the
intermediate layer depend on the variation in time of the normal displacement u3.

4. The Hard Thermoelastic Interface Model

In this section, the limit model for a hard thermoelastic interface, corresponding to an
intermediate layer having the same rigidities of the top and bottom bodies, is derived. Let
p “ 0, the asymptotic expansion (16) is inserted in (7), and the following set of variational
problems Pq is obtained:

$

’

’

&

’

’

%

P´1 : a0ps0, rq “ 0,
P0 : Ā´ps0, rq ` Ā`ps0, rq ` a0ps1, rq ` a1ps0, rq “ Lprq,
P1 : Ā´ps1, rq ` Ā`ps1, rq ` a0ps2, rq ` a1ps1, rq ` a2ps0, rq “ 0,
Pq : Ā´psq, rq ` Ā`psq, rq ` a0psq`1, rq ` a1psq, rq ` a2psq´1, rq “ 0, q ě 2

(21)

A detailed equivalent analysis on the solution of the variational problems Pq can be
found in [33]. In the sequel, the limit problems at order 0 and order 1 are presented.
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• Order 0 model

Governing equations Transmission conditions on S˘
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ :̄u0 ´ divσ̄0 “ f in Ω˘,
9̄S0 ` 1

T0
divq̄0 “ h in Ω˘,

σ̄0n “ g on Γg,
´q̄0 ¨ n “ q on Γg,
s0 “ 0 on Γu,

$

’

’

’

’

’

&

’

’

’

’

’

%

rū0s “ 0,

rθ̄0s “ 0,

rσ̄0e3s “ 0,

rq̄0 ¨ e3s “ 0.

(22)

• Order 1 model

Governing equations Transmission conditions on S˘
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρ :̄u1 ´ divσ̄1 “ 0 in Ω˘,
9̄S1 ` 1

T0
divq̄1 “ 0 in Ω˘,

σ̄1n “ 0 on Γg,
q̄1 ¨ n “ 0 on Γg,
s1 “ 0 on Γu,

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

rū1s “ K̂´1 xσ̄0e3y ´ pK̂αqTū0
,α ` β̂θ̄0e3

(

,

rθ̄1s “ ´
T0
k̂
xq̄0 ¨ e3y,

rσ̄1e3s “ ´
´

K̂αK̂´1xσ̄0e3y,α ` L̂αβū0
,αβ`

`β̂pK̂αK̂´1θ̄0
,αe3 ´ θ̄0

,τeτq
˘

,

rq̄1 ¨ e3s “ ´
´

β̂

λ̂`2µ̂
x 9̄σ0

33y `
9̃Σ0 ´ k̂

T0
∆s θ̄0

¯

,

(23)

where L̂αβ :“ K̂αβ ´ K̂βK̂´1pK̂αqT , Σ̃0 :“ β̃ū0
α,α ` c̃v θ̄0, with β̃ :“ 2µ̂β̂

λ̂`2µ̂
and c̃v :“ ĉv `

β̂2

λ̂`2µ̂
,

∆s denotes the two-dimensional Laplacian operator. Note that, in this case, xθ̄0y “ θ̄0 and
xū0y “ ū0.

The hard thermoelastic interface problems above present the same structures of the
analogous linear elastic hard interface models [24–26]. Concerning the order 0, the trans-
mission conditions provide a continuity of the thermoelastic state and of its conjugated
counterpart, which is typical for adhesives having the same rigidity properties of the
adherents. In this case, the upper and lower bodies are perfectly bonded together. At
order 1, a mixed interface model is obtained, characterized by a jump of the state and
traction vector depending on the values of the thermoelastic state and traction vector at
order 0. These order 0 terms are known since they have been determined in the previous
problem and they appear in the formulation as source terms. The interface conditions at
order 1 can be interpreted as the two-dimensional coupled thermoelastic problem defined
on the plane of the interface.

5. Generalized Interface Transmission Conditions

In [26,33], it has been shown that it is possible to obtain a condensed form of trans-
mission conditions summarizing both the orders 0 and 1 of the soft and hard cases in
only one couple of equations in terms of the jump of the displacement field and tractions
at the interface. Equivalently, it is possible to define an implicit general thermoelastic
interface law starting from the hard case, comprising the order 0 and order 1 soft and hard
thermoelastic interface models.

To this end, by denoting by s̃ε :“ s̄0 ` εs̄1, σ̃ε :“ σ̄0 ` εσ̄1 and q̃ε :“ q̄0 ` εq̄1, suitable
approximations of sε, σ̄ε and q̄ε, respectively, and following the approach developed
in [26,33], one can obtain the implicit form of the transmission conditions:

$

’

’

’

’

’

&

’

’

’

’

’

%

xσ̃εe3y “
1
ε K̂rũεs ` pK̂αqTxũεy,α ´ β̂xθ̃εye3,

xq̃ε ¨ e3y “ ´
k̂

εT0
rθ̃εs,

rσ̃εe3s “ ´K̂αrũεs,α ´ εK̂αβxũεy,αβ ` εβ̂xθ̃εy,αeα,

rq̃ε ¨ e3s “ ´
´

β̂r 9̃uε
3s ` εx 9Σεy ´ ε k̂

T0
∆sxθ̃

εy

¯

,

(24)



Technologies 2021, 9, 17 8 of 16

with xΣεy :“ ĉvxθ̃
εy ` β̂xũε

αy,α.
To write the variational formulation of the general coupled thermoelastic interface

problem, the expression of the general transmission conditions presented in (24) is em-
ployed. In what follows, for the sake of simplicity, the indices ε and symbol ˜p¨q are omitted.
Let us write the variational form of the equilibrium equations on each sub-domain Ω` and
Ω´. The sum of the two equations leads to

ż

Ω˘

"

ρ:u ¨ v` σ : epvq ` 9Sξ ´
1
T0

q ¨∇ξ

*

dx´

´

ż

S

 

σpx̃, 0`qnpx̃, 0`q ¨ v` σpx̃, 0´qnpx̃, 0´q ¨ v
(

dΓ`

`

ż

S

 

qpx̃, 0`q ¨ npx̃, 0`qξ ` qpx̃, 0´q ¨ npx̃, 0´qξ
(

dΓ “ Lprq,

(25)

which can be written
ż

Ω˘

"

ρ:u ¨ v` σ : epvq ` 9Sξ ´
1
T0

q ¨∇ξ

*

dx`
ż

S
rσe3 ¨ vs ´ rq ¨ e3ξsdx̃ “ Lprq, (26)

letting e3 “ npx̃, 0´q “ ´npx̃, 0`q and dΓ “ dx̃. Then, using the property rabs “ xayrbs `
rasxby and relations (24), and after an integration by parts, one has

"

Find s PWpΩ̃q, Ω̃ :“ Ω` Y SYΩ´, t P p0, Tq, such that
Ā´ps, rq ` Ā`ps, rq `Aps, rq “ Lprq, (27)

for all r P WpΩ̃q, where WpΩ̃q :“ WpΩ̃q ˆWpΩ̃q, with WpΩ̃q :“ tr P H1pΩ̃q, r|S P
H1pSq, r “ 0 on Γuu, WpΩ̃q :“ rWpΩ̃qs3, and

Aps, rq :“
ż

S

"

1
ε

K̂rus ¨ rvs ` pK̂αqTxuy,α ¨ rvs ` K̂αrus ¨ xvy,α ` εK̂αβxuy,β ¨ xvy,α´

´β̂xθyrv3s ´ εβ̂xθyxvαy,α `
1
ε

k̂
T0
rθsrξs ` ε

k̂
T0
xθy,αxξy,α ` β̂r 9u3sxξy ` εx 9Σyxξy

+

dx̃,

(28)

Lprq :“
ż

Ω˘

tf ¨ v` hξudx`
ż

Γg

tg ¨ v` qξudΓ`
ż

BS
tF ¨ xvy `Hxξyudγ, (29)

where xΣy :“ ĉvxθy` β̂xuαy,α,
`

K̂αrus ` εK̂αβxuy,β ´ εβ̂xθyeα

˘

να :“ F and ε k̂
T0
xθy,ανα :“

H denote the loads on the lateral boundary of the interface BS, with outer unit normal
vector pναq (see [33]).

6. FEM Implementation

The numerical simulations were carried out by means of the finite element method,
discretizing the variational problem (27). This helped validate the proposed asymptotic ap-
proach. The FEM analysis was performed considering the coupled dynamic thermoelastic
problem and comparing the solution of the three-phase model (two adherents and adhe-
sive) with the generalized interface (two adherents + interface). The problem was solved
employing the software GetFem++ (see [41,42] for more details), with a standard linear
solver (conjugate gradient). For that purpose, standard piecewise linear finite elements
were considered.

Let us consider a thermoelastic laminated plate occupying a 3D domain defined by
Ωε “ r0, L1s ˆ r0, L2s ˆ r0, 2h ` εs, with h “1 cm, L1{h “ 10, L2{h “ 5. (see Figure 2).
Clearly, with self-explanatory notation, x1 “ x, x2 “ y, and x3 “ z. The adherents are made
of Material 1, while the adhesive is constituted by Material 2.
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Figure 2. The 3D geometry of the thermoelastic laminated plate represented in the plane px1, x3q.

Simply supported boundary conditions are considered on the bottom edges of the
composite plate. The plate is subject to a thermal shock q ¨ n|Γtop “ qptq “ ate´bt on the
top face, with a “ 30 and b “ 0.8, whose plot is illustrated in Figure 3. The bottom face is
thermally insulated q ¨ n|Γbottom “ 0. No volume or surface mechanical loads were applied
f “ g “ 0.

Figure 3. Applied heat flow shock .

The FEM discretization was carried out using piecewise linear finite elements on
hexahedrons, with 7280 nodes (29,203 degrees of freedom) for the three-phase problem
and 5824 nodes (23,635 degrees of freedom) for the problem with the generalized interface
law. The time discretization was realized using a Newmark-beta scheme with β “ 0.25
and γ “ 0.5 for the second time derivative of the displacements, and a Crank–Nicholson
scheme for the first derivative of the thermodynamic entropy. It is worth noting that both
methods are unconditionally stable and of order two in time. The time step of discretization
is equal to δt “ 0.1 s.

The numerical example considers a composite plate, in which the adherents and the
adhesive have very different thermo-mechanical properties. Material 1 is aluminum (Al),
while Material 2 is a polyvinyl chloride (PVC) foam. The constitutive parameters are listed
in Table 1.

Table 1. Thermoelastic material properties for Al and PVC Foam.

Material 1: Al Material 2: PVC Foam

ρ1 2700 [kg/m3] ρ2 250 [kg/m3]
E1 72.4 [GPa] E2 0.28 [GPa]
ν1 0.32 ν2 0.40
α1 40.0 [µm/m K] α2 22.4 [µm/m K]
k1 122.2 [W/mK] k2 0.05 [W/mK]
c1

v 900 [J/kg K] c2
v 1900 [J/kg K]
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To evaluate the accuracy of the asymptotic analysis, the influence of the relative
thickness ε{h, for fixed time instants, on the L2-relative error was investigated. The L2-

relative errors
}uε´u}L2
}u}L2

and
}θε´θ}L2
}θ}L2

was computed taking into account the solution puε, θεq

of the initial three-phase problem, discretized with a FE mesh, and the solution pu, θq of the
interface problem (27). Tables 2 and 3 report the relative error values for increasing time
and vanishing relative thickness.

Table 2. Relative error }u
ε´u}L2

}u}L2
.

ε
h { t 5 10 15 20

0.1 4.20ˆ 10´3 1.89ˆ 10´3 1.58ˆ 10´3 1.60ˆ 10´3

0.05 7.55ˆ 10´4 3.44ˆ 10´4 2.76ˆ 10´4 3.45ˆ 10´4

0.01 2.25ˆ 10´5 3.48ˆ 10´6 4.52ˆ 10´6 4.56ˆ 10´6

Table 3. Relative error }θ
ε´θ}L2

}θ}L2
.

ε
h { t 5 10 15 20

0.1 1.56ˆ 10´3 5.16ˆ 10´4 7.57ˆ 10´4 4.97ˆ 10´4

0.05 1.07ˆ 10´4 2.83ˆ 10´4 9.94ˆ 10´5 2.27ˆ 10´5

0.01 9.88ˆ 10´8 5.58ˆ 10´7 1.78ˆ 10´8 7.43ˆ 10´10

The convergence diagrams of the the relative L2-norms of the displacements and
temperatures, obtained with the three-phase problem and the reduced interface problem,
are plotted in Figure 4, as the thickness ratio ε{h tends to zero, at time t “ 1 s and t “ 10 s,
respectively. Moreover, the evolution in time of the L2-relative is reported in Figure 5.

Figure 4. Convergence diagrams with respect to ε{h for: t “ 1 s (left); and t “ 10 s (right).
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Figure 5. Evolution of the relative error with respect to the time (ε{h “ 0.01).

From the results in Tables 2 and 3 and, especially, Figure 4, it can be noticed that, by
decreasing the thickness ratio ε{h, the relative errors present an immediate reduction for
fixed times. The convergence rate is of the order pε{hq2 and remains constant for increasing
time instants. As illustrated in Figure 5, the evolution in time of the L2-relative error, for
fixed ε{h, becomes approximately steady after t “ 10 s for the displacement field, while it
presents a decreasing trend concerning the temperature field. Besides, even for a relative
thickness ε{h “ 0.1, at time t “ 10 s, the relative error is close to about 1.89 ˆ 10´3, for the
displacement field, and about 5.16 ˆ 10´4, for the temperature field. Hence, the proposed
general thermoelastic interface model provides an acceptable solution and it is able to
correctly approximate the solution puε, θεq of the three-phase problem. Moreover, the
reduced model can also be employed for moderately thick adhesives.

In the sequel, the numerical results obtained by solving the general interface model are
presented, considering a relative thickness of ε{h “ 0.01. Following the approach by [43],
hereinafter, the results are provided using dimensionless variables:

• UpX1, X2, X3, tq :“ 1´ν1
`p1`ν1qα1T0

upx1, x2, x3, tq,

• ΘpX1, X2, X3, tq :“ θpx1,x2,x3,tq´T0
T0

,
• ΣijpX1, X2, X3, tq :“ 1

ρ1V σijpx1, x2, x3, tq

where Xi “ xi{`, t “ V
` , and ` and V are defined by

V “

d

E1p1´ ν1q

p1` ν1qp1´ 2ν1qρ1
, ` “

k1

ρ1c1
νV

. (30)

Let us notice that the domain Ωε is chosen such that X1 P r0; 10s, X2 P r0; 10s and
X3 P r0; 1s.

Figure 6 represents the trend of the displacement U3 and temperature Θ, evaluated
along X3 on the orthogonal fiber to the mid-plane of the interface at point pX1 “ 6, X2 “ 6q,
for given times. The plot shows that, after the thermal shock, the displacement U3 evolves
in opposite directions within the adherents: the composite laminated plate tends to expand
and contract itself along the through-the-thickness axis. On the other hand, the temperature
field Θ remains constant along the X3-axis within the adherents, for given times, reaching
a steady value after a certain time interval. As expected, the plots also report a jump of
the state fields pU3, Θq in correspondence of the intermediate layer, and, thus, the adhesive
behaves as a soft thermoelastic interface. This is mainly due to the material properties of
the adhesive, which are smaller with respect to the those of the adherents.
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Figure 6. Displacement U3 and temperature Θ along the X3-axis, on a fiber pX1 “ 6, X2 “ 6, X3q, for
given times .

Figure 7 illustrates the evolution of the displacement field U and temperature Θ with
respect to the time t, at a given point X “ p6.5, 3.5, 0q, placed on the bottom face of the
composite plate. As expected, the thermal shock induces an oscillatory trend concerning
the displacements. Conversely, the temperature evolves to a steady state, corresponding to
a constant value, after a sudden increase related to the thermal shock application.

Figure 8 represents the trend of the stresses Σ33 and Σ13, evaluated along X3 on the
orthogonal fiber to the mid-plane of the interface at point pX1 “ 6, X2 “ 6q, for given
times. The plot shows that, after the thermal shock, the stress Σ33 remains constant along
the X3-axis within the adherents. In this particular case, the thermal contribution to
Σ33 is predominant with respect to the elastic one, i.e., Σ33 « ´BpΘ` 1q: indeed, their
diagrams present analogous trends and differ for a constant of proportionality B :“ βT0

ρ1V
(see Figures 6 and 8). The stress Σ13 presents an oscillating behavior along X3 inside the
adherents, but its contribution is negligible compared with Σ33. Moreover, the normal Σ33
and shear stresses Σ13, evaluated at the top and bottom faces of the intermediate layer, are
very similar and, thus, their jump almost vanishes. This is typical of soft interface models,
in which the thermoelastic state presents a discontinuity, while its conjugated quantities
(traction vector and normal heat flow) are continuous across the interface.
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Figure 7. Displacement field U “ pUiq and temperature Θ versus time t, at a given point X “

p6.5, 3.5, 0q.

Figure 8. Stresses Σ33 and Σ13 along the X3-axis, on a fiber pX1 “ 6, X2 “ 6, X3q, for given times.
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Figure 9 shows a comparison between the evolution in time of U3pX, tq, at a given
point X “ p6.5, 3.5, 0.q, of a homogeneous three-layer plate, made of aluminum, and the
Al/PVC composite plate. Although the thickness ratio is small (ε{h “ 0.01), the effect of
the adhesive becomes relevant concerning the response of the plate to the thermal shock.
The homogeneous plate appears to be stiffer with respect to the composite one, which
manifests a significant amplitude and period increase of the U3 motion.

Figure 9. Evolution in time of U3pX, tq at a given point X “ p6.5, 3.5, 0.q for a homogeneous Al-plate
and an Al/PVC composite plate.

7. Concluding Remarks

General imperfect interface conditions are proposed in the framework of coupled
thermoelasticity, simulating the thermomechanical behavior of a thin-bonded joint. The
approach used to obtain the transmission conditions is based on the asymptotic expan-
sions method. Zero- and higher-order interface models are derived for soft and hard
interphases. Following [33], a general transmission law, comprising the two regimes (soft
and hard) at the various order, is derived. To assess the validity of the previous asymptotic
approach, numerical simulations were developed using a finite element method, which
generalizes an analogous methodology to dynamical coupled thermoelasticity, already
proposed in [34] in the framework of piezoelectricity. The numerical example consisted
of a thermoelastic composite three-layer aluminum plate, with a PVC adhesive, subject to
a thermal shock. Two different configurations were considered: the first one consisted of
an initial three-phase problem, while the second one took into account the FE discretized
form of interface problem (27). The most significant fields (displacement and temperature)
and their L2-relative errors were then computed and compared to test the validity of the
proposed interface laws and the accuracy of the asymptotic model. The proposed general
thermoelastic interface model provides an acceptable solution and it is able to correctly
approximate the solution of the three-phase problem. These findings clearly indicate that
the approach of substituting the interphase with the proposed interface law provides a
robust modeling for the composite.
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