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Abstract

This research work is aimed at constructing a class of explicit integrators with improved stability
and accuracy by incorporating an off-gird interpolation point for the purpose of making them
efficient for solving stiff initial value problems. Accordingly, continuous formulations of a class
of hybrid explicit integrators are derived using multi-step collocation method through matrix
inversion technique, for step numbers k = 2, 3, 4. The discrete schemes were deduced from their
respective continuous formulations. The stability and convergence analysis were carried out and
shown to be A(α)-stable and convergent respectively. The discrete schemes when implemented
as block integrators to solve some non-linear problems, it was observed that the results obtained
compete favorably with the MATLAB ode23 solver.
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1 Introduction

Most of the ordinary differential equations (ODEs) arising from modeling real life problems cannot
be solved analytically, hence the need to seek for approximate solutions using numerical methods.
As such, the importance of numerical methods cannot be over emphasized. To solve stiff ODEs,
various scholars have made several attempts to come up with various methods of solution. Consider
the initial value problem (IVP)

y′ = f(x, y), y(x0) = y0 a ≤ x ≤ b (1.1)

where a and b are finite, with the assumption that (1.1) has a unique continuously differentiable
solution y(x). So far common numerical methods that have been developed for solving (1.1) are
one-step methods. On the other hand, multistep methods attempt to gain efficiency by keeping
and using the information from the previous steps. A method is called Linear Multi-step Method
(LMM) if a linear combination of the values of the computed solution and possibly its derivative in
the previous points are used. A k - step LMM is given as:

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j , yn+j) (1.2)

where αj , βj are constants called the coefficients of the method with the assumption that α2
0+β2

0 > 0
and αk ̸= 0. The method is explicit if βk = 0 and implicit if βk ̸= 0. Most conventional methods
have self starting value issues which could lead to growing numerical errors and corrupting further
approximations [1]. To resolve this issue, [2] proposed block Linear Multistep methods based
on the multi-step collocation approach of Lie and Norsett [3]. These methods were developed
through the continuous formulation of the linear k-step methods which provided sufficient number
of simultaneous discrete methods to be used as single integrators. These methods have been useful in
handling stiff equations due to their better stability properties. The following researchers, [4, 5, 6, 7]
and [3] have developed block linear multi-step methods that have better stability properties. Implicit
LMMs like backward differentiation formulae (BDF) have been considered to be best for solution of
stiff initial value problems. However, the explicit linear multi-step methods enjoy some advantages
comparing to the implicit methods. The most important advantage of an explicit method is that
there is no need to solve any implicit system or involve any iterative procedure in each time step
[8]. Thus, it involves far less computational effort in each time step when compared to an implicit
method [9, 10, 11]. Researchers like [12, 13, 14, 15] among others have developed reliable explict
methods for stiff ODEs. Explicit methods in general, are considered to be inefficient for solving
stiff problems, due to their low accuracy and poor stability properties. Consequently, this paper
is aimed at constructing explicit methods with improved accuracy and better stability properties,
by incorporating an off-grid interpolation point. The first section has the introduction, the second
includes the derivation techniques. In the third section, the convergence and stability analysis are
carried out while in the last section we test the strength of these new methods by solving some
non-linear ODEs.
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2 Derivation Techniques

2.1 Derivation of multistep collocation method

The method carried out by Onumayi et al. [2] shall be used in this derivation, where a k-step
collocation method was obtained as:

y(x) =

t−1∑
j=0

αj(x)yn+j + h

m−1∑
j=0

βj(x)f(xj , y(xj)), xn ≤ x ≤ xn+k (2.1)

where t denotes the number of interpolation points and m denotes the number of distinct collocation
points. The continuous coefficients of (2.1), αj(x) and βj(x) are defined as;

αj(x) =

t+m−1∑
i=0

αj,i+1x
i, j ∈ {0, 1, · · · , t− 1} (2.2)

hβj(x) = h

t+m−1∑
i=0

βj,i+1x
i, j ∈ {0, 1, · · · ,m− 1} (2.3)

To get αj(x) and βj(x), [2], arrived at a matrix equation of the form:

DC = I (2.4)

where I is the identity matrix of dimension (t+m)× (t+m) while D and C are matrices defined as;

D =



1 xn x2
n · · · xt+m−1

n

1 xn+1 x2
n+1 · · · xt+m−1

n+1

· · · · ·
· · · · ·
· · · · ·
1 xn+t−1 x2

n+t−1 · · · xt+m−1
n+t−1

0 1 2x0 · · · (t+m− 1)xt+m−2
0

· · · · ·
· · · · ·
· · · · ·
0 1 2xm−1 · · · (t+m− 1)xt+m−2

m−1


(2.5)

C =


α0,1 α1,1 · · · αt−1,1 hβ0,1 · · · hβm−1,1

α0,2 α1,2 · · · αt−1,2 hβ0,2 · · · hβm−1,2

· · · · · · ·
· · · · · · ·
· · · · · · ·

α0,t+m α1,t+m · · · αt−1,t+m hβ0,t+m · · · hβm−1,t+m

 (2.6)

From (2.4) it follows that C = D−1, where the columns of C gives the continuous coefficients of the
continuous scheme (2.1). Using this idea, the continuous formulation of the explicit method with
an off-grid interpolation point is given as;

y(x) =

t−1∑
j=0

αj(x)yn+j + αµ(x)yn+µ + h[βk−1(x)f(xn+k−1, y(xn+k−1))] (2.7)

where µ /∈ {0, k}
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2.2 Derivation of continuous formulation for two-step explicit
method incorporating one off-Grid interpolation point

In this method, we incorporate one off-grid point at x = xn+ 7
4
as interpolation point, thus

k = 2, t = 3,m = 1 and (2.7) becomes

y(x) = α0(x)yn + α1(x)yn+1 + α 7
4
(x)yn+ 7

4
+ hβ1(x)fn+1 (2.8)

and the D matrix in (2.5) becomes;

D =


1 xn x2

n x3
n

1 xn + h (xn + h)2 (xn + h)3

1 xn + 7
4
h (xn + 7

4
h)2 (xn + 7

4
h)3

0 1 2xn + 2h 3(xn + h)2

 (2.9)

Using maple 18 software, the inverse C = D−1 of the D matrix is obtained, which gives the
continuous scheme as;

y(x) = − 6
7

1
h3 [3h

2 − 5h(x− xn) + 2(x− xn)
2]yn + 2

9
1
h3 [7h

2 − h(x− xn)− 6(x− xn)2]yn+1+
64
63

1
h3 [h

2 − 4h(x− xn) + 3(x− xn)
2]yn+ 7

4
− 1

3
1
h2 [7h

2 − 22h(x− xn) + 12(x− xn)
2]fn+1

(2.10)
Evaluating (2.10) at x = xn+2, and its derivative at x = xn+ 7

4
, xn+2 we obtain;

yn+2 =
1

7
yn − 8

9
yn+1 +

128

63
yn+ 7

4
− 2

3
hfn+1

yn+ 7
4
=

27

272
yn +

245

272
yn+1 +

147

272
hfn+1 +

21

68
hfn+ 7

4
(2.11)

yn+1 = − 27

133
yn +

160

133
yn+ 7

4
− 33

38
hfn+1 −

9

38
hfn+2

2.3 Derivation of continuous formulation for three-step explicit
method incorporating one off-grid interpolation point

In this method, we incorporate one off-grid point at x = xn+ 11
4

as interpolation point, thus

k = 3, t = 4,m = 1 and (2.7) becomes;

y(x) = α0(x)yn + α1(x)yn+1 + α2(x)yn+2 + α 11
4
(x)yn+ 11

4
+ hβ2(x)fn+2 (2.12)

and the D matrix in (2.5) becomes;

D =


1 xn x2

n x3
n x4

n

1 xn + h (xn + h)2 (xn + h)3 (xn + h)4

1 xn + 2h (xn + 2h)2 (xn + 2h)3 (xn + 2h)4

1 xn + 11
4
h (xn + 11

4
h)2 (xn + 11

4
h)3 (xn + 11

4
h)4

0 1 2xn + 4h 3(xn + 2h)2 4(xn + 2h)3

 (2.13)

Using Maple software, the inverse C = D−1 of the D matrix is obtained, which gives the continuous
scheme as;

y(x) = − 1
44

1
h4 [104h

3 − 174h2(x− xn) + 93h(x− xn)
2 − 16(x− xn)

3]yn+
1
7

1
h4 [44h

3 − 120h2(x− xn) + 81h(x− xn)
2 − 16(x− xn)

3]yn+1−
1
36

1
h4 [88h

3 − 262h2(x− xn) + 141h(x− xn)
2 − 16(x− xn)

3]yn+2−
256
593

1
h4 [4h

3 − 16h2(x− xn) + 15h(x− xn)
2 − 4(x− xn)

3]yn+ 11
4
+

1
6

1
h3 [22h

3 − 82h62(x− xn) + 69h(x− xn)
2 − 16(x− xn)

3]fn+2

(2.14)
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Evaluating (2.14) at x = xn+3, and its derivative at x = xn+1, xn+ 11
4
, xn+3 we obtain;

yn+3 =
1

22
yn − 3

7
yn+1 −

5

6
yn+2 +

512

231
yn+ 11

4
− hfn+2

yn+ 11
4

= − 1323

53248
yn +

3267

13312
yn+1 +

41503

53248
yn+2 +

17787

26624
hfn+2 +

231

832
hfn+ 11

4
(2.15)

yn+2 =
117

1539
yn − 684

973
yn+1 +

17408

10703
yn+ 11

4
− 210

139
hfn+2 −

36

139
hfn+3

yn+1 = − 49

484
yn +

343

396
yn+2 +

256

1089
yn+ 11

4
− 7

11
hfn+1 −

49

66
hfn+2

2.4 Derivation of continuous formulation for four-step explicit
method incorporating one off-grid interpolation point

In this method, we incorporate one off-grid point at x = xn+ 15
4

as interpolation point, thus

k = 4, t = 5,m = 1 and (2.7) becomes;

y(x) = α0(x)yn + α1(x)yn+1 + α2(x)yn+2 + α3(x)yn+3 + α 15
4
(x)yn+ 15

4
+ hβ3(x)fn+3 (2.16)

and the D matrix in (2.5) becomes;

D =


1 xn x2

n x3
n x4

n x5
n

1 xn + h (xn + h)2 (xn + h)3 (xn + h)4 (xn + h)5

1 xn + 2h (xn + 2h)2 (xn + 2h)3 (xn + 2h)4 (xn + 2h)5

1 xn + 3h (xn + 3h)2 (xn + 3h)3 (xn + 3h)4 (xn + 3h)5

1 xn + 15
4
h (xn + 15

4
h)2 (xn + 15

4
h)3 (xn + 15

4
h)4 (xn + 15

4
h)5

0 1 2xn + 6h 3(xn + 3h)2 4(xn + 3h)3 5(xn + 3h)4

 (2.17)

Using Maple software, the inverse C = D−1 of the D matrix is obtained, which gives the continuous
scheme as;

y(x) = 1
270

1
h5 [270h5 − 657h4(x − xn) + 591h3(x − xn)2 − 251h2(x − xn)3 + 51h(x − xn)4 − 4(x − xn)5]yn

+ 1
44

1
h5 [270h4(x − xn) − 387h3(x − xn)2 + 204h3(x − xn)3 − 47h(x − xn)4 + 4(x − xn)5]yn+1

− 1
14

1
h5 [135h4(x − xn) − 261h3(x − xn)2 + 165h2(x − xn)3 − 43h(x − xn)4 + 4(x − xn)5]yn+2

+ 1
36

1
h5 [150h4(x − xn) − 295h3(x − xn)2 + 188h2(x − xn)3 − 47h(x − xn)4 + 4(x − xn)5]yn+3

+ 1024
10395

1
h5 [18h4(x − xn) − 39h3(x − xn)2 + 29h2(x − xn)3 − 9h(x − xn)4 + (x − xn)5]y

n+15
4

− 1
18

1
h4 [90h4(x − xn) − 189h3(x − xn)2 + 134h2(x − xn)3 − 39h(x − xn)4 + 4(x − xn)5]fn+3

(2.18)

Evaluating (2.18) at x = xn+4, and its derivative at x = xn+1, xn+2, xn+ 15
4
, xn+4 we obtain;

yn+4 = − 1

45
yn +

2

11
yn+1 −

6

7
yn+2 −

2

3
yn+3 +

8192

3465
yn+ 15

4
− 4

3
hfn+3

yn+ 15
4

=
5929

571904
yn − 99225

1143808
yn+1 +

245025

571904
yn+2 +

741125

1143808
yn+3 +

444675

571904
hfn+3 +

1155

4468
hfn+ 15

4

yn+3 = − 41

735
yn +

243

539
yn+1 −

711

343
yn+2 +

151552

56595
yn+ 15

4
− 146

49
hfn+3 −

18

49
hfn+4 (2.19)

yn+2 =
49

2025
yn − 49

165
yn+1 +

49

45
yn+3 +

4096

22275
yn+ 15

4
− 14

15
hfn+2 −

98

138
hfn+3

yn+1 = − 242

2025
yn +

242

105
yn+2 −

121

135
− 4096

14175
yn+ 15

4
− 11

15
hfn+1 +

121

135
hfn+3

3 Analysis of the New Block Methods

Here convergence analysis and plots of region of absolute stability of the newly constructed methods
are considered.
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3.1 Zero stability analysis of the new block explicit methods

Following Fatunla [16], the block schemes can be represented as:

A(1)yn+i = A(0)yn+i + hB(1)fn+i (3.1)

The block method (2.11), expressed as (3.1):

where;

A(1) =

 1 − 160
133

0
− 245

275
1 0

8
9

128
63

1

 , A(0) =

0 0 27
133

0 0 − 27
272

0 0 1
7

 , B(1) =

− 33
38

0 − 9
38

147
272

21
68

0
− 2

3
0 0


The first characteristic polynomial of the block method (2.11) is given by

ρ(λ) = det(λA(1) −A(0))

⇒ |λA(1) −A(0)| = 0

⇒ ρ(λ) =

∣∣∣∣∣∣λ
 1 − 160

133
0

− 245
272

1 0
8
9

− 128
63

1

−

0 0 27
133

0 0 − 27
272

0 0 1
7

∣∣∣∣∣∣
⇒ − 27

323
λ3 − 27

323
λ2 = 0

∴ λ = −1, 0, 0

Since |λi| ≤ 1, i = 1, 2, 3 then, by Fatunla [16], the block method (2.11) is zero stable.

Similarly the block explicit method (2.15) given as (3.1):

where;

A
(1)

=


1 − 343

396
− 256

1089
0

684
973

1 − 17408
10703

0

− 3267
13312

− 41503
53248

1 0
3
7

5
6

− 512
231

1

 , A
(0)

=


0 0 0 49

484
0 0 0 − 117

1529
0 0 0 1323

53248
0 0 0 − 1

22

 , B
(1)

=


− 7

11
− 49

66
0 0

0 − 210
139

0 − 36
139

0 17789
26624

231
832

0
0 −1 0 0



The first characteristic polynomial of the block method (2.15) is given by

ρ(λ) = det(λA(1) −A(0))

⇒ |λA(1) −A(0)| = 0

⇒ ρ(λ) =

∣∣∣∣∣∣∣∣λ


1 − 343
396

− 256
1089

0
684
973

1 − 17408
10703

0
− 3267

13312
− 41503

53248
1 0

3
7

5
6

− 512
231

1

−


0 0 0 49

484

0 0 0 − 117
1529

0 0 0 1323
53248

0 0 0 − 1
22


∣∣∣∣∣∣∣∣

⇒ 1323

19877
λ4 +

1323

19877
λ3 = 0

∴ λ = −1, 0, 0, 0

Since |λi| ≤ 1, i = 1, 2, 3, 4 then, by Fatunla [16], the block method (2.15) is zero stable.
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Similarly the block explicit method (2.19) expressed as (3.1):

where;

A(1) =


1 − 242

105
121
135

4096
14175

0
49
165

1 − 49
45

− 4096
22275

0

− 243
539

711
343

1 − 151552
56595

0
99225

1143808
− 245025

571904
− 741125

1143808
1 0

− 2
11

6
7

2
3

− 8192
3465

1

 , A(0) =


0 0 0 0 242

2025
0 0 0 0 − 49

2025
0 0 0 0 41

735
0 0 0 0 − 5929

571904
0 0 0 0 1

45

 ,

B(1) =


− 11

15
0 121

135
0 0

0 − 14
15

− 98
135

0 0
0 0 − 146

49
0 − 18

49

0 0 444675
571904

1155
4468

0
0 0 − 4

3
0 0


The first characteristic polynomial of the block method (2.19) is given by

ρ(λ) = det(λA(1) −A(0))

⇒ |λA(1) −A(0)| = 0

⇒ ρ(λ) =

∣∣∣∣∣∣∣∣∣∣
λ


1 − 242

105
121
135

4096
14175

0
49
165

1 − 49
45

− 4096
22275

0
− 243

539
711
343

1 − 151552
56595

0
99225

1143808
− 245025

571904
− 741125

1143808
1 0

− 2
11

6
7

2
3

− 8192
3465

1

−


0 0 0 0 242

2025

0 0 0 0 − 49
2025

0 0 0 0 41
735

0 0 0 0 − 5929
571904

0 0 0 0 1
45


∣∣∣∣∣∣∣∣∣∣

⇒ − 583443000

627952168909
λ5 − 583443000

627952168909
λ4 = 0

∴ λ = −1, 0, 0, 0, 0

Since |λi| ≤ 1, i = 1, 2, 3, 4, 5 then, by Fatunla [16], the block method (2.19) is zero stable.

3.2 Order and error constant of the new block Hybrid explicit
methods, k=2,3,4.

Table 1. Order and Error Constant of Scheme (2.11), (2.15), and (2.19)

Evaluating points Order Error Constants

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

y′(x = xn+2) y′(x = xn+1) y′(x = xn+1) 3 4 5 39
1216

− 49
5280

121
10800

y′(x = x
n+7

4
) y′(x = xn+3) y′(x = xn+2) 3 4 5 − 441

34816
123
5560

− 121
10800

y(x = xn+2) y′(x = x
n+11

4
) y′(x = xn+4) 3 4 5 1

48
− 53361

8519680
17
784

y(x = xn+3) y′(x = x
n+15

4
) 4 5 1

80
- 266805
73203712

y(x = xn+4) 5 1
120

By the analysis above, the block method for k = 2, 3, 4, are zero stable and has order p > 1. Thus
by Henrici [17], the block explicit methods (2.11), (2.15), and (2.19) are convergent.
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3.3 Plots of stability region of the new methods

The stability analysis and plots of region of absolute stability for schemes (2.11), (2.15) and (2.19)
will be considered. Using Maple software, we obtain matrix P = r ∗ (A(1) − z ∗B(1))−A(0) , where
A(1), B(1), and A(0) are as defined in the previous section. The determinant of P was obtained and
the derivative of the determinant was computed for the schemes. This information was used in a
MATLAB code to obtain the region of absolute stability for each of the methods. The region of
absolute stability is the area outside the enclosure in Fig. 1, 2 and 3 below.

Fig. 1. The region of absolute stability for Scheme (2.11)

Fig. 2. The region of absolute stability for Scheme (2.15)
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Fig. 3. The region of absolute stability for Scheme (2.19)

4 Implementation and Conclusion

4.1 Implementation

We test the strength of these block methods by solving some non-linear systems of first Order
ODEs.

Problem 1

y′ =

[
−10004y1 10000y4

2

y1 −y2(1 + y3
2)

]
y(0) =

[
1
1

]
h = 0.1, x ∈ [0, 20]

Exact solution

y(x) =

[
e−4x

e−x

]

Problem 2: Lotka Volterra equation

y′ =

[
1.2y1 −0.6y1y2
−0.8y2 0.3y1y2

]
y(0) =

[
2
1

]
, h = 0.001, x ∈ [0, 20]

Problem 3: Robertson chemical equation

y′
1 = −0.04y1 + 10000y2y3

y′
2 = 0.04y1 − 10000y2y3 − 3.0× 107y2

2

y′
3 = 3.0× 107y2

2
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y(0) =

10
0

 , 0 ≤ x ≤ 400, h = 0.0001

Solving Problem 1, 2 and 3, we used MATLAB software to solve the non-linear systems. The
solution curve using (2.11), (2.15) and (2.19) are given in Fig 4, Fig 5 and Fig 6. respectively.

Fig. 4. The solution curve of problem 1 with Scheme (2.11)

Fig. 5. The solution curve of problem 2 with Scheme (2.15)

Fig. 6. The solution curve of problem 3 with Scheme (2.19)
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4.2 Solutions of Scheme (2.11) and Scheme (2.15) for Problem 1

Table 2. Numerical and Exact solutions of problem 1 using Scheme (2.11) and (2.15)

x Exact1 Exact2 Numerical1 Numerical2

Scheme(2.11) Scheme(2.15) Scheme(2.11) Scheme(2.15)

0.1 6.703E-01 9.048E-01 6.196E-01 6.195E-01 9.049E-01 9.048E-01

0.2 4.493E-01 8.187E-01 4.153E-01 4.152E-01 8.188E-01 8.187E-01

0.3 3.012E-01 7.408E-01 2.784E-01 2.783E-01 7.409E-01 7.408E-01

0.4 2.019E-01 6.703E-01 1.866E-01 1.866E-01 6.704E-01 6.703E-01

0.5 1.353E-01 6.065E-01 1.251E-01 1.251E-01 6.066E-01 6.065E-01

0.6 9.070E-02 5.488E-01 8.390E-02 8.380E-02 5.489E-01 5.488E-01

0.7 6.080E-02 4.966E-01 5.620E-02 5.620E-02 4.966E-01 4.966E-01

0.8 4.080E-02 4.493E-01 3.770E-02 3.770E-02 4.494E-01 4.493E-01

0.9 2.730E-02 4.066E-01 2.530E-02 2.530E-02 4.066E-01 4.066E-01

1.0 1.830E-02 3.679E-01 1.690E-02 1.690E-02 3.679E-01 3.679E-01

1.1 1.230E-02 3.329E-01 1.140E-02 1.130E-02 3.329E-01 3.329E-01

1.2 8.200E-03 3.012E-01 7.600E-03 7.600E-03 3.013E-01 3.012E-01

1.3 5.500E-03 2.725E-01 5.100E-03 5.100E-03 2.726E-01 2.725E-01

1.4 3.700E-03 2.466E-01 3.400E-03 3.400E-03 2.467E-01 2.466E-01

1.5 2.500E-03 2.231E-01 2.300E-03 2.300E-03 2.232E-01 2.231E-01

1.6 1.700E-03 2.019E-01 1.500E-03 1.500E-03 2.020E-01 2.019E-01

1.7 1.100E-03 1.827E-01 1.000E-03 1.000E-03 1.827E-01 1.827E-01

1.8 7.000E-04 1.653E-01 7.000E-04 7.000E-04 1.654E-01 1.653E-01

1.9 5.000E-04 1.496E-01 5.000E-04 5.000E-04 1.496E-01 1.496E-01

2.0 3.000E-04 1.353E-01 3.000E-04 3.000E-04 1.354E-01 1.353E-01

Comparing solutions of Scheme (2.11) and Scheme (2.15) with the analytical solutions, we deduce
the maximum error.

Maximum error(Scheme (2.11))= y1 = 1.000E − 15, y2 = 4.354E − 07

Maximum error(Scheme (2,15))= y1 = 1.000E − 15, y2 = 4.768E − 08

4.3 Comparing solutions of Scheme (2.19) with those of Butcher
and Hojjati [5] for problem 3 (Robertson Chemical Equation)

Table 3. Comparison of Scheme (2.19) with Butcher and Hojjati [5]

x Scheme (2.19) Butcher and Hojjati [5]

0.4 9.851721137972580E-01 9.851721138620630E-01
3.386395378900000E-05 3.386395379595400E-05
1.479402218444700E-02 1.479402213590220E-02

4 9.055186779860960E-01 9.055186784344190E-01
2.240475687100000E-05 2.240475693804370E-05
9.445891660335700E-02 9.445891599170860E-02

40 7.158270638024940E-01 7.158270698910200E-01
9.185534750000000E-06 9.185534641631410E-06
2.841637441465430E-01 2.841637507954150E-01

400 4.505186352019710E-01 4.505186908340870E-01
3.222901389000000E-06 3.222901061260970E-06
5.494780766336790E-01 5.494782035239040E-01

116



Sirisena et al.; JAMCS, 35(3): 106-118, 2020; Article no.JAMCS.55727

There is a fair agreement between the results of Scheme(2.19) and that of Butcher and Hojjati [5].
However the method derived by Butcher and Hojjati [5] is second derivative method which should
have an advantage over Scheme (2.19).

5 Conclusions

The methods we derived competes quite well with the in-built ode23 solvers in Matlab. The solution
curves show the performance of the Block Hybrid Explicit Integrators for step numbers k = 2, 3, 4.
These methods are shown to be A(α)-stable and convergent. Therefore suitable for solution of
non-linear system of first order ODEs.
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