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1. Introduction

F or reference reading on the basic notions and notation in graph theory, see [1,2]. Unless mentioned
otherwise, all graphs G will be undirected, simple and connected graphs. For a graph G the meaning of

say, deg(vi), vi ∈ V(G) will be assumed to be clear (and similarly for other graph parameters). If a distinction
between a vertex vi ∈ V(G) and a vertex vj ∈ V(H) with H another graph is required, the adoption of the
notation degG(vi) and degH(vj) will be used (and similarly for other graph parameters). Reference to vertices
u, v (or vi, vj) will mean that u and v (or vi and vj) are distinct vertices.

Recall from [3] that if σ(v) the number of shortest paths between vertices u, w which contain v as an
internal vertex, then the vertex stress of v is defined by, SG(v) = ∑

u≠w≠v
σ(v). Hence, the vertex stress of vertex

v ∈ V(G) is the number of times v is contained as an internal vertex in all shortest paths between all pairs of
distinct vertices in V(G)/{v}. Such a shortest uw-path is also called a uw-distance path. Also see [4]. The total
vertex stress of G is given by S(G) = ∑

v∈V(G)
SG(v), [5].

Graphs from either the subsets or the t-element subsets of a set X = {1, 2, 3, . . . , n}, and subject to various
adjacency regimes (or incidence functions) have been widely studied. Consider the set X = {1, 2, 3, . . . , n} and
the vacant parking set, Y = {−,−,−, . . . ,−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n positions

}. It is known that parking each element of X in a position in Y to

obtained a parked set can be achieved in n! ways. From a set theoretical perspective any pair of parked sets is
considered to be identical sets. It implies that set theoretical or combinatorial outcomes such as, generating
t-element subsets and determining clusters of intersecting t-element subsets with intersecting cardinality say,
s and so on, will yield equivalent (or identical) outcomes. It is agreed that such properties together with
outcomes stemming from these properties will not be proven from first principles.

Furthering the study of vertex stress related parameters for the families of graphs from sets or set-graphs
is motivated by the demonstrable research interest. More so, if it is appreciated how much of the research in
machine learning and AI technology finds its foundation in modern graph theory and set theory.

2. Generalized Johnson graphs

Let X = {1, 2, 3, . . . , n}, n ≥ 2. Let 1 ≤ t ≤ n − 1 and

V(X, t) = {Xi ∶ i = 1, 2, 3, . . . , (nt), Xi a t-element subset of X}.

Recall the definition of generalized Johnson graphs.
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Definition 1. For 0 ≤ l ≤ t define the generalized Johnson graphs,

G(n, t, l)with V(G(n, t, l)) = {vi ∶ vi maps to Xi ∈ V(X, t)} and E(G(n, t, l)) = {vivj ∶ ∣Xi ∩Xj∣ = l}.

For a specific n and t the integer range of l yields a family of (t + 1) graphs.

Example 1. Let n = 6 i.e. X = {1, 2, 3, 4, 5, 6} and let t = 3. Therefore, 0 ≤ l ≤ 3 and,

V(X, 3) = {{1, 2, 3},{1, 2, 4},{1, 2, 5},{1, 2, 6},{1, 3, 4}, {1, 3, 5},{1, 3, 6},{1, 4, 5},{1, 4, 6},{1, 5, 6},
{2, 3, 4},{2, 3, 5},{2, 3, 6},{2, 4, 5},{2, 4, 6}, {2, 5, 6},{3, 4, 5},{3, 4, 6},{3, 5, 6},{4, 5, 6}}.

With a left to right read of V(X, t), let vi ↦ (ith 3-element subset).
Case 1, l = 0:

E(G(6, 3, 0)) = {v1v20, v2v19, v3v18, v4v17, v5v16, v6v15, v7v14, v8v13, v9v12, v10v11}.

Case 2, l = 1:

E(G(6, 3, 1)) = {v1v8, v1v9, v1v10, v1v14, v1v15, v1v16, v1v17, v1v18, v1v19,
v2v6, v2v7, v2v10, v2v12, v2v13, v2v16, v2v17, v2v18, v2v20, v3v5, v3v7, v3v9, v3v11, v3v13, v3v15, v3v17, v3v19, v3v20,

v4v5, v4v6, v4v8, v4v11, v4v12, v4v14, v4v18, v4v19, v4v20, v5v10, v5v12, v5v13, v5v14, v5v15, v5v19, v5v20,
v6v9, v6v11, v6v13, v6v14, v6v16, v6v18, v6v20, v7v8, v7v11, v7v12, v7v15, v7v16, v7v17, v7v20,

v8v11, v8v12, v8v15, v8v16, v8v18, v8v19, v9v11, v9v13, v9v14, v9v16, v9v17, v9v19,
v10v12, v10v13, v10v14, v10v15, v10v17, v10v18, v11v16, v11v19, v11v20, v12v15, v12v18, v12v20, v13v14, v13v17, v13v20,

v14v18, v14v19, v15v17, v15v19, v16v17, v16v18}.

Case 3, l = 2:

E(G(6, 3, 2)) = {v1v2, v1v3, v1v4, v1v5, v1v6, v1v7, v1v11, v1v12, v1v13,
v2v3, v2v4, v2v5, v2v8, v2v9, v2v11, v2v14, v2v15, v3v6, v3v8, v3v10, v3v12, v3v14, v3v16,

v4v7, v4v9, v4v10, v4v13, v4v15, v4v16, v5v6, v5v7, v5v8, v5v9, v5v11, v5v17, v5v18, v6v7, v6v8, v6v10, v6v12, v6v17, v6v19,
v7v9, v7v10, v7v13, v7v18, v7v19, v8v9, v8v10, v8v14, v8v17, v8v20, v9v10, v9v15, v9v18, v9v20, v10v16, v10v19, v10v20,
v11v12, v11v13, v11v14, v11v15, v11v17, v11v18, v12v13, v12v14, v12v16, v12v17, v12v19, v13v15, v13v16, v13v18, v13v19,

v14v15, v14v16, v14v17, v14v20, v15v16, v15v18, v15v20, v16v19, v16v20, v17v18, v17v19, v17v20, v18v19, v18v20, v19v20}.

Case 4. l = 3: Clearly, E(G(6, 3, 3)) = ∅. Hence, the graph is the null graph N20.

Note that the example serves to illustrate the standard method of generating the t-element subsets of X
(or the elements of V(X, t)). Also the labeled vertex mapping is standardized. Suffice to say that the aforesaid
standardizations are found in most popular text books as well as, in most algorithmic generators of t-element
subsets. Furthermore, note that for ℓ = 0 the generalized Johnson graphs is the family of Kneser graphs. Vertex
stress related parameters for Kneser graphs are found in [6]. Henceforth, 1 ≤ ℓ < t. Furthermore, generalized
Kneser graphs are defined similar to Definition 1 except that adjacency is defined as,

E(G(n, t, l)) = {vivj ∶ ∣Xi ∩Xj∣ ≤ l} as in [7,8] or,

E(G(n, t, l)) = {vivj ∶ ∣Xi ∩Xj∣ < l} as in [9,10].

We specifically consider the case of equality. It means that generalized Johnson graphs are under consideration.
Furthermore, we restrict the variables of Definition 1 to n ≥ 4, 1 ≤ ℓ < t ≤ ⌊ n

2 ⌋ to ensure connectedness. Note that
our restrictions are tighter than those found in [11] i.e. n ≥ 2t and the ordered triple (n, t, ℓ) ≠ (2t, t, 0). Thus in
Example 1 only the graphs yielded in Case 2 and 3 will be considered. We recall useful results from [11].

Theorem 2. [11] For G(n, t, ℓ), n ≥ 2t it follows that:

diam(G(n, t, ℓ)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3, if 3(t − ℓ) − 1 ≤ n < 3t − 2ℓ and ℓ ≠ 0;

⌈ t−ℓ−1
n−2t+2ℓ ⌉ + 1, if n < 3(t − ℓ) − 1 or ℓ = 0;

⌈ t
t−ℓ ⌉, if n ≥ 3t − 2ℓ and ℓ ≠ 0.
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Theorem 3. [11] Let vi, vi be vertices of G(n, t, ℓ), n ≥ 2t and let ∣vi ∩ vj∣ = x. Then:

d(vi, vj) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3, if x < min{ℓ,−n + 3t − 2ℓ};

⌈ t−x
t−ℓ ⌉, if −n + 3t − 2ℓ ≤ x < ℓ;

min{2⌈ t−x
n−2t+2ℓ ⌉, 2⌈ x−ℓ

n−2t+2ℓ ⌉ + 1}, if x ≥ ℓ.

2.1. Number of r-distance paths

From a set theoretical perspective the application of Definition 1 to any pair of t-elements subsets yields
equivalent outcomes. For example, it means as is known, that G(n, t, ℓ) is degree regular. Recall that deg(vi) =

(
t
ℓ) × (

n−t
t−ℓ). For 1 ≤ ℓ ≤ t − 1 an important interpretation of the formula for the degree of any vertex vi is that

the open neighborhood N(vi) can be partitioned into (t
ℓ) subsets (or sub-neighborhoods) denoted by, Nsi(vi),

i = 1, 2, 3, . . . , (t
ℓ) such that,

∣vj ∩ vq∣ ≥ ℓ with vj, vq ∈ Nsi(vi).

Furthermore,

∣Nsj(vi)∣ = ∣Nsk(vi)∣ = (
n−t
t−ℓ).

It follows immediately that,

∣Nsi(vi)∣ = ∣Nsj(vj)∣, i, j ∈ {1, 2, 3, . . . , (t
ℓ)}.

Remark 1. It is agreed that the numbering of Nsi(vi) follows the conventional ordering of t-element subsets as
they are generated and belongs to N(vi).

Since diam(G(n, t, ℓ)) is known, the equivalence of outcome implies that for any pair of vertices vi, vj both
vertices has equal number of 1-distance paths (edges), equal number of 2-distance paths and so on, up to the
equal number of maximum distance-paths i.e. diam(G(n, t, ℓ)-paths. Hence, by settling a result for vertex v1,
the result is immediately settled for all vertices vk ∈ V(G(n, t, ℓ)) by the principle of choice without the loss of
generality. In the next subsection we investigate a case enumeration in an attempt to find explicit formula (or
stepwise formula) for the size of, ∣N(v1) ∩N(vj)∣where j is the smallest value such that v1 and vj are adjacent.

2.2. Case enumeration

Case 1, ℓ = t − 1: By the convention let v1 = {1, 2, 3, . . . , t − 1, t} and v2 = {1, 2, 3, . . . , t − 1, t + 1}. Clearly, all
vertices of the form Ns1(v1) = {1, 2, 3, . . . , t − 1, t + j}, j = 2, 3, 4, . . . , (n − j) are common neighbors to vertices
v1, v2. Thus, if n ≥ 3t − 2ℓ a total of

(
n−(2t−ℓ)

t−ℓ )

common neighbors between v1 and v2 exist in Ns1(v1). Else, it is zero. Note that the reasoning to obtain the
outcome relied inherently on the restriction placed on t in respect of n and then specifically that ℓ = t−1. Hence,
n may increase arbitrarily large and so may t in accordance to the restriction between t and n. This implies that
for a fixed ℓ the difference t − ℓ may freely increase or decrease within bounds. Finally, for ℓ = t − 1 it follows
easily that that in each of the other (t

ℓ) − 1 sub-neighborhoods of v1 there are exactly one common neighbors.
Hence, vertices v1 and v2 share:

N(v1) ∩N(v2) = ((
t
ℓ) − 1) + (n−(2t−ℓ)

t−ℓ )

common neighbors.
It is straightforward to verify that if ℓ = 1 then,

N(vj) ∩Ns1(v1) = ∅.

Through similar combinatorial reasoning as above and for the values 1 ≤ ℓ ≤ t − 2, we claim that:
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Claim 4. Let 1 ≤ ℓ ≤ t − 1 and 2 ≤ t ≤ ⌊ n
2 ⌋, then:

Ns1(v1) ∩N(vj) =

⎧⎪⎪
⎨
⎪⎪⎩

(
n−(2t−ℓ)

t−ℓ ), if n ≥ 3t − 2ℓ;

0, otherwise.

Proof. The results follow immediately from the symmetry properties of a generalized Johnson graph with
straightforward combinatorial manipulation. By the principle of "choice without the loss of generality"
immediate mathematical induction applies to generalize in respect of sufficiently large t and n both of which
remain in accordance to the restrictions.

Claim 5. Let 1 ≤ ℓ ≤ t − 1 and 2 ≤ t ≤ ⌊ n
2 ⌋ then, for each k ∈ {2, 3, 4, . . . , (t

ℓ)}:

Nsk(v1) ∩N(vj) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if ℓ = t − 1;

(n − (2t − ℓ))(t − ℓ), otherwise.

Proof. The results follow immediately from the symmetry properties of a generalized Johnson graph with
straightforward combinatorial manipulation. By the principle of "choice without the loss of generality"
immediate mathematical induction applies to generalize in respect of sufficiently large t and n both of which
remain in accordance to the restrictions.

3. Vertex stress related parameters

Henceforth, generalized Johnson graphs of diameter 2 will be considered. Thus it is required that:

n

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

≥ 3t − 2ℓ,

or

< 3(t − ℓ) − 1,

and ⌈ t
2 ⌉ ≤ ℓ ≤ t − 1.

The restriction reads together with Theorem 2 above (or Theorem 4.2 in [11]) and Theorem 2.4 in [11]
implies that girth of the generalized Johnson graphs under consideration is 3. The aforesaid implies that for
any vertex vj ∈ N(vi) there exists a vertex vk ∈ N(vi) such that vi, vj, vk induce cycle C3, (a triangle).

Recall the definition of total induced vertex stress of a vertex in G from [12].

Definition 6. [12] Let V(G) = {vi ∶ 1 ≤ i ≤ n} and for the ordered vertex pair (vi, vj) let there be kG(i, j)
distinct shortest paths of length lG(i, j) from vi to vj. Then, total induced vertex stress of a vertex is given by,

sG(vi) =
n
∑

j=1,j≠i
kG(i, j)(lG(i, j) − 1).

Proposition 7. Let j is the smallest value such that v1 and vj are adjacent. Furthermore, let:

(i) n ≥ 3t − 2ℓ and ℓ = t − 1 and β(vj) = (
n−(2t−ℓ)

t−ℓ ) + (
t
ℓ) − 1 or,

(ii) n ≥ 3t − 2ℓ and 1 ≤ ℓ ≤ t − 2 and β(vj) = (
n−(2t−ℓ)

t−ℓ ) + [(
t
ℓ) − 1][n − (2t − ℓ)](t − ℓ) or,

(iii) 3 ≤ n ≤ 3t − 2ℓ − 1 and ℓ = t − 1 and β(vj) = (
t
ℓ) − 1 or,

(iv) 3 ≤ n ≤ 3t − 2ℓ − 1 and 1 ≤ ℓ ≤ t − 2 and β(vj) = [(
t
ℓ) − 1][n − (2t − ℓ)](t − ℓ).

Let γ(vj) = deg(vj) − β(vj) − 1.
Subject to either (i) or (ii) or (iii) or (iv) the vertex v1 ∈ V(G(n, t, ℓ)) has induced vertex stress:

sG(n,t,ℓ)(v1) = deg(v1) × γ(vj).

Proof. Since deg(v1) = (
t
ℓ)(

n−t
t−ℓ), there exists deg(v1) unique 1-paths leading from v1 of which all contribute

0 count to the induced vertex stress of v1. From vertex vj a total of γ(vj) = deg(vj) − β(vj) − 1 edges join at
least one or more vertices in N(vj)/N[v1]. Hence, via vj there exist γ(vj), 2-paths from v1 (or vj an internal
vertex). Obviously, γ(vj) = γ(vk) = γ(vl) ∀ vk, vl ∈ N(v1). Since G(n, t, ℓ) is of diameter 2 all distance-paths
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from v1 have been accounted for if and only if all vertices in N(v1) have been accounted for. Each such 2-path
contributes a count of 1 to the induced stress of vertex v1. The number of 2-paths per case is yielded by Claims
4 and 5, respectively. This settles the result.

Theorem 8. Connected generalized Johnson graphs G(n, t, ℓ) have vertex stress related parameters:

(i) sG(n,t,ℓ)(vi) = sG(n,t,ℓ)(v1), ∀ vi.
(ii) s(G(n, t, ℓ)) = (nt)sG(n,t,ℓ)(vi).

(iii) S(G(n, t, ℓ)) = 1
2s(G(n, t, ℓ)).

(iv) SG(n,t,ℓ)(vi) =
S(G(n,t,ℓ))
(n

t)
, ∀ vi.

Proof. The results follow immediately from the symmetry properties of a generalized Johnson graph and the
principle of "choice without the loss of generality" read together with Definition 6 as well as those applicable
in §1.

Corollary 9. Connected generalized Johnson graphs G(n, t, ℓ) are stress regular as defined in [4].

4. Conclusion

The note serves as the foundation to establish the same parameters for generalized Johnson graphs of
diameter greater than or equal to 3. From §3 it is intuitively evident that meaningful research with regards to
generalized Johnson graphs of diameter greater or equal to 2 would require a coded algorithmic approach
rather than exhaustive methods utilizing explicit formula. Utilize the GeeksforGeeks algorithm1 [13] to
determine the set of all shortest (vivj)-paths for all pairs of vertices. The outcomes yields both the number
of shortest paths as well as the respective path descriptions.

Stemming from the notion of hyper graphs, let a set of connected graphs be G = {Gi ∶ i = 1, 2, 3, . . . , n}
and let Yi = {Gj, Gk, Gl , . . . , Gq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t−entries

}, 1 ≤ t ≤ n − 1, i = 1, 2, 3, . . . , (nt) be the t-element subsets of G. If t ≥ 2, the

singularization of a Yi, 1 ≤ i ≤ (nt) into a connected graph is achieved by some graph operation say, f1(G, H) by
defining the singularized graph,

Ys
i = f1( f1( f1( f1(Gi, Gj), Gk), . . . , Gq)).

Now a conventional vertex vi which is isomorphic to K1 is generalized to a vertex which is isomorphic to a Ys
i .

Hence, vi maps to Ys
i . The generalized Johnson graph can be defined for the singularized vertex set in terms of

the corresponding t-element subsets. This opens a new avenue of research.
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