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ABSTRACT 
 

In India, small-scale vegetable farmers face significant challenges in achieving sustainable and 
profitable production due to limited access to modern technologies and decision support tools. This 
study explores the potential of drone-based remote sensing and decision support systems (DSS) to 
empower small-scale farmers and promote sustainable vegetable production practices. The 
research involved deploying multispectral sensor-equipped drones over 50 smallholder vegetable 
farms in the state of Maharashtra, India to collect high-resolution crop health and growth data 
across multiple growing seasons. The aerial data was processed and integrated into a cloud-based 
DSS platform that provided participating farmers with actionable insights and recommendations to 
optimize irrigation, fertilization, pest/disease control, and harvest scheduling. The DSS also 
incorporated weather forecasts, market price information, and expert agronomic knowledge to help 
farmers make informed decisions. However, challenges remain in building digital literacy, trust, and 
infrastructure to enable wider adoption among smallholder farmers. Future work should focus on 
participatory design of DSSs, integration with existing agricultural extension services, and inclusive 
business models for delivering precision agriculture technologies to small-scale farmers in 
developing countries.  
 

 
Keywords: Precision agriculture; drones; decision support systems; sustainable intensification; 

smallholder farmers. 
 

1. INTRODUCTION 
 
Small-scale farmers are the backbone of India's 
agricultural sector, with nearly 126 million small 
and marginal farmers cultivating 86% of the 
country's farmland (Pingali et al. 2023). 
However, these smallholder farmers face 
numerous challenges in achieving sustainable 
and profitable production, including limited 
access to modern technologies, information, and 
markets (Reardon et al. 2023). In the context of 
vegetable production, smallholder farmers 
struggle with low productivity, inefficient resource 
use, high losses due to pests and diseases, and 
vulnerability to climate risks (Smith et al. 2023). 
There is an urgent need for innovative solutions 
that can empower small-scale vegetable farmers 
to adopt sustainable intensification practices and 
enhance their livelihoods. 
 
Recent advancements in drone-based remote 
sensing and decision support systems (DSS) 
offer promising opportunities for precision 
agriculture applications in smallholder farming 

systems (Gupta et al. 2022; Das et al. 2022). 
Drones equipped with multispectral sensors can 
capture high-resolution imagery of crop health, 
growth, and stress conditions, which can be 
analyzed using machine learning algorithms to 
generate actionable insights and 
recommendations for farmers (Kumar et al. 
2023; Rao et al. 2022). By integrating drone-
based data with weather forecasts, soil moisture 
sensors, and crop models, DSSs can provide 
timely and site-specific advice to farmers on 
irrigation scheduling, fertilizer management, 
pest/disease control, and harvest planning 
(Meena et al. 2023; Sinha et al. 2022). Such 
precision agriculture tools have the potential to 
optimize input use, reduce costs, increase 
yields, and minimize environmental impacts in 
smallholder vegetable production systems 
(Reddy et al. 2023; Mishra et al. 2022). 
 
However, the adoption of drone-based precision 
agriculture technologies by small-scale farmers 
in developing countries like India remains limited 
due to various technological, socio-economic, 
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Table 1. Comparison of spectral vegetation indices used for crop health assessment 

 

Vegetation Index Formula Sensitivity 

NDVI (NIR - Red) / (NIR + Red) Chlorophyll, LAI, biomass 

GNDVI (NIR - Green) / (NIR + Green) Chlorophyll, nitrogen content 

NDRE (NIR - RedEdge) / (NIR + RedEdge) Chlorophyll, nitrogen content 

CWSI (Tc - Tnw) / (Tdry - Tnw) Water stress, stomatal conductance 
Sources: Rouse et al. (1973); Idso et al. (1981) 

 
and institutional barriers (Garg et al. 2023; Rao 
et al. 2022). Smallholder farmers often lack 
access to affordable drone services, reliable 
internet connectivity, and digital literacy skills 
needed to effectively use DSSs (Patel et al. 
2023). Moreover, the development of DSSs has 
primarily focused on large-scale commercial 
farming systems in advanced economies, with 
limited attention to the specific needs, 
preferences, and constraints of smallholder 
farmers in diverse agro-ecological and socio-
cultural contexts (Singh et al. 2022; Nair et al. 
2023). There is a need for participatory and 
inclusive approaches to co-design, test, and 
scale drone-based DSSs that are responsive to 
the realities of small-scale farming systems in 
India and other developing countries. 
 

2. BACKGROUND 
 

Maharashtra is a major vegetable producing 
state in India, with over 1.37 million hectares 
under vegetable cultivation and an annual 
production of 12.95 million tonnes in 2019-20 
(Pingali et al. 2023). According to the latest data 
from the Department of Agriculture, Government 
of Maharashtra, the state's vegetable production 
further increased to an estimated 14.2 million 
tonnes in 2023-24, with the area under 
vegetable cultivation expanding to 1.45 million 
hectares (Reardon et al. 2023). The state is 
known for its diverse agro-climatic zones, 
ranging from semi-arid plateaus to humid coastal 
regions, which support a wide variety of 
vegetable crops including tomatoes, onions, 
okra, eggplant, and leafy greens (Pingali et al. 
2023). However, the productivity and profitability 
of vegetable farming in Maharashtra are 
constrained by various biotic and abiotic 
stresses, such as erratic rainfall, drought, heat 
waves, soil nutrient deficiencies, insect pests, 
and fungal diseases (Patil et al. 2022; 
Bhattacharyya et al. 2023). Climate change is 
exacerbating these challenges, with projections 
indicating increased frequency and intensity of 
extreme weather events, shifting pest and 

disease ranges, and reduced water availability in 
parts of the state (Sharma et al. 2022). 

 
Smallholder farmers, who dominate vegetable 
production in Maharashtra, are particularly 
vulnerable to these challenges due to their 
limited access to irrigation facilities, quality 
inputs, credit, and extension services (Kulkarni 
et al. 2022). According to the Agricultural 
Census 2015-16, the average size of operational 
holdings in Maharashtra is 1.34 hectares, with 
79.5% of farmers cultivating less than 2 hectares 
(Pingali et al. 2023). These small and 
fragmented landholdings make it difficult for 
farmers to adopt modern technologies and 
practices that can enhance productivity, 
resource use efficiency, and resilience to climate 
risks (Pingali et al. 2022). Moreover, smallholder 
vegetable farmers in Maharashtra face 
significant post-harvest losses due to inadequate 
storage and transportation infrastructure, as well 
as price volatility and market access issues 
(Chauhan et al. 2022). 

 
In this context, there is a growing recognition of 
the need for sustainable intensification of 
smallholder vegetable production systems in 
Maharashtra and other parts of India (Reardon 
et al. 2023; Agarwal et al. 2022). Sustainable 
intensification aims to increase crop yields and 
farm incomes while minimizing negative 
environmental impacts and enhancing the 
provision of ecosystem services (Pretty et al. 
2023). This requires a combination of 
technological innovations, such as precision 
agriculture tools, improved crop varieties, and 
efficient irrigation systems, as well as 
institutional and policy support for smallholder 
farmers, including access to credit, insurance, 
and market linkages (Kumar et al. 2022; Singh et 
al. 2023). However, the adoption of sustainable 
intensification practices by smallholder vegetable 
farmers in India remains low due to various 
socio-economic, cultural, and institutional 
barriers (Pingali et al. 2022). 
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Recent studies have highlighted the potential of 
drone-based remote sensing and DSSs to 
support sustainable intensification of smallholder 
agriculture in India and other developing 
countries (Chatterjee et al. 2023; Rao et al. 
2022; Balafoutis et al. 2023). For example, a 
pilot study in Karnataka, India used a drone-
based multispectral sensor to map the health 
and nutrient status of maize crops in smallholder 
fields, and provided site-specific fertilizer 
recommendations to farmers through a mobile 
app (Reddy et al. 2022). The results showed that 
farmers who followed the drone-based 
advisories achieved 12-18% higher yields and 
15-20% lower fertilizer costs compared to control 
farmers. Another study in Telangana, India 
demonstrated the use of a drone-based thermal 
sensor to monitor crop water stress and provide 
irrigation scheduling recommendations to 
smallholder cotton farmers, resulting in 25-30% 
water savings and 15-20% yield improvements 
(Rao et al. 2023). 
 
However, these studies have mostly focused on 
cereal and fiber crops, with limited applications 
in smallholder vegetable production systems. 
Moreover, the DSSs used in these studies were 
primarily developed and tested by researchers, 
with limited involvement of farmers in the design 
and evaluation process. There is a need for 
more participatory and context-specific 
approaches to develop and scale drone-based 
DSSs that address the diverse needs and 
constraints of smallholder vegetable farmers in 
different agro-ecological and socio-economic 
settings. 
 
The district has a diversity of soil types, including 
shallow to deep black soils, red soils, and 
lateritic soils, which vary in their fertility and 
water holding capacity (Bhattacharyya et al. 
2023). 
 
The study focused on two vegetable crops: 
tomato (Solanum lycopersicum L.) and okra 
(Abelmoschus esculentus L.), which are widely 
cultivated by smallholder farmers in the region 
for both domestic and export markets (Kumar et 
al. 2023). Tomato is a nutrient-dense and high-
value vegetable crop that is sensitive to various 
biotic and abiotic stresses, such as bacterial wilt, 
early blight, root-knot nematodes, heat stress, 
and moisture deficits (Kumar et al. 2023). Okra 
is a hardy and fast-growing vegetable crop that 
is relatively tolerant to drought and heat stress, 
but susceptible to insect pests such as fruit 
borers and whiteflies (Sharma et al. 2022). 

A total of 50 smallholder vegetable farms were 
selected for the study based on the following 
criteria: (i) farm size less than 2 hectares; (ii) 
cultivation of tomato and/or okra crops in the 
kharif (June-October) and/or rabi (November-
March) seasons; (iii) willingness of farmers to 
participate in the study and provide access to 
their fields for drone surveys and sensor 
installations. The selected farms were located in 
five villages (Pabal, Vadarwadi, Kendur, 
Sanghavi, and Shikrapur) in the Shirur tehsil of 
Pune district, representing different agro-
ecological conditions and cropping systems. 
 

2.1 Drone Platform and Sensors 
 

The study used a custom-built hexacopter drone 
platform (DJI Matrice 600 Pro) equipped with a 
high-resolution multispectral camera (MicaSense 
RedEdge-MX) for aerial surveys of the vegetable 
fields. The RedEdge-MX camera captures five 
spectral bands: blue (475 nm), green (560 nm), 
red (668 nm), red edge (717 nm), and near-
infrared (840 nm), with a spatial resolution of 8 
cm per pixel at 120 m altitude (Aasen et al. 
2023). The camera also includes a downwelling 
light sensor for radiometric calibration and a 
built-in GPS for geotagging the images. 
 

In addition to the multispectral camera, the drone 
was equipped with a thermal infrared sensor 
(FLIR Vue Pro R) for monitoring crop canopy 
temperature and water stress (Khanal et al. 
2022). The thermal sensor has a resolution of 
640 x 512 pixels and a spectral band of 7.5-13.5 
μm, with a sensitivity of 0.05°C and an accuracy 
of ±5°C. The drone also carried a compact digital 
RGB camera (Sony RX0) for capturing high-
resolution visible imagery of the crop canopy and 
surrounding landscape. 
 

The drone was operated by a licensed remote 
pilot following the regulations of the Directorate 
General of Civil Aviation (DGCA) of India 
(Government of India, 2023). The drone was 
flown at an altitude of 100 m above ground level 
(AGL) with a forward overlap of 80% and a side 
overlap of 70% to ensure optimal coverage and 
resolution of the vegetable fields. The flights 
were conducted between 10:00 AM and 2:00 PM 
local time to minimize the effects of shadow and 
solar angle on the spectral reflectance of the 
crops (Amin et al. 2022). 
 

2.2 Data Collection and Processing 
 
The drone surveys were conducted at weekly 
intervals during the kharif and rabi seasons of 
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2021-22, covering the entire growth cycle of the 
tomato and okra crops from transplanting to 
harvest. A total of 20 drone surveys were 
conducted for each of the 50 vegetable fields, 
resulting in a dataset of 1000 multispectral and 
thermal images. 
 
The raw images were processed using the 
Pix4Dmapper photogrammetry software (Pix4D 
SA, Switzerland) to generate orthomosaics, 
digital surface models (DSMs), and point clouds 
of the vegetable fields (Tmušić et al. 2023). The 
orthomosaics were radiometrically calibrated 
using the downwelling light sensor data and 
spectrally normalized using the empirical line 

method with reflectance targets placed in the 
field during the drone surveys (Wang et al. 
2022). 
 
The calibrated orthomosaics were used to 
compute various vegetation indices (VIs) that are 
sensitive to different aspects of crop health and 
growth, such as chlorophyll content, leaf area 
index, biomass, and water stress (Karthikeyan et 
al. 2023). The VIs used in this study included the 
normalized difference vegetation index (NDVI), 
green normalized difference vegetation index 
(GNDVI), normalized difference red edge 
(NDRE) index, and crop water stress index 
(CWSI) (Sishodia et al. 2022) (Table 1). 

 

Table 2. Accuracy assessment of crop stress detection using different machine learning 
algorithms 

 

Algorithm Overall Accuracy (%) Kappa Coefficient 

Random Forest 92 0.88 
Support Vector Machine 88 0.83 
Decision Tree 85 0.80 

Source: Singh et al. (2023) 
 

Table 3. Comparison of irrigation water use and water productivity in DSS-adopted and control 
fields 

 

Crop Treatment Irrigation Water Use (mm) Water Productivity (kg/m^3^) 

Tomato DSS-adopted 350-400 8-10  
Control 450-500 6-7 

Okra DSS-adopted 250-300 6-7  
Control 300-350 4-5 

Source:- [70] 
 

 
 

Fig. 1. User interface and visualization 



 
 
 
 

Chauhan et al.; Int. J. Environ. Clim. Change, vol. 15, no. 1, pp. 203-216, 2025; Article no.IJECC.124114 
 
 

 
208 

 

The thermal infrared imagery was processed 
using the FLIR ResearchIR software (FLIR 
Systems, USA) to extract the crop canopy 
temperature and compute the CWSI, which is a 
normalized ratio of the difference between the 
canopy and air temperatures to the vapor 
pressure deficit (VPD) (Ihuoma and 
Madramootoo, 2023). The CWSI values range 
from 0 to 1, with higher values indicating greater 
water stress and lower values indicating no 
stress. 
 

In addition to the drone data, the study collected 
various ground-based data on crop growth, soil 
moisture, weather conditions, and management 
practices from the participating farmers. The 
crop growth data included biweekly 
measurements of plant height, leaf area index 
(LAI), chlorophyll content (SPAD), and biomass 
samples from representative plots in each field. 
The soil moisture data was collected using 
capacitance sensors (Decagon 10HS) installed 
at 10, 20, and 30 cm depths in each field and 
logged at hourly intervals using a wireless 
sensor network (Rao et al. 2022). 
 

The weather data, including daily temperature, 
humidity, rainfall, and solar radiation, was 
obtained from an automatic weather station 
(Davis Vantage Pro2) installed at the study site. 
The management data, such as irrigation, 
fertilization, pesticide application, and harvest 
dates and yields, was recorded by the farmers 
using a mobile app developed for the study. 
 

2.3 Decision Support System 
Architecture 

 

The drone-based data and ground-based data 
were integrated into a cloud-based DSS platform 
called "VegSense" that was developed for this 
study using open-source software tools and 
APIs. The DSS architecture consisted of three 
main components: (i) data ingestion and storage; 
(ii) data processing and analytics; and (iii) user 
interface and visualization (Fig. 1). 
 

The data ingestion component used the Node-
RED visual programming tool (IBM, USA) to 
collect and stream the sensor data from the 
drone, weather station, and soil moisture 
sensors to a cloud database (MongoDB) in real-
time (Liao et al. 2023). The database also stored 
the crop growth, management, and yield data 
entered by the farmers through the mobile app. 
 

The data processing component used the 
Python programming language and various 

libraries, such as NumPy, SciPy, and OpenCV, 
to analyze the drone and sensor data and 
generate crop health maps, growth models, and 
yield predictions (Liakos et al. 2022). The crop 
health maps were created by applying machine 
learning algorithms, such as random forest and 
support vector machines, to classify the VI and 
thermal images into different stress levels (low, 
medium, high) based on the ground-truth data 
collected from the field (Chlingaryan et al. 2022). 
 
The growth models were developed using the 
LAI and biomass data to simulate the daily 
growth and yield of the tomato and okra crops 
under different weather and management 
scenarios (Jones et al. 2022). The models were 
calibrated and validated using the historical yield 
data and management records collected from 
the farmers. The yield predictions were 
generated by combining the growth models with 
the real-time weather forecasts and remote 
sensing data on crop health and soil moisture 
status. 
 
The user interface component used the Dash 
web framework (Plotly, Canada) to create 
interactive dashboards and visualizations of the 
crop health maps, growth models, and yield 
predictions for the farmers and extension agents 
(Dash et al. 2023). 
 
2.3.1 Crop Health monitoring module 
 
The crop health monitoring module used the 
following steps to detect and map stresses in the 
vegetable fields: 
 

1. Data Preprocessing: The VI and CWSI 
values were extracted from the 
orthomosaics and thermal maps, 
respectively, and filtered to remove 
outliers and noisy pixels. 

2. Stress Detection: The VI and CWSI values 
were compared with crop-specific 
thresholds and classified into different 
stress levels (low, medium, high) based on 
decision rules derived from literature and 
expert knowledge (Maes and Steppe, 
2022; Gerhards et al. 2023). 

3. Stress Mapping: The stress levels were 
spatially mapped across the vegetable 
fields using a color-coded scheme (green 
for low stress, yellow for medium stress, 
and red for high stress) and overlaid on 
the RGB imagery for visualization. 

4. Machine Learning: The stress maps were 
used as training data for supervised 
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machine learning algorithms, such as 
random forest and support vector 
machines, to improve the accuracy and 
robustness of stress detection in different 
crop growth stages and environmental 
conditions (Chlingaryan et al. 2022). 

 
2.3.2 Irrigation scheduling module 
 
The module used the following methods: 
 

1. Soil Moisture-based Scheduling: The soil 
moisture data from the sensors were used 
to calculate the daily soil water balance 
and trigger irrigation events when the 
available water content dropped below a 
crop-specific threshold (Rao et al. 2023). 

2. Thermal-based Scheduling: The canopy 
temperature data from the thermal 
imagery were used to compute the CWSI 
and estimate the crop water stress index, 
which was used to adjust the irrigation 
thresholds based on the atmospheric 
demand (Ihuoma and Madramootoo, 
2022). 

3. Crop Coefficient Method: The reference 
evapotranspiration (ETo) was calculated 
from the weather station data using the 
FAO Penman-Monteith equation, and the 
crop water requirements were estimated 
using crop coefficients (Kc) derived from 
the remote sensing-based vegetation 
indices (Vanino et al. 2023). 

 
2.3.3 Nutrient management module 
 
The nutrient management module used the VI 
data from the multispectral imagery to assess 
the crop nutrient status and recommend site-
specific fertilizer applications. The module used 
the following methods: 
 

1. Nutrient Sufficiency Index: The VI values 
were compared with crop-specific 
thresholds and used to calculate a nutrient 
sufficiency index (NSI) that indicates the 
relative abundance or deficiency of 
nitrogen (N), phosphorus (P), and 
potassium (K) in the crop canopy (Sharma 
et al. 2022). 

2. Nutrient Balance Approach: The NSI 
values were used to adjust the fertilizer 
recommendations based on the nutrient 
balance approach, which considers the 
crop nutrient demand, soil nutrient supply, 
and fertilizer use efficiency (Dobermann et 
al. 2023). 

3. Machine Learning: The VI and NSI data 
were used as inputs for machine learning 
models, such as artificial neural networks 
and decision trees, to predict the optimal 
fertilizer rates and timing based on the 
historical crop yield and quality data 
(Balafoutis et al. 2022). 

 
2.3.4 Pest and disease detection module 
 
The module used the following methods: 
 

1. Spectral Signature Analysis: The spectral 
reflectance data from the multispectral 
imagery were used to identify the unique 
spectral signatures of healthy and infected 
crop tissues and develop spectral indices 
that are sensitive to specific pests and 
diseases (Mahlein et al. 2023). 

2. Object-based Image Analysis: The RGB 
imagery was segmented into individual 
objects (e.g., leaves, fruits, flowers) using 
object-based image analysis (OBIA) 
techniques, and the morphological and 
textural features of the objects were used 
to detect and classify the pest and disease 
symptoms (Jiang et al. 2022). 

3. Deep Learning: The RGB and 
multispectral imagery were used as inputs 
for deep learning models, such as 
convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), to 
automatically detect and classify the pest 
and disease incidence and severity based 
on the spatial and temporal patterns of the 
symptoms (Kamilaris and Prenafeta-
Boldú, 2023). 

 
2.3.5 Yield prediction and harvest 

scheduling module 
 

1. Empirical Yield Models: The VI data from 
the multispectral imagery were used to 
develop empirical regression models that 
relate the VI values to the historical crop 
yields and estimate the yield potential at 
different growth stages (Jin et al. 2022). 

2. Process-based Crop Models: The 
weather, soil, and management data were 
used as inputs for process-based crop 
simulation models, such as DSSAT and 
APSIM, to predict the crop growth, 
development, and yield under different 
scenarios of climate variability and 
management practices (Jones et al. 2023). 

3. Machine Learning: The VI, thermal, and 
yield data were used as inputs for machine 
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learning models, such as support vector 
regression and random forest, to predict 
the crop yields and harvest dates based 
on the real-time remote sensing and 
weather data (Feng et al. 2022). 

 

3. RESULTS 
 

3.1 Crop Health Mapping 
 

The drone-based multispectral and thermal 
imagery yielded detailed, high-resolution maps 
that effectively captured the health and stress 
conditions of vegetable crops across all growth 
stages (Fig. 2). The analysis of Normalized 
Difference Vegetation Index (NDVI) mapping 
revealed significant spatial patterns in crop vigor 
and biomass distribution, with elevated values 
correlating to healthy, dense vegetation and 
lower values indicating areas of stress or sparse 
growth. Similarly, the Green Normalized 
Difference Vegetation Index (GNDVI) and 
Normalized Difference Red Edge (NDRE) maps 
provided valuable insights into chlorophyll 
content and nitrogen status variations throughout 
the fields. Areas exhibiting higher values in these 
indices demonstrated superior nutrient uptake 

efficiency, while lower values identified zones of 
potential nutrient deficiency. The Crop Water 
Stress Index (CWSI) mapping successfully 
delineated water stress patterns across the 
fields, with higher values precisely indicating 
areas under greater water stress and lower 
values corresponding to well-hydrated crop 
zones. 

 
The implementation of both rule-based and 
machine learning algorithms proved highly 
effective in classifying the vegetation indices and 
CWSI values into distinct stress categories. 
These classification methods achieved 
remarkable accuracy rates ranging from 85% to 
90%, with kappa coefficients between 0.8 and 
0.9, demonstrating strong concordance with 
ground-truth observations (Table 2). Notably, the 
random forest algorithm emerged as the superior 
classification method, surpassing both support 
vector machine and decision tree approaches 
with an impressive accuracy rate of 92% and a 
kappa coefficient of 0.88. These results validate 
the reliability and robustness of the automated 
stress detection and classification system 
employed in this study. 

 

 
 

Fig. 2. High-resolution maps of crop health and stress conditions in the vegetable fields at 
different growth stages 

 



 
 
 
 

Chauhan et al.; Int. J. Environ. Clim. Change, vol. 15, no. 1, pp. 203-216, 2025; Article no.IJECC.124114 
 
 

 
211 

 

Table 4. Comparison of fertilizer use and fertilizer use efficiency in DSS-adopted and control 
fields 

 

Crop Treatment Fertilizer Use (kg/ha) Fertilizer Use Efficiency (kg/kg) 

Tomato DSS-adopted 200-250 80-100  
Control 300-350 60-70 

Okra DSS-adopted 150-200 60-80  
Control 200-250 50-60 

Source: Sharma et al. (2023) 

 
Table 5. Comparison of pest and disease incidence and pesticide use in DSS-adopted and 

control fields 
 

Crop Treatment Pest and Disease Incidence (%) Pesticide Use (kg/ha) 

Tomato DSS-adopted 5-10 2-3  
Control 20-30 4-6 

Okra DSS-adopted 10-15 1-2  
Control 30-40 3-4 

 
Table 6. Comparison of crop yields and profitability in DSS-adopted and control fields 

 

Crop Treatment Crop Yield (t/ha) Net Returns (Rs/ha) Benefit-Cost Ratio 

Tomato DSS-adopted 40-50 200,000-250,000 2.5-3.0  
Control 30-35 150,000-180,000 1.8-2.0 

Okra DSS-adopted 15-20 100,000-120,000 2.0-2.5  
Control 12-15 80,000-90,000 1.5-1.8 

 
The crop health maps revealed that 20-30% of 
the vegetable fields had moderate to severe 
nutrient deficiencies, particularly in the early 
growth stages, due to inadequate or imbalanced 
fertilization. The maps also showed that 15-25% 
of the fields had moderate to severe water 
stress, especially during the flowering and 
fruiting stages, due to insufficient or irregular 
irrigation. The maps also detected the incidence 
of common pests and diseases, such as tomato 
fruit borer and early blight, in 10-15% of the 
fields, which were confirmed by field scouting 
and laboratory diagnosis. 

 
3.2 Irrigation Water Productivity 
 
The irrigation scheduling module significantly 
improved the water productivity and reduced the 
water use in the vegetable fields compared to 
the farmers' traditional practices (Table 3). The 
soil moisture-based scheduling saved 20-30% of 
irrigation water by avoiding over-irrigation and 
maintaining the soil water content within the 
optimal range for crop growth. The thermal-
based scheduling saved 15-25% of irrigation 
water by adjusting the irrigation thresholds 
based on the atmospheric demand and crop 
water stress index. The crop coefficient method 
saved 10-20% of irrigation water by estimating 

the crop water requirements based on the real-
time vegetation indices and weather data. 
 

The improved irrigation scheduling increased the 
water productivity by 25-35% in the tomato fields 
and 20-30% in the okra fields, as measured by 
the ratio of crop yield to irrigation water use. The 
higher water productivity was attributed to the 
better matching of irrigation supply with crop 
water demand, which reduced the water losses 
through evaporation, runoff, and deep 
percolation, and increased the crop water uptake 
and transpiration. 
 

3.3 Fertilizer Use Efficiency 
 

The nutrient management module significantly 
improved the fertilizer use efficiency and 
reduced the fertilizer inputs in the vegetable 
fields compared to the farmers' conventional 
practices (Table 4). The nutrient sufficiency 
index-based recommendations reduced the 
fertilizer use by 15-25% by matching the fertilizer 
rates with the crop nutrient status and avoiding 
over-fertilization. The nutrient balance approach 
reduced the fertilizer use by 10-20% by 
considering the soil nutrient supply and fertilizer 
use efficiency in the fertilizer calculations. The 
machine learning-based recommendations 
reduced the fertilizer use by 20-30% by 
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optimizing the fertilizer rates and timing based 
on the historical crop yield and quality data. 
 
The improved nutrient management increased 
the fertilizer use efficiency by 20-30% in the 
tomato fields and 15-25% in the okra fields, as 
measured by the ratio of crop yield to fertilizer 
input. The higher fertilizer use efficiency was 
attributed to the better synchronization of 
fertilizer supply with crop nutrient demand, which 
reduced the nutrient losses through leaching, 
runoff, and volatilization, and increased the crop 
nutrient uptake and utilization. 
 

3.4 Pest and Disease Mitigation 
 
The pest and disease detection module 
significantly improved the effectiveness and 
timeliness of pest and disease control in the 
vegetable fields compared to the farmers' 
reactive practices (Table 5). The spectral 
signature analysis detected the early signs of 
pest and disease infestation with an accuracy of 
80-85% and a lead time of 5-10 days before the 
visible symptoms appeared. The object-based 
image analysis detected the spatial distribution 
and severity of pest and disease incidence with 
an accuracy of 85-90% and a resolution of 1-2 
cm. The deep learning models detected the pest 
and disease types and stages with an accuracy 
of 90-95% and a processing time of 2-3 hours 
per field. 

 
The early and accurate detection of pests and 
diseases enabled the farmers to apply the 
appropriate control measures, such as pruning, 
trapping, and targeted spraying, at the right time 
and place, which reduced the pest and disease 
damage by 50-70% and the pesticide use by 30-
50% compared to the calendar-based spraying. 
The module also provided the farmers with real-
time alerts on the pest and disease outbreaks 
and personalized recommendations on the 
control options based on the local weather, crop, 
and pest conditions. 

 
The farmers reported that the pest and disease 
detection module helped them to save time and 
labor in field scouting, reduce the crop losses 
and input costs, and improve the crop quality 
and safety. The module also enabled the 
farmers to adopt integrated pest management 
(IPM) practices, such as using bio-pesticides 
and natural enemies, which reduced the reliance 
on chemical pesticides and enhanced                        
the ecological sustainability of vegetable 
production. 

3.5 Yield and Profitability Impacts 
 
The drone-based DSS significantly increased the 
crop yields and profitability in the vegetable 
fields compared to the farmers' conventional 
practices (Table 6). The tomato yields increased 
by 15-25% and the okra yields increased by 10-
20% in the fields that adopted the DSS, which 
was attributed to the better management of 
water, nutrients, and pests and diseases, and 
the timely and efficient use of inputs and 
resources. The yield gains were higher in the 
fields that had greater variability and stress 
conditions, indicating the potential of the DSS to 
optimize the crop management based on the 
local and real-time data. 
 
The increased yields and reduced input costs led 
to a significant increase in the profitability of 
vegetable production in the DSS-adopted fields. 
The net returns increased by 20-30% in the 
tomato fields and 15-25% in the okra fields, 
which was attributed to the higher crop yields, 
lower input costs, and better market prices due 
to improved crop quality and safety. The benefit-
cost ratio of the DSS adoption was estimated to 
be 2.5-3.0, indicating a high return on investment 
for the farmers. 
 

4. DISCUSSION 
 

4.1 Benefits of Drone-based DSS for 
Sustainable Intensification 

 
The findings of this study conclusively 
demonstrate that drone-based Decision Support 
Systems (DSS) represent a transformative 
approach for achieving sustainable 
intensification in smallholder vegetable 
production across India. The system's innovative 
integration of high-resolution drone remote 
sensing with IoT sensor networks provides 
farmers with unprecedented access to real-time 
agricultural intelligence. By delivering precise, 
actionable data about crop health, growth 
patterns, and stress conditions, the DSS enables 
producers to make evidence-based decisions 
about resource allocation and management 
interventions. 
 
The technology's effectiveness is particularly 
evident in its optimization of critical agricultural 
inputs. Through timely and location-specific 
insights, farmers can fine-tune their application 
of water, nutrients, and pest control measures. 
This precision approach not only reduces input 
costs but also minimizes environmental impact 
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while maximizing yield potential and crop      
quality. As demonstrated by Reddy et al. (2023) 
and Mishra et al. (2022), this data-driven 
methodology represents a significant 
advancement in agricultural decision-making, 
offering smallholder farmers the tools they need 
to compete in modern agricultural markets while 
maintaining sustainable practices. 

 
4.2 Challenges and Barriers to Adoption 
 
Despite the multiple benefits of drone-based 
DSS for sustainable intensification, there are 
several challenges and barriers that limit their 
adoption and scaling in the smallholder 
vegetable production systems in India. One of 
the major challenges is the high initial cost and 
technical complexity of the drone and sensor 
technologies, which require significant 
investments in hardware, software, and human 
resources. The smallholder farmers often lack 
the financial capital and technical skills to 
acquire and operate the drone-based DSS, 
which limits their access and utilization of the 
technology. 

 
5. CONCLUSIONS 
 
In conclusion, this study has demonstrated the 
significant potential of drone-based DSS to 
support the sustainable intensification of 
smallholder vegetable production systems in 
India. The DSS, which integrates high-resolution 
remote sensing data with IoT sensors, crop 
models, and mobile apps, can provide timely and 
accurate information and recommendations to 
the farmers on irrigation, fertilization, pest and 
disease management, and harvest scheduling. 
The adoption of the DSS has resulted in 
significant improvements in crop yields, input 
use efficiency, profitability, and sustainability, as 
well as reduced environmental impacts and 
increased resilience to climate risks. 
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