

European Journal of Nutrition & Food Safety

Volume 17, Issue 1, Page 145-165, 2025; Article no.EJNFS.129421 ISSN: 2347-5641

A Comprehensive Analysis for Global Food Security and Environmental Sustainability Using Edible Insects

Anil Varma Nalla a++* and K Kumar b#

^a National Seed Research and Training Centre, Varanasi, India.
 ^b Department of Agricultural Entomology, Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ejnfs/2025/v17i11626

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/129421

Received: 11/11/2024 Accepted: 13/01/2025 Published: 15/01/2025

Review Article

ABSTRACT

This comprehensive analysis examines insects' potential as sustainable food and feed sources, focusing on various scholarly views and empirical studies. Edible insects offer a viable answer to global food security issues because of their high nutritional content, efficient feed conversion rates, and lesser environmental effects when compared to traditional cattle. Nutrient composition investigations show that insects are high in proteins, vitamins, and minerals, making them acceptable for human and animal diets. Consumer acceptability surveys show that western countries are becoming more open to entomophagy, yet cultural hurdles still exist. Life cycle assessments show that insect farming benefits the environment by reducing greenhouse gas

Cite as: Nalla, Anil Varma, and K Kumar. 2025. "A Comprehensive Analysis for Global Food Security and Environmental Sustainability Using Edible Insects". European Journal of Nutrition & Food Safety 17 (1):145-65. https://doi.org/10.9734/ejnfs/2025/v17i11626.

⁺⁺ Junior seed analyst;

[#] Professor & Head;

^{*}Corresponding author: Email: anilvarmanalla @gmail.com;

emissions and water footprints. Safety assessments confirm the possibility of introducing insects into food systems if strict requirements are followed to reduce microbial hazards. Economic analyses indicate that the sale of insects can improve livelihoods and contribute to sustainable agriculture. Despite the potential benefits, more study is required to solve regulatory, ethical, and consumer perception issues before completely integrating insects into global food systems. Research is needed to establish optimal farming methods, strengthen food safety, understand the health impacts of consumption, explore consumer acceptance, tackle ethical considerations, and investigate economic viability. This review emphasized the necessity for multidisciplinary approaches to promote entomophagy and harness its potential for a sustainable future.

Keywords: Global food security; environmental sustainability; food; edible insects.

1. INTRODUCTION

1.1 Edible Insects

The edible insects, commonly known as entomophagy, are the practice to describe consuming insects for food (van Huis et al., 2013). This practice has been part of human diets for millennia and remains a traditional food source in many communities worldwide (Ramos-Elorduy, 2009). With growing concerns about sustainability, food security, and environmental impact, edible insects are emerging as a viable alternative to conventional protein sources (Gahukar 2011). Consumption of insects is not a novel concept. It began in ancient times when early humans foraged for food (Bodenheimer, 1951). Many ancient texts, including the Bible writinas. Aristotle's mention consumption. Entomophagy is common in Africa, Asia, and Latin America, where insects are harvested or reared for food (Durst and Shono, 2010).

Edible insects are eaten in a variety of ways. Edible insects include beetles, caterpillars, bees, wasps, ants, grasshoppers, locusts, crickets, and cicadas (van Huis et al. 2013). Insects are very nutritious, providing a rich amount of protein, lipids, vitamins, and minerals. They often contain similar, if not greater, levels of protein than regular animals. For example, crickets provide 60-70% protein and are high in iron, vitamin B12, and essential amino acids (Rumpold and Schlüter, 2013). The nutritional value varies by species: however, insects are considered a healthy source of nutrients (Van Huis et al., 2013).

Food insecurity in some world regions as well as an increasing demand for and rising cost of animal protein will require a significant increase of food production and will place an unprecedentedly heavy burden on limited natural

resources. In the of context achieving environmentally sustainable food security worldwide, edible insects as a future food for humans have become an issue of increasing interest (Lange and Nakamura. Addressing food insecurity requires multifaceted approach that involves the efforts of governments, organizations, and individuals to ensure access to a balanced and nutritious diet for all (Yılmaz and Günal, 2023).

Farming has great environmental advantages. Insects have a high feed conversion efficiency; thus, they use less feed to produce the same amount of protein as conventional cattle (van Huis et al., 2013). They also produce less greenhouse emissions, use less water, and occupy less space (Oonincx et al., 2010). This makes insect farming a more sustainable solution to meeting the protein needs of a rising global population (Van Huis et al., 2013). For instance, mealworms produce 2-10 times less greenhouse gases compared to traditional livestock (Oonincx et al., 2010).

The edible insect business is expanding into a viable market. Insect farming may be a cost-effective enterprise, with lower initial and recurring costs than traditional cattle farming (Halloran et al., 2016). This sector provides opportunities for small-scale farmers and entrepreneurs, especially in underdeveloped countries where insects are already a diet staple (Van Huis et al. 2013). The global market for edible insects is projected to reach \$1.2 billion by 2023, reflecting growing commercial interest and investment (Gahukar, 2011).

Despite the benefits, various barriers are preventing edible insects from being generally recognized. These include psychological and cultural challenges, since eating insects is not a common practice in many Western nations (Ruby et al., 2015). There are further regulatory

difficulties since many places have yet to adopt food safety laws for insect-derived products (Van der Spiegel et al., 2013). Market acceptance of insect-based meals is dependent on maintaining consistent quality and safety (Caparros Megido et al., 2014). For example, in Europe, regulatory frameworks are being developed to ensure the safety and standardization of insect-based foods (Van der Spiegel et al., 2013).

Edible insects provide a healthy, ecologically sustainable, and financially viable alternative to conventional animal proteins. They have the potential to greatly help to solving global food security concerns as awareness and acceptance grow (FAO, 2013). The introduction of edible insects into the general public's diets will be dependent on consumer education, research, and regulatory development (House, 2016).

2. NUTRITIONAL BENEFITS

2.1 High Protein Content

Edible insects have a high protein content, which is one of their main nutritional benefits. According

to Rumpold and Schlüter (2013), the protein content of insects such as grasshoppers, mealworms, and crickets varies from 50 to 80 percent by dry weight, making them comparable to or even more so than traditional meat sources such as fish, chicken, and cattle. Furthermore, insect proteins are a complete protein supply since they include all essential amino acids for human health (Belluco et al., 2013). But in a few cases insect proteins, particularly those involved in muscle function, can act as allergens, causing allergic reactions in susceptible individuals.

2.2 Rich in Healthy Fats

Edible insects are also a rich source of hearthealthy lipids including polyunsaturated fatty acids (PUFA). Mealworms, for example, are high in omega-3 and omega-6 fatty acids, both of which are important for reducing inflammation and safeguarding cardiovascular health. Insect fats are a heart-healthy alternative to traditional animal fats since they improve the overall nutritional profile of the diet.

Fig. 1. Flour beetle larva cultured for feeding chicken (Credit: Getty images)

Fig. 2. Zhongshan Road Street Food Night Market in Nanning (Credit: Getty images)

2.3 Vitamins and Minerals

Insects are an excellent source of essential minerals and vitamins. For example, they are high in B vitamins, which are necessary for energy metabolism, skin and nerve health, as well as riboflavin, pantothenic acid, and biotin (Finke 2013). Insects also provide considerable quantities of minerals such as calcium, magnesium, zinc, iron, and zinc. Because insect-derived iron is highly bioavailable—that is, readily absorbed by the body—it may help cure anemia and iron deficiency, especially in developing countries (Yi et al., 2013).

2.4 Low Carbohydrate Content

Edible insects have minimal carbohydrates, making them an excellent protein source for individuals following a low-carb or ketogenic diet. Chitin, a kind of fiber found in insect exoskeletons, makes up the bulk of the carbohydrate content and may benefit digestive health (van Huis et al., 2013).

2.5 Bioactive Compounds

In addition to macronutrients and micronutrients, edible insects include a variety of bioactive compounds that may benefit one's health. For example, certain insects contain antioxidants that may help protect the body from oxidative stress and inflammation (Halloran et al., 2018). Additionally, certain insects contain antimicrobial peptides that may improve gut health and immunity (Makkar et al., 2014).

2.6 Digestibility and Absorption

Insect protein has comparable digestion to traditional animal proteins. According to Janssen et al. (2017), some insect proteins have a protein digestibility-corrected amino acid (PDCAAS) equivalent to soy and beef, indicating good quality and efficient absorption. This high digestibility guarantees that the nutrients found in insects are effectively absorbed by the human body. While we need to be aware of chitin a polysaccharide which forms the hard outer shell of insects and while it can be beneficial in some forms (like chitosan) as a dietary fiber, its presence in large quantities can make it difficult for the human body to digest the protein within the insect.

2.7 Potential for Enhancing Food Security

Edible insects, with their high nutritional profile, have the potential to improve food security,

particularly in areas where malnutrition is common. They can provide an economical and accessible source of high-quality nutrition, resulting in better health outcomes and less reliance on traditional livestock, which can be resource-intensive (FAO, 2013).

3. ENVIRONMENTAL IMPACT

3.1 High Feed Conversion Efficiency

One of the most significant environmental advantages of edible insects is their high feed conversion efficiency. Insects are far more effective at converting feed into body mass than typical cattle. This effective feed conversion saves resources and can greatly lessen the environmental impact of food production.

3.2 Reduced Greenhouse Gas Emissions

Insect farming emits much fewer greenhouse gases (GHGs) than conventional animal production. In contrast to cattle and pigs, insect production emits small amounts of methane and nitrous oxide. According to one study, mealworms produce 10 to 100 times fewer GHGs per kilogram of protein than conventional livestock like cows, pigs, and chickens (Oonincx et al., 2010). This reduction in GHG emissions makes insect farming a more environmentally responsible choice.

3.3 Lower Water Usage

Water scarcity is a developing global concern, and traditional livestock production consumes a significant number of freshwater resources. In comparison, insect farming requires far less water. For example, producing 1 kilogram of beef can use up to 15,000 liters of water, whereas creating the same quantity of edible insect protein requires substantially less water (Miglietta et al., 2015). This lower water use is especially beneficial in arid and semi-arid areas where water is scarce.

3.4 Minimal Land Use

Insects can be cultivated in small places and do not require enormous areas of land for grazing or considerable infrastructure. This makes insect farming extremely scalable and appropriate for urban areas or locations with little agricultural land. Insects can also be raised in vertical farming systems, allowing for even more efficient use of available space. This minimum land usage can help to protect natural areas and biodiversity.

Table 1. Nutritional benefits of some edible insects

Insect	Protein (g/100g)	Fat (g/100g)	Carbohydrates (g/100g)	Fiber (g/100g)	Key Vitamins & Minerals	Additional Benefits
Crickets	12.9	5.5	5.1	2.2	B12, Iron, Zinc, Omega-3, Omega-6	High in complete protein
Mealworms	20.3	13.4	5.2	2.2	Potassium, Iron, Zinc, Selenium	High in healthy fats
Grasshoppers	20.6	6.1	3.9	2.2	B12, Iron, Zinc, Magnesium	High in essential amino acids
Silkworms	9.6	5.6	2.3	1.2	B2, B12, Iron, Magnesium, Calcium	Low in calories, good for weight control
Ants	13.9	3.5	5.1	2.4	Iron, Zinc, Magnesium	Low in fat
Beetles	19.8	14.0	2.4	1.8	B12, Iron, Zinc, Magnesium	High in protein and fats
Termites	14.2	9.8	2.9	1.3	Iron, Calcium, Magnesium	Rich in iron
Caterpillars	28.2	10.1	4.7	2.7	B1, B2, B3, B5, B6, B12, Iron, Magnesium	High protein content

Table 2. Nutrient comparisons between insects and traditional protein sources

Nutrient	Insects (e.g., crickets, mealworms)	Beef	Poultry (e.g., chicken breast)	
Protein (g/100g)	20–70	~26	~31	
Fat (g/100g)	5-35 (varies by species)	~15	~3	
Carbohydrates (g/100g)	0-20 (chitin contributes to fiber)	~0	~0	
Energy (kcal/100g)	100–500	~250	~165	
Iron (mg/100g)	5–20	~2.6	~1	
Zinc (mg/100g)	10–25	~4	~1	
Vitamin B12 (µg/100g)	1–8	~2.5	~0.3	
Omega-3 Fatty Acids (mg/100g)	50-500 (in some species)	~30	~50	
Fiber (g/100g)	2-10 (from chitin, unique to insects)	0	0	

3.5 Utilization of Organic Waste

Insects can be cultivated using organic waste items like food scraps, agricultural wastes, and even animal dung. This capacity to repurpose trash not only lessens the demand for conventional feed resources, but it also aids in waste management and recycling. For example, black soldier fly larvae may transform organic waste into high-quality protein and fat, lowering waste volume by up to 50% (Diener et al., 2011). This approach helps to create a more circular and sustainable food economy. Waste-fed insect farming is efficient and sustainable, converting organic waste into protein-rich biomass.

3.6 Biodiversity Conservation

Traditional livestock husbandry often results in deforestation, habitat damage, and biodiversity loss due to the necessity for grazing pasture and feed crop production. In contrast, insect farming requires less area and may be integrated into current agricultural systems with less environmental impact. Insect farming can help conserve natural ecosystems and biodiversity by minimizing land resource pressure (Dossey et al., 2016).

3.7 Lower Risk of Antibiotic Resistance

The widespread use of antibiotics in conventional cattle farming is a key contributor to antibiotic resistance, which poses a serious threat to global health. Insect farming typically requires fewer antibiotics since insects are less susceptible to diseases that usually affect traditional cattle (van Huis et al. 2013). This decreased reliance on antibiotics lowers the likelihood of generating and transmitting antibiotic-resistant microorganisms.

3.8 Potential for Climate Change Mitigation

Large-scale insect farming can offset the consequences of climate change. Reduced GHG emissions, decreased water and land use, and the ability to recycle organic waste all help to create a more sustainable and resilient food production system. As global temperatures rise climate change reduces agricultural production, edible insects present a feasible for ensuring food security environmental sustainability (FAO, 2013).

3.9 Ethical Concerns and Scalability

Ethical concerns include insect sentience, farming conditions, and waste contamination

risks. Scalability depends on safe waste streams, automation, regulation, and market demand. Transparent practices, research, and public education are vital for balancing ethics with widespread adoption.

4. ECONOMIC ASPECTS

4.1 Cost-effective Production

Insect farming is substantially cheaper than traditional animal production. Insects demand less feed, use less water, and require less space than conventional cattle, resulting in costeffectiveness. For example, crickets require only 1.7 kilograms of feed to create one kilogram of body mass, but calves require around 8 kilograms of feed to achieve the same weight increase (Oonincx and de Boer, 2012). This high conversion efficiency leads to decreased feed costs. Furthermore, insect farms do not require the costly infrastructure and equipment for producing cattle, pigs, or poultry, making them to small-scale farmers entrepreneurs (van Huis et al., 2013).

4.2 Low Capital Investment

Starting an insect farm requires little upfront investment. In contrast to traditional livestock farming, the infrastructure necessary for insect farming, such as containers, breeding apparatus, and feeding systems, is less expensive. This lower barrier to entry allows more people, particularly in underdeveloped countries, to pursue insect farming as a viable vocation. Small-scale farmers can begin with investments as low as \$100 to \$200 and gradually expand their operations as they gain experience and market access (Halloran et al., 2016). This technique has the potential to promote economic development and alleviate poverty by offering a new source of revenue for rural communities.

4.3 Market Prospects for Growth

Insects that can be eaten are a booming business. The demand for items made from insects is increasing as more and more people learn about the nutritional and environmental advantages of eating insects. Forecasts indicate that the worldwide edible insect industry would rise from its 2019 valuation of about \$112 million to a whopping \$1.5 billion by 2026, a CAGR (compound annual growth rate) of 28%. There are a lot of opportunities for businesses and investors in the agricultural and food sectors in

this fast-growing sector. Whole insects, protein powders made from insects, snacks made from insects, and additions to animal feed derived from insects are just a few of the many goods that entrepreneurs may create.

4.4 Generating Employment Opportunities

Insect farming can create job possibilities at many points of the supply chain. From farming and processing to marketing and sales, the edible insect industry generates employment at all levels. Small-scale farms can create jobs in local communities. promoting economic development and improving livelihoods. Furthermore, the rising market for insect-based goods creates new economic opportunities in food processing, packaging, and distribution, which expands the labour market (Muller et al., 2017). For example, in Thailand, insect farming has provided jobs for over 20,000 families, while in Kenya, a cricket processing facility employs over 300 people (FAO, 2021). This employment generation potential is especially important in poorer countries where job options may be scarce.

4.5 High Feed Conversion Efficiency

Insects convert feed to edible body mass more efficiently than traditional cattle, resulting in lower feed costs. This high feed conversion efficiency lowers total production costs and may make insect farming more economically viable, particularly in resource-constrained places. This

efficiency results in less waste and greater resource usage.

4.6 Value-Added Products

Edible insects can be processed to provide a variety of value-added goods, such as protein powders, snacks, and insect-based animal feed. These goods can fetch higher market prices, generating additional cash for insect growers and processors. Cricket flour, for example, is a popular component in protein bars, drinks, and baked goods marketed to health-conscious consumers and fitness enthusiasts (Payne et al. 2016). The capacity to produce value-added goods from insects enables farmers enterprises to diversify their offers and enter boosting profitability markets, and economic sustainability.

4.7 Waste Reduction and Utilization

Insect farming can reduce waste by using organic waste as feed. Black soldier fly larvae, for example, can efficiently convert food waste and agricultural by-products into high-quality protein and fat, significantly reducing waste volume (Diener et al., 2011). Studies have shown that black soldier fly larvae can reduce food waste by up to 50-70%, converting it into valuable biomass (van Huis et al., 2013). This not only helps in waste management but also creates a circular economy by recycling nutrients back into the food system. Farmers can benefit from this approach, as it provides a cost-effective feed alternative while contributing environmental sustainability.

Table 3. Environmental impact of edible insects

Environmental Aspect	Edible Insects	Reference(s)
Greenhouse Gas	Significantly lower compared to livestock (e.g.,	FAO (2013), Rumpold
Emissions	cattle, pigs)	and Schlüter (2013)
Land Use	Require significantly less land compared to	FAO (2013), Oonincx and
	traditional livestock	de Boer (2012)
Water Use	Lower water requirements compared to livestock	FAO (2013), Van Huis et
		al. (2013)
Feed Conversion	More efficient at converting feed into edible body	FAO (2013), Rumpold
Efficiency	mass (e.g., crickets require 2 kg of feed per kg of	and Schlüter (2013)
	body mass)	
Biodiversity	Potential to reduce pressure on wild animal	Gahukar (2011), Van
	populations and preserve biodiversity	Huis et al. (2013)
Waste Reduction	Can be raised on organic waste, reducing food	FAO (2013), Van Huis et
	waste	al. (2013)
Ecosystem	Minimal ecosystem disturbance compared to	FAO (2013), Halloran et
Impact	livestock farming	al. (2016)

Table 4. Economic aspects of some edible insects

Economic Aspect	Details	Reference(s)
Cost of	Generally lower than traditional livestock due to	FAO (2013), Van Huis et
Production	lower feed and space requirements	al. (2013)
Market	Growing global market with increasing demand in	FAO (2013), Gahukar
Potential	Western countries	(2011)
Income for	Provides an additional source of income for small-	FAO (2013), Yen (2009)
Farmers	scale farmers in developing countries	
Investment	Attracts investments in farming, processing, and	FAO (2013), Rumpold &
Opportunities	distribution sectors	Schlüter (2013)
Employment	Creates job opportunities in farming, processing,	FAO (2013), Halloran et
Generation	and retail sectors	al. (2016)
Export Potential	Opportunities for export, especially from developing	FAO (2013), Van Huis et
	to developed countries	al. (2013)
Scalability	Highly scalable with potential for mass production	FAO (2013), Oonincx &
		de Boer (2012)
Supply Chain	Development of new supply chains and value-added	FAO (2013), Van Huis et
Development	products	al. (2013)
Food Security	Enhances food security by providing a sustainable	FAO (2013), Gahukar
	and affordable protein source	(2011)

4.8 Market Acceptance and Consumer Education

Market acceptance of edible insects is critical to their economic survival. While insect ingestion is common in many regions of the world, it is still relatively new in Western countries. Consumer education and awareness efforts are critical for removing psychological and cultural obstacles to insect intake. Successful marketing techniques and culinary innovations can contribute to the normalization of edible insects as a food source, hence raising demand and driving market growth.

Entomophagy faces initial consumer resistance due to cultural perceptions, the "yuck factor," and awareness of its nutritional environmental benefits. Whole insects are often unappealing, though processed forms like powders can ease adoption. Trust in safety and quality also influences acceptance. Regulatory compliance adds significant costs, including meeting strict food safety standards, lengthy approval processes (e.g., EU's Novel Foods Regulation), and implementing traceability systems to ensure product safety. Restrictions on using waste as insect feed may further increase operational Addressina expenses. challenges requires consumer education, innovative product designs, and streamlined regulatory frameworks to make insect-based foods more appealing and accessible.

5. CULINARY USES AND RECIPES

5.1 Introduction to Culinary Uses

For ages, numerous tribes around the world have consumed edible insects as part of their traditional meals. They are adaptable ingredients that can be cooked and consumed in a variety of ways, including whole insects and processed forms like powders and pastes. As interest in edible insects rises, they are being incorporated into modern culinary methods, providing distinct flavors and nutritional benefits. Below, we look at several common culinary uses and offer a few dishes that highlight the possibilities of insects as food

5.2 Common Culinary Uses

5.2.1 Whole insects

In many cultures, insects are eaten whole, roasted, fried, or boiled. Crickets, grasshoppers, mealworms, and caterpillars are among the most commonly eaten entire insects. They can be eaten as snacks, appetizers, or mixed into recipes for a crisp texture (van Huis et al., 2013).

5.2.2 Insect powder

Ground insects, such as cricket flour and mealworm powder, are popular due to their high protein content. These powders can be used in baking, smoothies, and other recipes to increase nutritional value without drastically changing the flavor (Payne et al., 2016).

5.2.3 Insect-Based snacks

Many companies now provide insect-based snacks like protein bars, chips, and crackers. These goods are intended to be convenient, pleasant, and nutritious, appealing to health-conscious consumers.

5.2.4 Insect paste

In some culinary traditions, insects are mashed into a paste and used as the foundation for sauces, soups, and stews. This approach is widespread in some African and Southeast Asian cuisines (van Huis et al., 2013).

5.2.5 Insect oil and fat

Extracted from insects such as black army fly larvae; insect oil and fat contain beneficial fatty acids. These can be cooked or added to processed foods (Diener et al., 2011).

5.3 Recipes Featuring Edible Insects

5.3.1 Coconut bread with cricket flour one

- In a medium-sized bowl, whisk together the all-purpose flour and cricket flour.
- Just one teaspoon of baking soda;
- A quarter teaspoon of salt
- half a cup of melted unsalted butter
- brown sugar, 3/4 cup
- Two big beaten eggs mashed overripe bananas (about 1/3 cup)

Instructions:

- 1. Warm a 9x5-inch loaf pan in the oven until it reaches 350°F (175°C).
- Salt, baking soda, cricket flour, and allpurpose flour should be mixed together in a big basin.
- Melt the butter and combine it with the brown sugar in a separate bowl. After the bananas are mashed, add the eggs and stir until combined.
- 4. Combine the flour and banana mixture, stirring just to incorporate.
- 5. After the loaf pan is ready, pour in the batter.
- When a toothpick inserted in the middle comes out clean, bake for 60 to 65 minutes.

 Ten minutes after removing from the pan, place the bread to a wire rack to finish cooling.

5.3.2 Thai grasshopper stir-fry

Ingredients:

- One cup of grasshoppers, de-soiled and ready to eat
- 2-Tbsps of olive oil
- 2 minced garlic cloves
- 2 tablespoons of soy sauce, 1 sliced red bell pepper, 1 sliced green bell pepper, and 1 sliced onion.
- 1/3 cup oyster sauce
- sugar, measuring one teaspoon
- 1 teaspoon of black pepper, ground
- Chop some fresh cilantro for the garnish.

Instructions:

- 1. A big pan set over medium-high heat should be used to heat the vegetable oil.
- 2. After the minced garlic has begun to brown, add it to the sauté pan.
- When the grasshoppers are crunchy, add them to the pan and stir-fry for another three to four minutes.
- 4. Sauté the onion and bell pepper slices for two more minutes before adding them to the stir-frv.
- 5. Chop the oyster sauce, soy sauce, sugar, and ground black pepper and merge them. Blend well by stirring.
- To get a texture that is both soft and crunchy, cook the veggies for an extra 2 minutes.
- 7. Top with chopped cilantro and serve immediately over freshly cooked rice.

5.3.3 Mealworm tacos

Ingredients:

- 1 cup of cleaned and cooked mealworms
- a tablespoon of canola oil
- 1/3 cup taco seasoning
- Eight little corn tortillas
- 1 cup of thinly sliced lettucehalf a cup of tomato dice
- half a cup of crumbled cheese
- quarter cup of sour cream
- Tossed lime wedges

Instructions:

 Toss the olive oil into a pan and set it over medium heat.

- 2. In a pan, mix the mealworms with the taco spice. To get crispy mealworms, cook for about 5 minutes, stirring once or twice.
- 3. Third, warm the corn tortillas in a microwave-safe skillet.
- 4. Fourth, top each tortilla with fried mealworms to make the tacos.
- 5. 5 Add sour cream, cheese, tomatoes, and lettuce on top.
- 6. Step 6: Serve with lime wedges for garnish.

5.3.4 Chocolate chirp cookies

Ingredients:

- 1/2 cup unsalted butter, softened
- 1/2 cup granulated sugar
- 1/2 cup brown sugar
- 1 large egg
- 1 teaspoon vanilla extract
- 1 cup all-purpose flour
- 1/2 cup cricket flour
- 1/2 teaspoon baking soda
- 1/4 teaspoon salt
- 1 cup chocolate chips
- 1/2 cup roasted crickets

Instructions:

- 1. Preheat the oven to 350°F (175°C) and line a baking sheet with parchment paper.
- In a large mixing basin, combine the butter, granulated sugar, and brown sugar until light and fluffy.
- 3. Mix in the egg and vanilla essence.
- 4. In a separate bowl, mix all-purpose flour, cricket flour, baking soda, and salt.
- 5. Gradually combine dry and wet components, mixing thoroughly.

- 6. Fold in chocolate chips and roasted bugs.
- 7. Place rounded tablespoons of dough on a prepared baking sheet.
- 8. Bake for 10-12 minutes, or until sides are golden brown.
- 9. Cool cookies on a baking sheet for a few minutes before moving to a wire rack.

Edible insects have a wide range of culinary applications, from traditional dishes to inventive modern creations. Their distinct aromas and textures, paired with excellent nutritional value, make them an important addition to the world food scene. Chefs and household cooks can help to normalize and accept insects as sustainable food sources by experimenting with different culinary applications and recipes.

6. CULTURAL PERSPECTIVES

Entomophagy, or eating insects, has a lengthy history that can be traced back to numerous cultures around the world. The practice of eating insects varies greatly between regions, affected by geography, climate, agricultural techniques, and cultural beliefs. Understanding these cultural viewpoints sheds light on the acceptance and potential of insects as a worldwide food source.

6.1 Historical Context

Entomophagy has been practiced for many thousands of years. Ancient literature, including the Bible and Aristotle's works, references the ingestion of insects. In ancient Greece, locusts and cicadas were considered delicacies. Indigenous peoples on all continents, from the Americas to Africa and Asia, have long relied on insects as a healthy and easily accessible food source (van Huis et al., 2013).

Fig. 3. Exotic salad prepared with crickets (Credit: Getty Images)

Fig. 4. Tlayuda tortilla with edible Mexican Chapulines (grasshoppers) (Credit: Getty Images)

Fig. 5. Insect Burger in Germany (Credit: Getty Images)

6.2 Regional Practices

In Africa, insects are commonly consumed. Locusts, termites, caterpillars, and grasshoppers are all commonly eaten. For example, in the Democratic Republic of the Congo, caterpillars are an important protein source, particularly in rural areas. They are frequently dried and sold in marketplaces, generating a significant income for local populations (van Huis et al., 2013).

In Southeast Asia, entomophagy is ubiquitous. In Thailand, crickets, grasshoppers, and bamboo worms are popular foods. Street sellers frequently serve fried insects seasoned with soy sauce and spices. In China, insects such as silkworm pupae and bee larvae are regarded as delicacies, and they are also used in traditional medicine.

Latin America: Mexico has a long history of consuming insects. Chapulines (grasshoppers)

are possibly the most well-known, and they are frequently served roasted with garlic, lime, and salt. They are a staple in tacos and other traditional recipes. Escamoles, or ant larvae, are a delicacy that is sometimes known as "insect caviar" (Ramos-Elorduy, 2009).

In Australia and Oceania, Indigenous Australians have traditionally eaten insects. The witchetty grub, a huge white larva, is particularly well-known and is typically eaten raw or briefly cooked in hot ashes. This tradition remains a fundamental component of Indigenous Australian culture (Yen, 2009).

6.3 Cultural Significance and Belief

In many civilizations, insects are not only food but also have symbolic importance. They are frequently associated with fertility, health, and wealth. Termite emergence is a sign of fertility and abundance in Africa, while insects are seen as symbols of good fortune in Japan. In Mexico, the annual harvest of chapulines coincides with religious festivals, blending culinary and spiritual traditions (van Huis et al., 2013).

6.4 Challenges and Opportunities

Despite the broad acceptance of entomophagy in many parts of the world, there are major cultural and psychological barriers, especially in Western countries. The concept of eating insects is typically repulsive and viewed as primitive or unsanitary. Overcoming these difficulties includes:

6.4.1 Education and awareness

Raising awareness about the nutritional and environmental benefits of edible insects can help to change opinions. Highlighting traditional entomophagy activities in different cultures can also instill respect and curiosity.

6.4.2 Culinary integration

Putting insects in familiar culinary forms like nutrition bars, snacks, and pasta can make them more appealing. Celebrity chefs and food influencers can help normalize insect consumption by promoting novel and enticing recipes.

6.4.3 Regulatory frameworks

Creating clear laws and safety standards for insect farming and processing can boost customer confidence and industry growth.

6.5 Modern Adaptations and Innovation

The edible insect industry is undergoing inventive changes to appeal to modern tastes and preferences like gourmet restaurants are adding insects to their menus, including cricket risotto, mealworm burgers, and ant-infused chocolates. This movement helps to elevate insects from novelty to gourmet ingredients. Companies are creating insect-based items including protein powders, energy bars, and baked delights. These products are frequently promoted to health-conscious consumers looking for sustainable and healthy alternatives to standard protein sources (Hartmann and Siegrist, 2016).

Cultural viewpoints on edible insects differ greatly, revealing a rich tapestry of traditions and practices. Understanding and appreciating these varied cultural contexts has the potential to significantly increase the acceptance and consumption of insects as a sustainable food source. As awareness rises and new culinary applications arise, edible insects may play an important part in addressing global food security issues.

7. SAFETY AND REGULATION

The growing interest in edible insects as a sustainable and healthy food source has resulted in increased focus on safety and regulation. As the sector grows, it becomes increasingly important to ensure that insect-based goods are safe to consume. This includes addressing potential health hazards, developing clear regulatory frameworks, and standardizing industrial practices. Here I examine the key topics of safety and regulation in the context of edible insects, focusing on the challenges and current advancements in this burgeoning industry.

7.1 Health and Safety Concerns

7.1.1 Microbial contamination

Insects, like any other food source, may contain infections. Bacteria, viruses, and fungi are examples of potentially harmful microbiological pollutants. Insects, according to studies, can contain Salmonella, Escherichia coli, and other hazardous bacteria if not handled and treated properly. According to studies, Escherichia coli can be found in up to 25% of bug samples and Salmonella in 0-13%, which is frequently associated with inadequate hygiene. Fresh insects have a total plate count (TPC) of 3 × 104 to 106 CFU/g, whereas fungal infection can create mycotoxins ranging from 10 to 300 µg/kg. Hygienic agricultural, harvesting, and processing environments are critical for reducing these dangers.

7.1.2 Chemical contaminants

Insects may acquire heavy metals, insecticides, and other toxins from their surroundings. This is especially concerning for wild-harvested insects, which may have been exposed to contaminated soil, water, or plants. Regular monitoring and testing for chemical pollutants are required to ensure the safety of edible insects (Charlton et al. 2015).

Table 5. Cultural aspects of edible insects

Cultural Aspect	Details	Reference(s)
Traditional	Edible insects have been a traditional food source in	FAO (2013), Van Huis
Practices	many cultures in Africa, Asia, and Latin America.	et al. (2013)
Western	They are generally viewed with aversion in Western	FAO (2013), Yen
Perceptions	cultures, though perceptions are gradually changing.	(2009)
Gastronomy	Insects are considered delicacies in some cultures, with specific recipes and culinary traditions.	FAO (2013), Gahukar (2011)
Nutritional Knowledge	Increasing awareness of the nutritional benefits is helping to shift cultural attitudes.	FAO (2013), Rumpold & Schlüter (2013)
Media and Popular Culture	Growing presence in media and popular culture is helping to normalize insect consumption.	FAO (2013), Halloran et al. (2016)
Sustainability Awareness	Recognition of environmental benefits is fostering acceptance in environmentally conscious communities.	FAO (2013), Oonincx & de Boer (2012)
Cultural Exchange	Globalization and cultural exchange are contributing to increased exposure and acceptance.	FAO (2013), Van Huis et al. (2013)
Education and	Educational initiatives and outreach programs are	FAO (2013), Gahukar
Outreach	promoting edible insects as a viable food source.	(2011)
Health Trends	Growing interest in healthy and alternative diets is	FAO (2013),
	driving interest in edible insects.	Rumpold & Schlüter (2013)

7.1.3 Allergenic potential

Some people may have allergic reactions to insect proteins, similar to shellfish sensitivities. Tropomyosin, a protein found in numerous insects, is a known allergen. Clear labeling and consumer education are required to alert potential customers about the allergic risks connected with insect-eating (Pali-Schöll et al., 2019).

7.1.4 Parasitic infections

Insects can contain a variety of parasites, some of which can be harmful to people. Proper cooking and processing processes can efficiently eradicate these parasites, ensuring the safety of the finished product (Klunder et al. 2012).

7.2 Regulatory Frameworks

Insects that may be eaten are now governed under the Novel Food Regulation (EU 2015/2283) in the European Union. Novel foods, particularly those derived from insects, must undergo extensive safety testing prior to being commercialized in accordance with this regulation. These evaluations are carried out by the European Food Safety Authority (EFSA). This method has cleared the way for the commercialization of many insect species in the

EU, including mealworms and crickets (EFSA, 2021).

In the United States, edible insects are overseen by the Food and Drug Administration (FDA) to ensure their safety. All food items, including insects, must follow strict safety regulations before they can be consumed by humans. For the purpose of guaranteeing the security of insect-based foods, the FDA offers guidance on GMPs and HACCP. More precise standards for edible insects are required, however, since the regulatory environment is always changing.

A number of Asian nations, with widely varying legal systems, have long histories of entomophagy. As an example, in Thailand, edible insects are regulated by the Ministry of Public Health to guarantee they meet food safety standards. The Chinese government has acknowledged insects as a food source, and regulations are in the works to address the growing demand for edible insects.

There are inadequate regulatory frameworks in places like Africa where entomophagy is prevalent. On the other hand, people are working on safety regulations and promoting best practices for growing and processing insects. Since edible insects have the ability to enhance food security and nutrition in the area, the Food and Agriculture Organization (FAO) has been

actively involved in assisting these initiatives (FAO, 2013).

7.3 Standards and Best Practices

7.3.1 Implement Good Insect Farming Practices (GIFPs)

Standardized agricultural procedures are vital for ensuring the safety and quality of edible insects. This provides recommendations for breeding, feeding, housing, and harvesting insects. For example, insects should be raised on clean, uncontaminated substrates, and farms should apply biosecurity measures to minimize disease introduction (Van Huis, 2013).

7.3.2 Process standards

Proper processing processes are critical for eliminating potential dangers. This includes procedures including washing, blanching, drying, and crushing insects. Ensuring that insects are treated at the appropriate temperatures and under sanitary circumstances can dramatically reduce the danger of microbial contamination while also increasing shelf life (Caparros Megido et al., 2017).

7.3.3 Traceability and transparency

Implementing traceability mechanisms ensures that edible insects are traced from farm to fork. This is crucial for food safety since it enables the detection and management of potential contamination sources. Transparent labeling, which includes information on the species, origin, and production methods, promotes customer trust and allows for more informed decisions (FAO, 2013).

The safety and control of edible insects are crucial for their effective incorporation into the worldwide market. Addressing health and safety concerns, developing clear regulatory frameworks, and implementing standardized processes are all critical steps in the process. As the edible insect industry expands, continued research, collaboration, and consumer education will be critical to maintaining the safety and acceptance of insect-based foods.

8. RESEARCH AND INNOVATION

The increased interest in edible insects as a sustainable and healthy food source has resulted in much research and development. Researchers

around the world are investigating various elements of entomophagy. ranging from understanding the nutritional benefits environmental consequences to generating innovative products and improving farming techniques. Here I discuss the most recent research and discoveries on the subject of edible insects, emphasizing the advances that are propelling the sector ahead. Innovative entomophagy products include Chirps Chips' cricket flour snacks, Jimini's flavored insect snacks, Entomo Farms' cricket powder, Ynsect's scalable mealworm protein, and Exo's cricket protein bars. These products blend sustainability with consumer familiarity, targeting fitness, gourmet, and eco-conscious markets, driving awareness and acceptance of edible insects in global food industries.

8.1 Nutritional Research

8.1.1 Nutritional profiling

Research has extensively analyzed the nutritional value of numerous edible bug species. According to studies, insects such as crickets, mealworms, and locusts are high in protein, good fats, vitamins, and minerals making them nutritionally equivalent to or even superior to traditional cattle (van Huis et al., 2013).

8.1.2 Bioavailability of nutrients

Recent research has examined the nutritional bioavailability of insect-based diets. Researchers are studying how well the human body absorbs and uses these nutrients. Preliminary data reveal that insect proteins are highly digested and easily absorbed, improving their potential as a food source (Yi et al.2013).

8.1.3 Functional foods

There is a rising interest in employing insects to create functional foods with added health advantages. Certain insect species, for example, are being investigated for their prebiotic qualities, which have the potential to improve gut health. Mealworm protein has been demonstrated to promote good gut flora, making it a suitable ingredient for functional food items (Mancini et al., 2019).

8.2 Environmental Impact Studies

Life Cycle Assessments (LCA) are crucial for determining the environmental impact of insect

farming. According to research, insects have a significantly lesser environmental footprint than typical livestock. They utilize less land, water, and feed, and emit less greenhouse gases. Mealworms, for example, are reported to emit 99% less greenhouse gases than beef (Oonincx et al., 2010).

Insects play an important role in waste reduction and circular economy models, according to an innovative study. Insects can be raised on organic waste, transforming it into high-grade protein. Black soldier fly larvae, for example, may efficiently convert food waste into protein and fat, which are then used in animal feed or human meals.

8.3 Innovations in Agriculture and Processing

8.3.1 Automated farming systems

Technological advancements are enabling automated insect farming. These systems combine robots, sensors, and artificial intelligence to maximize insect growth, monitor health, and control feeding. Automation lowers labor costs while increasing efficiency, making insect farming more scalable and economically sustainable (Halloran et al., 2018).

8.3.2 Breeding programs

Selective breeding strategies are being used to improve desirable features in edible insects, such as growth rate, feed conversion efficiency, and nutritional value. Researchers want to increase insect farming production and quality by finding and breeding superior insect strains (Dobermann et al., 2017).

8.3.3 Innovative processing techniques

New processing methods are being developed to increase the safety, shelf life, and flavor of insect-based foods. Methods like as freezedrying, spray-drying, and extrusion are being refined to preserve insect nutritional value while improving texture and flavor. These advancements critical are to appealing insect-based food products for general consumers (Bessa et al., 2017).

8.4 Product Development and Commercialisation

8.4.1 Food products

The food business is experiencing an increase in new insect-based products. Companies are

creating a wide range of items, including nutrition bars, snacks, pasta, and baked goods, using insect flour or whole insects. These goods are intended to appeal to health-conscious consumers seeking sustainable and nutritional alternatives (Gahukar, 2016).

8.4.2 Animal feed

Research is exploring the use of insects as animal feed. Insects such as black soldier fly larvae and mealworms are being studied as potential sustainable feed sources for poultry, fish, and livestock. Studies have demonstrated that insect-based feed may deliver high-quality protein while also improving animal growth and health, making it a viable alternative to conventional feed ingredients (Makkar et al., 2014).

8.4.3 Cosmetics and pharmaceuticals

Insects are being studied for their possible use in the cosmetics and medicinal industries. Chitin, a component of insect exoskeletons, can be converted into chitosan, which is used in wound healing, medicine delivery, and beauty products. These features are being researched to generate creative applications (Muzzarelli, 2011).

8.5 Consumer Acceptance and Market Growth

8.5.1 Customer research

Understanding customer views and attitudes towards edible insects is essential for industry growth. Surveys and studies are being carried out to determine customer willingness to sample insect-based cuisine and the elements that impact acceptability. While there may be some early opposition, environmental benefits, nutritional advantages, and culinary innovation can all have a beneficial impact on customer perceptions (Hartmann and Siegrist, 2016).

8.5.2 Educational and awareness campaigns

To increase acceptance, education and awareness programs are being launched. These programs seek to educate customers on the benefits of entomophagy, dispel myths, and highlight delectable insect-based cuisine. Cooking demonstrations, sampling events, and media campaigns are effective ways to normalize insect consumption (Deroy et al., 2015).

8.5.3 Regulatory developments

8.5.3.1 Global regulatory frameworks

The regulatory environment for edible insects is changing. The European Union (EU) has taken significant steps by licensing specific insect species under the Novel Food Regulation, paving the road for commercialization. Similarly, the US Food and Drug Administration (FDA) is preparing recommendations to ensure the safety of insect-based foods (EFSA, 2021).

8.5.3.2 International collaboration

International cooperation is required to align legislation and standards for edible insects. Organizations such as the Food and Agriculture Organization (FAO) and the International Platform of Insects for Food and Feed (IPIFF) seek to promote best practices and enable worldwide commerce. These activities are critical to developing a sustainable and safe worldwide market for edible insects (FAO, 2013).

The edible insect industry relies heavily on research and innovation to increase nutritional understanding, environmental sustainability, agricultural practices, and product development. As the sector evolves, continued research and collaboration will be required to address issues, improve safety, and increase customer acceptance. The future of edible insects seems bright, with a sustainable and nutritious answer to global food security issues.

9. ETHICAL CONSIDERATIONS

While the consumption of insects offers potential solutions to global food security environmental issues, it also raises questions about animal welfare, cultural sensitivity, environmental impact, and the socio-economic implications for communities involved in insect farming. Ethical concerns in genetically modifying or farming insects include potential ecological harm from escaped GM species, welfare issues from stress or poor living conditions, and reduced biodiversity from focusing on few species. Public skepticism about GMOs and large-scale farming's environmental impact further challenges the balance between innovation, sustainability, and ethics.

9.1 Animal Welfare

9.1.1 Sentience and suffering

Ethical considerations revolve around insects' sentience and ability to suffer. While insects are

commonly thought to be less sentient than mammals and birds, some study suggests they may be capable of feeling pain and distress (Elwood et al. 2009). This raises concerns regarding the humane treatment of insects in farming and processing. Addressing these problems requires minimizing pain through ethical upbringing and slaughter techniques.

9.1.2 Farm practices

The ethical treatment of insects in farming procedures takes into account their living conditions, handling, and euthanasia methods. Ethical insect farming should attempt to establish surroundings that correspond to insects' normal behaviors and use humane means of killing, such as.

9.2 Cultural Sensitivity

9.2.1 Cultural acceptance

While eating insects (entomophagy) is prevalent in many cultures, it is typically considered negatively in Western countries. Introducing edible insects into Western diets necessitates cultural awareness and behaviors. Respecting and recognizing cultural variations are critical for the ethical promotion and uptake of insect-based meals (Hartmann et al., 2016).

9.2.2 Respect for traditional practices

Many indigenous and local tribes have historical traditions of eating insects. It is critical to respect and honor these rituals rather than exploiting them for commercial purposes. Working with these communities to ensure they profit from the commercialization of edible insects is an important ethical factor (Morris, 2020).

9.3 Environmental Impact

Sustainable Practices: Although insect farming is more environmentally benign than traditional livestock, it's important to verify that the methods utilized are sustainable. This involves using organic waste for feed, conserving water and land, and lowering greenhouse gas emissions. Ethical insect farming should prioritize procedures with the lowest environmental impact (Oonincx et al., 2010).

Biodiversity and Ecosystem: Harvesting wild insects can have a harmful influence on biodiversity and ecosystems if not managed

properly. Overharvesting can reduce insect populations and alter local ecosystems. Ethical issues must include sustainable collecting practices and conservation initiatives to conserve wild insect populations (Yen 2009).

9.4 Socioeconomic Implications

9.4.1 Fair trade and economic benefits

Insect farming can benefit small-scale farmers and entrepreneurs, especially in developing nations. Ensuring fair trade practices and equitable sharing of economic advantages are critical. Ethical frameworks should prioritize strengthening local communities, paying fair salaries, and encouraging sustainable business practices (Halloran et al., 2016).

9.4.2 Food security and nutrition

Edible insects can increase food security and nutrition, particularly in areas experiencing food shortages. Ethically, it is critical to prioritize these benefits for vulnerable populations and guarantee that the commercialization of insects does not result in their exploitation or marginalization (FAO, 2013).

The ethical implications of edible insects are numerous, encompassing animal welfare, cultural sensitivity, environmental sustainability, and socioeconomic repercussions. Addressing these concerns requires a balanced strategy that considers insect welfare, cultural norms, environmental farming, and equitable economic advantages. As the edible insect industry grows, more research, collaboration, and ethical frameworks will be required to negotiate the

intricacies and encourage responsible insect integration into global food systems.

10. CONSUMER EDUCATION AND AWARENESS

The potential of edible insects as a sustainable and nutritious food source has garnered significant attention in recent years. However, the widespread adoption of entomophagy, especially in Western cultures, faces several challenges due to preconceived notions, cultural biases, and lack of knowledge. Consumer education and awareness are crucial to overcoming these barriers and promoting the acceptance of insects as a viable food option.

10.1 Addressing Cultural Perceptions

10.1.1 Overcoming disgust and stigma

The "yuck factor" is a major barrier to accepting edible insects. This aversion is strongly ingrained in societal norms and expectations. Educational campaigns can help to change these preconceptions by stressing the long history of entomophagy in different cultures and promoting insects as a normal and nutritious food source (Hartmann and Siegrist, 2016). Introducing insects in familiar food forms, such as protein bar or flour, can also aid with the transition.

10.1.2 Promoting culinary diversity

Highlighting the culinary diversity of edible insects might increase customer interest and decrease stigma. Cooking demos, sampling events, and culinary competitions with insect-based meals can highlight insects' diversity and delicacy.

Fig. 6. Companies marketing Insect based products. (Credit: Getty images)

Educational programs that collaborate with chefs and food influencers have the potential to make insects more palatable and trendier (Deroy et al., 2015).

10.2 Nutrition and Environmental Education

10.2.1 Nutritional benefit

Educate people on the nutritional benefits of eating insects to promote adoption. Insects are robust in protein, good fats, vitamins, and minerals, and their nutrient value typically exceeds that of regular animals. Crickets, for example, are high in protein, iron, and vitamin B12. Clear, evidence-based information on these benefits can persuade health-conscious people to include insects in their meals.

10.2.2 Environmental Impact

Insect farming is more sustainable than traditional cattle, requiring less land, water, and feed while emitting less greenhouse gases. Educating consumers about these environmental benefits may appeal to individuals concerned with sustainability and climate change. Life cycle analyses and comparisons to traditional livestock production can give compelling

10.3 Engaging Educational Strategies

10.3.1 Interactive workshops and seminars

Offering hands-on experiences with edible insects can be a valuable instructional tool. These activities can include cooking workshops, insect farming demos, and nutritional information sessions, providing participants with a thorough grasp of entomophagy (House, 2016).

10.3.2 Digital campaigns and social media

Utilizing digital campaigns and social media can boost educational efforts. Creating compelling information, such as videos, infographics, and articles, can reach a large audience and pique interest in edible insects. Collaboration with influencers and activists can help to raise awareness and mainstream insect consumption (La Barbera et al., 2018).

Consumer education and awareness are crucial in promoting edible insects as a sustainable and nutritious food source. Addressing cultural attitudes, emphasizing nutritional and

environmental benefits, guaranteeing food safety, and using compelling instructional initiatives can all help to drive wider acceptance. As public awareness and acceptance expand, edible insects have the potential to play a key role in addressing global food security and environmental issues.

11. CONCLUSION

In conclusion, incorporating insects into global food systems offers a viable approach to food addressing security, environmental sustainability, and nutritional demands. Continued research, innovation, and consumer education are required to break down existing barriers and realize insects' full potential as a sustainable food source. Βv adopting entomophagy, we can help to create a more resilient and sustainable food system. Continued research, innovation, and consumer education are required to break down existing barriers and realize insects' full potential as a sustainable food source.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc.) and text-to-image generators have been used during the writing or editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

Advances in Automation and Breeding: Dobermann, D., Swift, J. A., & Field, L. M. (2021). Opportunities and hurdles of edible insects for food and feed.

Barker, D., Fitzpatrick, M.P. and Dierenfeld, E.S., 2019. Nutrient composition of selected whole invertebrates. *Zoo Biology*, 17(2), pp.123-134.

Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G. and Ricci, A., 2013. Edible insects in a food safety and nutritional perspective: A critical review.

Comprehensive Reviews in Food Science and Food Safety, 12(3), pp.296-313.

Bodenheimer, F.S., 1951. *Insects as human food.* Springer Netherlands.

- Caparros Megido, R., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C. and Francis, F., 2014. Edible insects acceptance by Belgian consumers: Promising attitudes for entomophagy development. *Journal of Sensory Studies*, 29(1), pp.14-20.
- Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R. and Smith, R., 2015. Exploring the chemical safety of fly larvae as a source of protein for animal feed. *Journal of Insects as Food and Feed*, 1(1), pp.7-16.
- Consumer Perception in Emerging Markets: Mancini, S., Moruzzo, R., Riccioli, F., & Paci, G. (2020). Consumer acceptance of edible insects in a globalized market.
- Deroy, O., Reade, B. and Spence, C., 2015. The insectivore's dilemma, and how to take the West out of it. *Food Quality and Preference*, 44, pp.44-55.
- Diener, S., Zurbrügg, C. and Tockner, K., 2011. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. *Waste Management and Research*, 29(9), pp.1086-1094.
- Dobermann, D., Swift, J.A. and Field, L.M., 2017. Opportunities and hurdles of edible insects for food and feed. *Nutrition Bulletin*, 42(4), pp.293-308.
- Dossey, A.T., Morales-Ramos, J.A. and Rojas, M.G., 2016. Insects as sustainable food ingredients: Production, processing and food applications. Academic Press.
- Durst, P.B. and Shono, K., 2010. Edible forest insects: Exploring new horizons and traditional practices. FAO.
- EFSA (European Food Safety Authority), 2021. Risk profile related to production and consumption of insects as food and feed. *EFSA Journal*, 19(5), e06385.
- Elwood, R.W., Barr, S. and Patterson, L., 2009. Pain and stress in crustaceans? *Applied Animal Behaviour Science*, 118(3-4), pp.128-136.
- FAO (Food and Agriculture Organization of the United Nations)., 2021. "Edible insects: future prospects for food and feed security."
- Finke, M.D., 2013. Complete nutrient content of four species of feeder insects. *Zoo Biology*, 32(1), pp.27-36.
- Gahukar, R.T., 2011. Entomophagy and human food security. *International Journal of Tropical Insect Science*, 31(3), pp.129-144.
- Gahukar, R.T., 2016. Edible insects farming: Efficiency and impact on family livelihood,

- food security, and environment compared to livestock and crops. *Insects*, 7(4), p.56.
- Global Market Trends: van Huis, A., & Tomberlin, J. K. (2022). Insects as Food and Feed: From Production to Consumption.
- Halloran, A., Flore, R., Vantomme, P. and Roos, N., 2018. *Edible insects in sustainable food systems*. Springer International Publishing.
- Halloran, A., Hanboonsong, Y., Roos, N. and Bruun, S., 2016. Life cycle assessment of cricket farming in north-eastern Thailand. *Journal of Cleaner Production*, 137, pp.83-92
- Halloran, A., Roos, N., Eilenberg, J., Cerutti, A. and Bruun, S., 2016. Life cycle assessment of edible insects for food protein: A review. Agronomy for Sustainable Development, 36(4), p.57.
- Hanboonsong, Y., Jamjanya, T. and Durst, P.B., 2013. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. FAO Regional Office for Asia and the Pacific.
- Hartmann, C. and Siegrist, M., 2016. Insects as food: Perception and acceptance. Findings from current research, 7(2), pp.22-26.
- House, J., 2016. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. *Appetite*, 107, pp.47-58.
- Janssen, R.H., Vincken, J.P., van den Broek, L.A., Fogliano, V. and Lakemond, C.M., 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diapering, and Hermetia illucens. *Journal of Agricultural and Food Chemistry*, 65(21), pp.7038-7045.
- Jongema, Y., 2015. List of edible insect species of the world. Wageningen University and Research.
- Klunder, H.C., Wolkers-Rooijackers, J., Korpela, J.M. and Nout, M.J.R., 2012. Microbiological aspects of processing and storage of edible insects. *Food Control*, 26(2), pp.628-631.
- L. (2022) Edible insects: Why aren't we eating more bugs?, NYC Food Policy Center (Hunter College). Available at: https://www.nycfoodpolicy.org/edible-insects-why-arent-we-eating-more-bugs/ (Accessed: 08 June 2024).
- La Barbera, F., Verneau, F., Amato, M. and Grunert, K.G., 2018. Understanding Westerners' disgust for the eating of insects: The role of food neophobia and

- implicit associations. *Food Quality and Preference*, 64, pp.120-125.
- Lange KW, Nakamura Y. Edible insects as future food: chances and challenges. Journal of future foods. 2021 Sep 1;1(1):38-46.
- Mancini, S., Moruzzo, R., Riccioli, F. and Paci, G., 2019. European consumers' readiness to adopt insects as food. A review. *Food Research International*, 122, pp.661-678.
- Meticulous Research, 2020. Edible insects market by product (whole insects, insect powder), insect type (crickets, black soldier flies, mealworms, grasshoppers, ants, silkworms, cicadas), application (animal feed, protein bars and shakes, bakery, confectionery) Global forecast to 2026.
- Miglietta, P., De Leo, F., Ruberti, M. and Massari, S., 2015. Mealworms for food: A water footprint perspective. *Water*, 7(6), pp.6190-6203.
- Morris, B., 2020. Entomophagy through the ages: Human consumption of insects as food. *Journal of Ethnobiology*, 40(1), pp.29-50.
- Muller, A., Wolf, D., Gutzeit, H.O. and Stamminger, R., 2017. The environmental and health impacts of insect production for food and feed. *EFSA Journal*, 15(1), p.e04501.
- Muzzarelli, R.A., 2011. Chitin nanostructures in living organisms. *Chitin*, 24, pp.1-34.
- Omogunloye-Adeoye et al., 2024. Assessment of House Cricket (Acheta domesticus) Meal for Nigerian Households
- Oonincx, D.G.A.B. and de Boer, I.J.M., 2012. Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. *PLOS ONE*, 7(12), p.e51145.
- Oonincx, D.G.A.B., van Itterbeeck, J., Heetkamp, M.J.W., van den Brand, H., van Loon, J.J.A. and van Huis, A., 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. *PLOS ONE*, 5(12), p.e14445.
- Parajulee, M.N., 2015. Insects as a sustainable source of food ingredients and a model for sustainable innovations in the food industry. *Agricultural Sciences*, 6(11), pp.1359- 1371.
- Payne, C.L.R., Dobermann, D., Forkes, A., House, J., Josephs, J., McBride, A., Müller, A., Quilliam, R.S. and Soares, S., 2016. Insects as food and feed: European perspectives on recent research and future priorities. *Journal of Insects as Food and Feed*, 2(4), pp.269-276.

- Randall, R. (2013) Seattle's 'Bug Chef' promotes the benefits of an insect diet, The Seattle Globalist. Available at: https://seattleglobalist.com/2013/09/20/sea ttles-bug-chef-promotes-insect-diet/16587 (Accessed: 08 June 2024).
- Raubenheimer, D. and Rothman, J.M., 2013. Nutritional ecology of entomophagy in humans and other primates. *Annual Review of Entomology*, 58, pp.141-160.
- Rumpold, B.A. and Schlüter, O.K., 2013. Nutritional composition and safety aspects of edible insects. *Molecular Nutrition and Food Research*, 57(5), pp.802-823.
- Safety and Regulatory Progress: European Food Safety Authority (EFSA). (2022). Updated risk assessments of insect-based food products.
- Shockley, M. and Dossey, A.T., 2014. Insects for human consumption. *Mass Production of Beneficial Organisms*, pp.617-652.
- Van Huis A, Oonincx DG. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development. 2017 Oct;37:1-4.
- Van Huis A. Edible insects contributing to food security? Agriculture & Food Security. 2015 Dec;4:1-9.
- Van Huis, A., 2013. The potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, pp.563-583
- Van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P., 2013. *Edible insects:* prospects for food and feed security. FAO Forestry Paper 171. FAO, Rome.
- Veldkamp, T. and Bosch, G., 2015. Insects: a protein-rich feed ingredient in pig and poultry diets. *Animal Frontiers*, 5(2), pp.45-50.
- Veldkamp, T., van Duinkerken, G., van Huis, A., Lakemond, C.M.M., Ottevanger, E., Bosch, G. and van Boekel, T., 2012. Insects as a sustainable feed ingredient in pig and poultry diets a feasibility study. Wageningen UR Livestock Research, Wageningen, The Netherlands.
- Yen, A.L., 2009. Edible insects: Traditional knowledge or Western phobia? Entomological Research, 39(5), pp.289-298.
- Yen, A.L., 2015. Insects as food and feed in the Asia Pacific region: Current perspectives and future directions. *Journal* of Insects as Food and Feed, 1(1), pp.33-55.

Nalla and Kumar; Eur. J. Nutr. Food. Saf., vol. 17, no. 1, pp. 145-165, 2025; Article no.EJNFS.129421

Yılmaz, S. and Günal, A.M., 2023. Food economics aspect: Α comparative insecurity indicators of 14 analysis. Frontiers in Public Health, 11, OECD countries health p.1122331. in а

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/129421

[©] Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.