

Journal of Economics, Management and Trade

Volume 31, Issue 1, Page 41-50, 2025; Article no.JEMT.126785 ISSN: 2456-9216

(Past name: British Journal of Economics, Management & Trade, Past ISSN: 2278-098X)

Impact of Exchange Rate Volatility on Sectoral Output in Liberia

Delino Gayweh a*

^a School of Economics and Business studies, Kigali Independent University ULK, Kigali, Rwanda.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/jemt/2025/v31i11267

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/126785

Received: 13/09/2024 Accepted: 15/11/2024 Published: 15/01/2025

Original Research Article

ABSTRACT

This paper investigates the effects of exchange rate volatility on sectoral output in Liberia, focusing on agriculture, mining, and manufacturing. Using monthly time series data ranging from 2010 to 2022 and estimating the volatility in exchange rate using the ARCH model, the study found a strong sector-specific impact along with an overall economic impact on output with a significant coefficient of (-2.868) at 10%, 5% and 1% level of significance. We found that the agriculture with a coefficient of (-0.2127) and manufacturing sectors (-0.5171) proxy by value-added as % of GDP are negatively affected by exchange rate fluctuations due to their heavy reliance on imported raw material, which increases production costs and reduces output. Conversely, the mining sector, particularly gold production as measured by key output volume, shows a positive relationship with exchange rate volatility with a coefficient of (3.9677) significant at 10% level of significance, as global demand for gold rises in response to currency instability. The findings underline that policy interventions are needed to stabilize the exchange rate, particularly for agriculture and manufacturing. In fact, given the dual currency system of the country and the high level of dollarization, the country needs targeted policies to enhance sectoral resilience in its way to attain economic growth.

*Corresponding author: E-mail: delinogayweh59@gmail.com;

Cite as: Gayweh, Delino. 2025. "Impact of Exchange Rate Volatility on Sectoral Output in Liberia". Journal of Economics, Management and Trade 31 (1):41-50. https://doi.org/10.9734/jemt/2025/v31i11267.

Keywords: Volatility modeling; exchange rate; gdp growth; agriculture; mining; manufacturing, dollarization.

1. INTRODUCTION

Liberia is one of the most dollarized nations in the world and this has come with its share of challenges. Between 2007 and 2020, the IMF estimated the deposit dollarization to be around 84%, financial dollarization at 70%, and credit dollarization at 91% (IMF Staff Country Reports 2022). Dollarization is a situation where a country decides to use two currencies as legal tender; its domestic currency and a generally stronger and more established currency- the USD.

Liberia operates on a dual currency with prices of goods and services quoted in US dollars or its Liberian Dollar (LRD) equivalent, the domestic currency - this goes as a far back as the country's establishment as a republic 1847.While the heavy dollarization plavs significant role in exchange rate instability by limiting the Central Bank Liberia's (CBL) ability to roll out its monetary policy tools effectively, there are other factors that can be attributed to the high exchange rate fluctuation in Liberia. Sumo (2017) finds that the relative CPI of Liberia to that of the US was a key factor in determining the nominal exchange rate of LRD/USD in the long run and changes in how much Liberia and the US import and export goods (trade balances) can, in the short term, affect the value of their currencies (exchange rate). Exchange rate fluctuation can have a significant effect on level of output in Liberia. This can lead to higher production costs for businesses that rely on imported materials or equipment. Additionally, the purchasing power of consumers for imported goods may reduce, potentially reducing demand and output in some sectors. A weakened LRD can make exports more competitive in the international market, potentially boosting export volumes and increasing output in export-oriented industries.

During the 2023 General and Presidential elections the current President, Joseph Nyuma Boakai, then opposition leader, made great emphasis on the potential of the agriculture sector in fostering economic growth. As such it became the first pillar of his Agenda - ARREST (Agriculture, Roads, Rule of Law, Education, Sanitation, and Tourism). The success of the President agenda will rely heavily on agriculture output since it is the most tangible of the six pillars. However, the agriculture sector faces a

unique challenge because of the impact of exchange rate instability. For example, many agricultural inputs used in Liberia, like organic and inorganic fertilizers, machineries, and pesticides, are often bought on the international market using the US dollars. When a country's currency weakens against the currency where these inputs are purchased in the USD, it becomes more expensive to import them. This can squeeze profit margins for farmers or force them to seek alternative, potentially lower-quality, raw material.

Fluctuations can affect the price farmers receive for their crops. A strong and resilient domestic currency can increase the cost of exports for international buyers., reducing demand and potentially lowering export earnings. This constant rise and fall in value create an unpredictable business environment, which is undesirable for a healthy economy. Of course, a central bank should, in theory, smooth things out, but Liberia's high level of dollarization meant that traditional monetary policy tools such as interest rates are mostly less effective.

The persistent depreciation of the LRD underlines the critical role that exchange rate plays in the economy. The impact of exchange rate on key contributing sectors of the economy has to be researched in order for the policymakers to understand how best to protect the economy against its effects of volatility.

The Liberian economy faces a great challenge by the presence of a high level of dollarization which affects the effectiveness of monetary policy tools. This causes high fluctuation in the exchange rate. However, there exist a substantial gap in understanding the how exchange rate fluctuation after different sectors of the Liberian economy and this can affect the success of the ongoing ARREST Agenda. To the best of my knowledge, this paper will be the first to provide empirical evidence on the impact of exchange rate volatility on productivity levels of sectors that are vital to the growth of the Liberian economy.

The paper is separated in 5. The next section will explore the existing literature in this area. The methodology, model specification and data source are in section 3, while section 4 provides the analysis and findings and the study concludes in the last section.

2. RELATED LITERATURE

There is a rich body of literature that provides evidence to support the Mundell-Fleming Model with most focusing on exchange rate and economic growth and overall level of output in the economy.

Sani, Hassan Azam, (2016) examines the empirical relationship between exchange rate volatility and the output level. Sampling the five amglophone countries of the West Africa between 1991 and 2014 and using cointegration tests and error correction modeling estimation techniques, their analysis reveals significant effects of exchange rate volatility on output levels across the countries, with all except Liberia experiencing negative impacts.

In 2014, Olufayo and Fagite, (2014) carried out similar study in Nigeria but narrowed down to focus on just the impact on Oil sector versus non-oil sector. Using GARCH econometrics method to measure exchange rate volatility and the seemingly unrelated regression method to estimate coefficients, their findings indicated significant exchange rate volatility. However, the model indicated that the exchange rate negatively affected both sectors, though this effect was not statistically significant

Outside the scope of Africa, there is also evidence provided by Doganlar, (2002) by investigating the impact of exchange rate fluctuations on the export performance in Turkey. South Korea, Malaysia, Indonesia, and Pakistan, Doganlar (2002 Employed an Engle-Granger cointegrating to assess the impact of volatility on exports. The Findings from a residual-based model suggest that heightened exchange rate volatility drecreases real exports in these countries. This observation suggests producers within these nations may exhibit risk aversion. Consequently, producers may then turn to home markets instead of foreign markets if the rate of volatility in the exchange rate rises.

Perrazzi and Romero, (2022), using a larger sample of 194 countries test the impact of exchange rate volatility on economic growth for the period from 1995–2019 in longitudinal study. While exchange rate volatility was the main independent variable, they also used control variables such as economic openness, financial development, investment, government spending, and expected educational attainment. Countries

categorized based on government corruption levels. Estimates were derived using both Difference and System Generalized Method of Moments. The findings consistently reveal a significantly negative impact of exchange rate volatility on economic growth, an effect that diminishes as financial systems develop. Notably, countries with higher levels of corruption exhibit a lower impact of volatility, possibly due to their accustomedness to economic instability associated with governance deficiencies, which they incorporate as part of their operational costs.

The literature reflects the view that the stabilizing exchange rate is one of the leading factors of economic growth and export performance. It is revealed that policymakers should make allowance for the implications exchange rate volatility and ensure that measures countering such negative impact are implemented in highly sensitive areas and sectors of currency fluctuations. In essence, the current body of research in this area indicate that the relationship among exchange rate volatility, economic growth, and governance factors is complex, and hence broad policy frameworks are still essential for stability and resilience in the macroeconomy.

3. METHODOLOGY

3.1 Data Source

The study utilizes monthly data from the Central Bank of Liberia's annual reports from April 2010 to December 2022. The key variables include the monthly exchange rate of LRD/USD and monthly inflation computed from the monthly consumer price index in Liberia. For sectoral performance, the key output value of different products from the 3 sectors is used. Annual data on GDP growth, interest rate, imports, and inflation used in the study is from World Bank database from 1974 to 2022. Stata 15.0 is used in the data analysis.

3.2 Model Specification

Borrowing from the IS-LM model, Mundell, (1963) and Fleming, (1962), the following model specification is used in the empirical study;

$$\begin{aligned} GDP_{growth_t} &= \beta_0 + \beta_1 * GDP_{growth_{t-1}} + \beta_2 * EVOL_t + \beta_3 \\ &* INF_t + \beta_4 * INTR_t + \beta_5 * EXP_t + \varepsilon_t \end{aligned}$$

 GDP_{growth_t} is the growth in GDP, $EVOL_t$ is the exchange rate volatility from the ARCH model,

 INF_t is inflation, $INTR_t$ is lending rate, and EXP_t is export value.

The second model uses monthly data from the agriculture, manufacturing, and mining sectors.

$$\begin{aligned} Output_t &= \beta_0 + \beta_1 * Output_{t-1} + \beta_2 * EVOL_t + \ \beta_3 \\ &* INF_t + \ \beta_4 * INTR_t + \varepsilon_t \end{aligned}$$

Where $Output_t$ represents the key output volume for the mining sector, Value-Added (% of GDP) of Agriculture and Value-Added (% of GDP) of Manufacturing for each corresponding sector

3.3 Estimation Technique

Measuring volatility by using sample standard deviation and variance is often used as a crude measure of the fluctuation in financial data. Take the model below

$$y = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

The linear model described above proves to be valuable. Here, the error term εt is taken to be with zero mean and constant variance. However, linear structural and time series models have a number of disadvantages regarding capturing significant characteristics presented in financial data. These include volatility clustering, where high volatility is often followed by more high volatility and low volatility by more low volatility. and leverage effects, where volatility seems to rise more sharply after a price decrease than after an equivalent price increase. A nonlinear analogue of the standard deviation is the Exponentially Weighted Moving Average, EWMA, model, S.W. Roberts 1959, it is a time model that allows more observations to have a greater impact on the volatility forecast than older data points. The weight of the most recent observation is the largest, while the weights of the previous observations decrease exponentially over time. since volatility will be affected more by recent happenings carrying more weight than events farther in the past.

A particular nonlinear model that is dominant in most of the finance applications, which is also considered in this project, is the ARCH' model; Engle 1982. ARCH- 'Autoregressive Conditionally Heteroscedastic'. Where an assumption of the Classical Linear Regression Model-that the variance of the errors is constant, or homoscedastic-is implausible, if the errors are heteroscedastic, but assumed homoscedastic

the coefficients remain unbiased: however the estimated standard errors and confidence intervals will be too narrow, giving a false sense of precision, hence it makes sense to consider a model describing how the variance of the errors evolves. Even a cursory glance at financial data suggests that some periods are more volatile than others; as such, the expected value of the magnitude of error terms at sometimes is greater than at others and this is captured by the EWMA. Moreover, these volatile times are not scattered randomly across, there is a degree autocorrelation in the uncertainties. That is called "volatility clustering" -- large changes tend to be followed by large changes, and small changes tend to be followed by small changes. It is for just this set of issues that the ARCH is designed to handle.

Under ARCH, the conditional mean equation simply defines the temporal dependence in the dependent variable, yt,, and this could be almost anything the researcher desires.

$$y_t = \beta_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3 + \beta_4 \cdot x_4 + \varepsilon_t$$
$$\varepsilon_t \sim N \ (0, \ \delta_t^2)$$

The conditional variance equation is written as:

$$\delta_t^2 = var(\varepsilon_t | \varepsilon_{t-1}, \varepsilon_{t-2}|)$$

ARCH model addresses 'autocorrelation in volatility' by making σ_t^2 dependent on the most recent value of the squared error (innovations; newest piece of information from the previous period):

$$\delta_t^2 = \alpha_0 \, + \alpha_1^{\cdot} \varepsilon_{t-1}^2$$

This model above is an ARCH(1) because conditional variance depends on just one lagged squared error. Note that while ARCH is called autoregressive (AR), it is only a moving average (MA) in the SQUARED noise sequence.

This said that the conditional variance must be always strictly positive. The variables in the equation of conditional variance from the right-hand side are squared lagged errors, which are inherently non-negative. All coefficients must then be non-negative to result in positive estimates of conditional variance. The model defined here with Equations 1 and 2 can be further generalized into more general case, in

which the variance of the error depends on q lags of squared errors, so-called

$$\delta_t^2 = \alpha_0 + \alpha_1 \cdot \varepsilon_{t-1}^2 \ + \ \alpha_2 \cdot \varepsilon_{t-2}^2 \ + \cdots + \ \alpha_q \cdot \varepsilon_{t-q}^2$$

ARCH(q): ARCH offers a framework for analyzing and developing time series models that focus on volatility. The study uses the ARCH model instead of the GARCH model because after the modeling volatility of the exchange rate, we conducted the LM test; the LM test is a test for no conditional heteroscedasticity against an ARCH model and there was no significant autocorrelation effect in our model.

After estimating the volatility using the fitted ARCH model, we use a time series technique to run a regression model with the estimated volatility as independent variables. We also controlled for inflation, interest rate and export.

4. RESULTS AND DISCUSSION

From Table 1, the mean of the exchange rate in Liberia throughout study is LRD 66.73 but the standard deviation is LRD 38.37 which gives an overview of the fluctuation in the LRD. Inflation also shows that could be as high as 53.8% but also prices could by 10%. The average GDP growth over the period indicates a 1.3% average growth, but this is highly affected by the range of growth between -51.3% to 106.8%. The high level of variability was expected due to the political instability the country experienced - this caused economic growth to plunge downward in huge magnitude.

The results from the conditional mean equation. ARIMA (1,0,1) show a positive relationship between the change in at time t and at time t-1. This means today's change in exchange rate depends positively on yesterday's change in exchange rate. Simply put, holding other factors constant if there was an increase in yesterday's exchange rate, there is strong evidence that the exchange rate today will also go up with a significant p-value. The Augmented Dicker-Fuller Test on the change in exchange rate shows that the variable was stationary in its transformed form (from raw exchange rate to difference in exchange rate from the previous period). Since the transformed form is what we used to model the volatility, that means the d term in the ARIMA (p,d,q) is zero; which means there was no need for differencing to make a variable stationary.

The conditional variance equation shown in the Table 3 is an ARCH model of one lag, allowing $\sigma t2$ to depend on the most recent value of the squared error (innovations; newest piece of information from the previous period). The model shows that the coefficient on the lagged squared residual is positive and significant

The Arch LM test used to detect the presence of autoregressive conditional heteroscedasticity (ARCH) was performed on the residual from the model and shows there was no significant ARCH effect which indicates that our ARCH model has done a good job in capturing the volatility clustering and there was no need to proceed to a GARCH model. The Chart 1 shows the estimated in-sample volatility as predicted by the ARCH (1) model.

Table 1. Descriptive Statistics

Macroeconomics Indicators						
Variable	Mean	Min	Max	Std. Dev.		
GDP Growth	1.3	-51.0	106.3	21.2		
Exchange Rate	66.7	23.7	191.5	38.4		
Inflation	6.0	-10.0	53.8	9.8		
Interest Rate	10.6	-21.6	30.4	9.9		
manufacturing sector value added (% of GDP)	3.0	1.9	4.1	0.9		
Agriculture sector value added (% of GDP)	50.6	34.4	79.0	15.6		

		Willing Sector				
	Unit	Mean	Median	Max	Min	Std
Gold	Ounces	8,124.33	2,045.00	46,262.59	131.23	9,183.70
Diamond	Carats	4,908.12	4,517.17	15,193.00	204.00	2,612.36
Iron Ore	Metric Tons	351,733.50	360,005.20	1,545,127.00	22,800.00	194,514.90

Mining Costor

Table 2. Stationary test result for unit root

Variable	Level	ADF Statistics	1% Critical	5% Critical	10% Critical	ovalue	Inference
Agriculture	Level	-1.465	-3.75	-3.00	-2.63	0.5509	1/1\
Agriculture	First difference	-3.788	-3.75	-3.00	-2.63	0.0030	I(1)
manufacturing	Level	-1.254	-3.75	-3.00	-2.63	0.6497	1/2\
manuracturing	Second difference	-2.892	-3.75	-3.00	-2.63	0.0462	1(2)
Gold	Level	-1.752	-3.75	-3.00	-2.63	0.4044	I(1)
	First difference	-3.194	-3.75	-3.00	-2.63	0.0203	1(1)
Diamond Level First di	Level	-2.391	-3.75	-3.00	-2.63	0.1443	1/1\
	First difference	-3.214	-3.75	-3.00	-2.63	0.0192	I(1)
Iron Ore Level Second dif	Level	-2.471	-3.75	-3.00	-2.63	0.1227	1/2\
	Second difference	-3.136	-3.75	-3.00	-2.63	0.0240	I(2)
GDP growth	Level	-4.492	-3.563	-2.92	-2.595	0.0002	1(0)
inflation	Level	-7.498	-3.563	-2.92	-2.595	0.0000	1(0)
Evnort	Level	-3.925	-3.641	-2.955	-2.611	0.0019	1/1\
Export First diffe	First difference	-10.212	-3.648	-2.958	-2.612	0.0000	I(1)
Interest rate	Level	-5.061	-3.702	-2.98	-2.622	0.0000	I(0)

Table 3. Exchange rate volatility estimation

	Mean equation	
Variable	Coeffcient	P- Values
Constant	0.0066716	0.000*
D_ExchangeRate (-1)	0.5148921	0.009**
D_ExchangeRate(Moving Average)	-0.6826423	0.000*

	Variance equation	
Variable	Coeffcient	P- Values
Constant	0.0003074	0.000*
ARCH (1)	2.144454	0.000*

Table 4. Results from archim test

. estat archlm, lag(1/15)

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p)	chi2	df	Prob > chi2
1	0.295	1	0.5870
2	0.701	2	0.7044
3	0.856	3	0.8360
4	3.813	4	0.4319
5	7.061	5	0.2161
6	7.912	6	0.2446
7	11.133	7	0.1329
8	10.195	8	0.2516
9	8.349	9	0.4994
10	8.730	10	0.5579
11	9.957	11	0.5343
12	12.165	12	0.4325
13	13.215	13	0.4314
14	14.000	14	0.4497
15	13.000	15	0.6023

H0: no ARCH effects v_S . H1: ARCH(p) disturbance

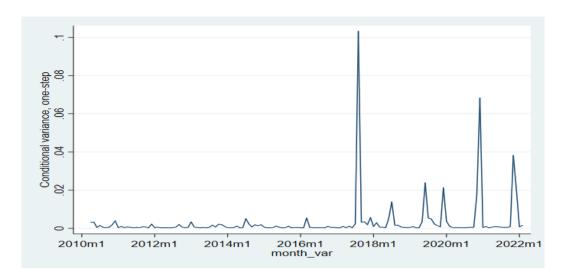


Chart 1. Estimated in-sample volatility as predicted by the ARCH (1) model

4.1 Effect on the GDP Growth of Exchange Rate Volatility

The primary aim of this paper is to test whether volatility in exchange rate actually has an effect on the economy - the economy is proxied by GDP growth borrrowing from Alagidede and Ibrahim (2016). Using the model specification in eq 1, we ran the following time series error correction model, and the result is shown in the Table 5.

The result from the model shows a negative relationship between Economic growth as measured by GDP growth and exchange rate volatility with a coefficient of -2.868 (-4.050) which is significant at a 99% confidence level. This means that when exchange rates are very it leads to negative economic volatile. activities that reduce economic growth. This finding corresponds to the theoretical postulation made by Obstfeld and Rogoff swings in that large exchange rates can hurt the domestic economy. For an economy of Liberia's size and the domination of a dual currency maintaining а exchange rate is essential growth of the country's economy

Inflation, used as a control variable was found to have a negative effect on economic growth but only significant at the 85% confidence level. As you would expect interest rate has a negative and insignificant effect on economic growth this is because raising interest rates causes the cost of borrowing to increase and reduces economic growth.

4.2 Effect of Exchange Rate Volatility on Sectoral Output

4.2.1 Agriculture sector

The agriculture sector output as proxied by Agriculture value added (% of GDP) is one of the major contributions to the Liberian economy. The result from our error correction model shows a negative relationship between the output in the agriculture sector and the fluctuation in the exchange rate. When exchange rates are very unstable, the amount of production from agriculture reduces as shown by the estimated coefficient (-0.2127) this is because products used in the production of domestic products are sold to farmers in UD dollar quotation due to the high level of dollarization and prices in the Liberian market set by international importers are mostly quoted in USD.

4.2.2 Mining sector

Unlike the Agriculture sector which was measured by value added to GDP, the analysis of the mining sector uses the key output volume of the 3 main products extracted from the mining industry in Liberia as per the Central Bank of Liberia due to the unavailability of any measure that contains value added. The key output volume measures the amount of gold (ounces), diamond (carats), and iron ore (metric tonnes). The data are then transformed to their log difference. The results from the model are shown in the Table 7.

The results show that there is a positive relationship between the raw output from the

mining sectors and the fluctuation in the exchange rate but generally not significant except for Gold. The coefficient (3.9677) of Exchange rate volatility on Gold key output volume being positive is indicative of the setting in which gold is mined in Liberia and the overall behavior of Gold as a product. The gold mines in Liberia are extracted by foreign companies, mined by foreign workers, and sold on the international market which means fluctuation in the domestic currency is unlikely to negatively affect the mining of gold. Another plausible reason that could explain the positive coefficient

is the fact that the demand of gold tends to increase when exchange rates are volatile because gold is generally used to protect wealth against fluctuations like exchange rate and inflation and this is also observed globally as found by Tanin, T. I., Sarker, A., & Brooks, R. (2021). Mashayekhi, B., Sadr Ara, M., & Jafari, A. (2013) also found a positive relationship when they analyzed gold price and exchange rate volatility. The magnitude of the impact exchange rate volatility had on the output volume of gold we found was quite larger compared to diamond and iron ore but all positive.

Table 5 GDP growth model

D	σ	dı	n	σ	r	n	۱۸	rt	h
_	Fi'	•	м.	Б		•	ш	•	••

Coef.	Std. Error	t- statistics	Pvalue			
-0.451	0.075	-6.000	0.000			
-2.868	0.708	-4.050	0.000			
-1.184	0.786	-1.510	0.132			
-0.734	0.980	-0.750	0.454			
0.081	0.047	1.720	0.085			
-4.245	1.490	-2.850	0.004			
	-0.451 -2.868 -1.184 -0.734 0.081	-0.451 0.075 -2.868 0.708 -1.184 0.786 -0.734 0.980 0.081 0.047	-0.451 0.075 -6.000 -2.868 0.708 -4.050 -1.184 0.786 -1.510 -0.734 0.980 -0.750 0.081 0.047 1.720			

Table 6. Agriculture output model

d.agriculture

	Coef.	Std. Error	t- statistics	Pvalue		
agriculture (t-1)	0.0592	0.2245	0.2600	0.7920		
EVOL	-0.2127	0.8286	-0.2600	0.7970		
INFL	-0.2835	0.1296	-2.1900	0.0290		
INTR	2.5015	1.0454	2.3900	0.0170		
Constant	-0.2313	1.0955	-0.2100	0.8330		

Table 7. Mining sector model

Gold					
	Coef.	Std. Error	t- statistics	Pvalue	
Gold (t-1)	-0.2045	0.2990	-0.6800	0.4940	
EVOL	3.9677	1.4820	2.6800	0.0070	
INFL	-0.2835	0.1296	-2.1900	0.0290	
INTR	-0.8446	0.2582	-3.2700	0.0010	
Constant	0.5676	0.5079	1.1200	0.2640	

<u>Diamond</u>					
	Coef.	Std. Error	t- statistics	Pvalue	
Diamond (t-1)	-0.3321	0.8332	-0.4000	0.6900	
EVOL	0.3442	0.2564	1.3400	0.1790	
INFL	0.0075	0.0381	0.2000	0.8430	
INTR	1.4603	1.8059	0.8100	0.4190	
Constant	-0.3566	0.4279	-0.8300	0.4050	

		iron ore		
	Coef.	Std. Error	t- statistics	Pvalue
IronOre (t-1)	-0.7350	0.9628	-0.7600	0.4450
EVOL	0.1962	0.4809	0.4100	0.6830
INFL	0.0274	0.1061	0.2600	0.7960
INTR	-3.9661	4.8460	-0.8200	0.4130
Constant	-0.7338	1.1650	-0.6300	0.5290

Table 8. Manufacturing model

manufacturing

	Coef.	Std. Error	t- statistics	Pvalue
manufacturing (t-1)	0.5997	0.3120	1.9200	0.0550
EVOL	-0.5171	0.4343	-1.1900	0.2340
INFL	-0.0318	0.0130	-2.4400	0.0150
INTR	-0.2664	0.2856	-0.9300	0.3510
Constant	-0.0985	0.1659	-0.5900	0.5530

4.2.3 Manufacturing sector

Manufacturing, value added (% of GDP) is used as an indicator to measure the output of the manufacturing sector. The coefficient (-0.5171) from the error correction model above shows that fluctuation in the exchange rate can have a negative impact on the manufacturing sector in liberia. Since manufacturers always depend on imported raw materials and components, fluctuating exchange rates result in unpredictable costs. There are also possibilities of certain challenges in setting stable prices by the manufacturers because of the volatility in the exchange rate, hence complicating proper planning of а budget as well management of cash flow. This is very risky for investment in any production capacity innovation since the company wait for a better tomorrow to make proper decisions on its future costs. The findings also show inflation (-0.00318) and interest rate (have negative 0.2668) impact on manufacturing. Inflationand high interest rates impact manufacturing primarily negatively through increased costs and reduced consumer demand.

5. CONCLUSION

Empirical findings from the study proved that the volatility of the exchange rate significantly impacted sectoral performance in Liberia, affecting agriculture, mining, and manufacturing differently. The results confirm that sectors that heavily on imports for production, such as agriculture and manufacturing, experience a negative impact from fluctuations in the exchange rate. Specifically, agriculture is affected due to the costlier inputs traded in USD from when revenue are generated in LRD, while

manufacturing suffers from unstable raw material On the other hand, the mining costs. sector measured by key output volume. particularly gold production, shows resilience even benefit from exchange mav rate fluctuations, plausibly due to global demand for gold as a hedge against currency instability.

The results highlight the importance of stabilizing the exchange rate to ensure sustained sectoral growth and economic stability in Liberia. For policymakers, addressing the negative impacts of exchange rate volatility, particularly in agriculture and manufacturing, is crucial for fostering a favorable business environment and economic growth since the two sectors contribute to almost half of the country's GDP and an estimated 70% of the population relies on agriculture. The positive effect on gold mining suggests that exposed to global markets sectors strategies require different compared domestically focused industries. As the country continues to navigate its dual currency system and high dollarization, a sound approach that supports sectoral resilience against exchange rate shocks is essential for long-term economic growth.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- Akinlo, E. A., & Adejumo, V. A. (2014). Exchange rate volatility and non- oil exports in Nigeria. *International Business and Management*, *9*(2), 70-79.
- Arize, A. C. (1995). The effects of exchange rate volatility on US exports: An empirical investigation. *Southern Economic Journal*, 62, 34–43.
- Asseery, A., & Peel, D. A. (1991). The effects of exchange rate volatility on exports. *Economics Letters*, 37, 173-177.
- Box, G. E. P., & Jenkins, G. M. (1970). *Time series analysis: Forecasting and control.* Holden-Day.
- Cassel, G. (1916). The present situation of the foreign exchanges. *The Economic Journal*, 26(101), 62-65.
- Doğanlar, M. (2002). Estimating the impact of exchange rate volatility on exports: Evidence from Asian countries. *Applied Economics Letters*, *9*(13), 859–863.
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. *Econometrica*, *50*, 987-1007.
- Erasmus, L., Leichter, J., & Menkulasi, J. (2009).

 Dollarization in Liberia: Lessons from cross-country experience. *IMF Working Paper WP/09/37*, Journal of Economic Literature, E52.
- Gotur, P. (1985). Effects of exchange rate volatility on trade. *IMF Staff Papers*, 32, 475-512.
- Hwang, H.-d., & Lee, J.-w. (2005). Exchange rate volatility and trade flows of the UK in the 1990s. *International Area Review, 8*(1), 173-182.
- Koray, F., & Lastrapes, W. (1989). Real exchange rate volatility and US bilateral trade: A VAR approach. *The Review of Economics and Statistics*, 71, 708-712.
- Koren, M., & Szeidl, A. (2003). Exchange rate uncertainty and export prices. Mimeo, *Harvard University*.

- Kumar, R., & Dhawan, R. (1991). Exchange rate volatility and Pakistan's exports to the developed world, 1974-85. *World Development*, 19, 1225- 1240.
- Mashayekhi, B., Sadr Ara, M., & Jafari, A. (2013). Gold price and exchange rate volatility: Effects of economic sanctions. *International Journal of Information Technology and Management, 4*(1), 121–127.
- Ngerebo-a, T. A., & Ibe, R. C. (2013). Exchange rate and macroeconomic performance in Nigeria: A causal post structural adjustment programme investigation. Global Journal of Management and Business Research Finance, 13(7), 1-10.
- Olufayo, M. B., & Fagite, B. A. (2014). Exchange rate volatility and sectoral export of Nigeria: Case of oil and non-oil sectors. *Journal of Economics and Sustainable Development, 5*(10), 66- 69.
- Pozo, S. (1992). Conditional exchange rate volatility and the volume of international trade: Evidence from the early 1990s. *Review of Economics and Statistics, 74*, 325-329.
- Ramoni-Perazzi, J., & Romero, H. (2022). Exchange rate volatility, corruption, and economic growth. *Heliyon*.
- Sani, I. A., Hassan, S., & Azam, M. (2016). Effects of exchange rate volatility on outputs in some selected West African countries.
- Sercu, P., & Vanhulle, C. (1992). Exchange rate volatility, international trade, and the value of exporting firm. *Journal of Banking and Finance*, *16*(1), 152–182.
- Siaplay, M., Kambo, J., & Collins, J. M. (2016). impact foreian The of exchange Liberian dollar intervention on the (2006-2015): money supply autoregressive distributed lag approach. Central Bank of Liberia Working Paper Series, Journal of Economic Literature E58, F31.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/126785