

## Journal of Scientific Research and Reports

Volume 30, Issue 11, Page 577-590, 2024; Article no.JSRR.125403 ISSN: 2320-0227

# The Impact of Climate Change on Flowering Patterns and Productivity in Floriculture: A Comprehensive Review

Pooja Murthy S a++\*, Mohd Abass b#, Manoj Nazir c†, Jatin Teotia d‡, Hamid Farooq e‡, Alaka S Balan. f^ and Ashish Pratap Singh g##

<sup>a</sup> Department of Floriculture and Landscape Architecture, University of Horticulture Sciences Bagalkot, Karnataka-587104, India.

<sup>b</sup> Division of FLA SKUAST Kashmir Shalimar, India.

<sup>c</sup> Rudraksha Project, Dharamshala, Himachal Pradesh, India.

<sup>d</sup> Department of Genetics and Plant Breeding, Chaudhary Charan Singh University Campus, Meerut, Uttar Pradesh, India.

Department of Floriculture and Landscape Architecture, SKUAST-K Shalimar, India.
 College of Agriculture, Ambalavayal under Kerala Agricultural University, Kerala, India.
 Department of Floriculture and Landscape Architecture, Banda University of Agriculture and Technology Banda (UP) 210001, India.

#### Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

## Article Information

DOI: https://doi.org/10.9734/jsrr/2024/v30i112586

#### **Open Peer Review History:**

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/125403

Review Article

Received: 28/08/2024 Accepted: 30/10/2024 Published: 11/11/2024

Cite as: S, Pooja Murthy, Mohd Abass, Manoj Nazir, Jatin Teotia, Hamid Farooq, Alaka S Balan., and Ashish Pratap Singh. 2024. "The Impact of Climate Change on Flowering Patterns and Productivity in Floriculture: A Comprehensive Review". Journal of Scientific Research and Reports 30 (11):577-90. https://doi.org/10.9734/jsrr/2024/v30i112586.

<sup>++</sup> PhD Scholar:

<sup>#</sup> PhD scholar (Floriculture and Landscape Architecture);

<sup>&</sup>lt;sup>†</sup> Scientist, Floriculture and Associate Director;

<sup>‡</sup> M. Sc.;

<sup>^</sup> Assistant Professor;

<sup>##</sup> PG Scholar;

<sup>\*</sup>Corresponding author: E-mail: poojamurthy0808@gmail.com;

#### **ABSTRACT**

The floriculture industry, a vital component of global horticulture, is increasingly threatened by climate change, which disrupts flowering patterns, reduces productivity, and alters the market value of ornamental crops. This review synthesizes current research on how climatic factors-such as temperature fluctuations, altered precipitation, elevated atmospheric CO2, and extreme weather events-affect key aspects of floricultural crop growth and phenology. Rising temperatures accelerate flowering in many species but can also lead to heat stress, floral bud abortion, and reduced flower quality in sensitive crops like roses (Rosa hybrida) and snapdragons (Antirrhinum majus). Similarly, changes in precipitation patterns, including drought and waterlogging, further complicate floral development by impairing water and nutrient uptake. Elevated CO2 generally promotes biomass accumulation and water-use efficiency but may not necessarily translate into improved floral yield or quality. To address these challenges, the adoption of adaptive strategies such as breeding climate-resilient varieties, implementing optimized agronomic practices, and utilizing controlled environment agriculture is critical. Future research must focus on speciesspecific and long-term studies to identify the differential impacts of climate change on diverse floricultural species. Moreover, multi-stressor impact assessments and exploration of phenotypic plasticity and genetic adaptation are needed to develop cultivars capable of maintaining high performance under complex environmental conditions. Integrating climate models and decision support systems will further enable precise forecasting and strategic planning, supporting growers in mitigating climate-related risks. By advancing understanding in these areas, the floriculture industry can better adapt to changing climates and maintain economic sustainability, ensuring the continued success of this important sector amidst global environmental shifts.

Keywords: Climate change; flowering patterns; phenology; heat stress; drought tolerance; CO<sub>2</sub> impact.

## 1. INTRODUCTION

#### 1.1 Floriculture

Floriculture, a specialized branch of horticulture, is a thriving industry globally, encompassing the cultivation and marketing of flowering plants, cut flowers, and ornamental foliage. This sector significantly contributes to national economies, especially in countries such as the Netherlands, Colombia, Kenya, and India, where it supports both rural livelihoods and export markets (Haggblade et al. 2002). In 2019 alone, the global floriculture market was valued at approximately USD 55 billion, with a projected annual growth rate of 5.2% over the next decade.

The economic value of floriculture is not only confined to the sale of fresh-cut flowers and potted plants but also extends to the associated supply chains, including breeding, tissue culture, and post-harvest management. Additionally, floricultural crops play a critical role in ecological landscaping and environmental management, supporting biodiversity, and enhancing urban aesthetics. The rising demand for ornamental plants has spurred advancements in breeding, with an emphasis on developing cultivars that

exhibit unique colors, fragrance, and improved shelf life (Orton 2019).

# 1.2 Climate Change Effects on Plant Phenology

Climate change, driven by anthropogenic activities, is altering global temperature and precipitation patterns, leading to significant shifts in plant phenology-the timing of developmental events such as flowering, leaf-out, and fruiting. Phenological changes serve as critical indicators of the biological impact of climate change on plant systems. In particular, the flowering patterns of many plant species have been advancing or delaying in response to warming temperatures and altered precipitation regimes. For example, in temperate regions, many springflowering plants are now blooming earlier by approximately 2.5 days per decade due to increased spring temperatures (Pearson 2019).

In floriculture, altered phenological patterns can have profound consequences on productivity and market timing. Changes in flowering onset and duration can lead to mismatches in flowering synchronization, affecting pollination success and reducing seed set and fruit formation in flowering crops. Moreover, unpredictable

flowering patterns complicate harvest scheduling and post-harvest handling, leading to potential economic losses. Phenological changes may also alter the quality traits of ornamental flowers, such as size, shape, and pigmentation, which are highly sensitive to temperature and light conditions (Proietti et al. 2022).

Extreme weather events, such as heatwaves and unseasonal frosts, can disrupt flowering by causing floral bud abortion, reduced floral longevity, and abnormal floral morphology. Such events have been documented to cause significant yield losses in sensitive floricultural crops like roses, tulips, and chrysanthemums. The phenological shifts are not uniform across species; thus, the interspecific differences climate sensitivity further complicate predictions for mixed cropping systems commonly used in floriculture (Forrest and Miller 2010).

## 1.3 Purpose and Scope of the Review

The purpose of this review is to synthesize current knowledge on the impact of climate change on flowering patterns and productivity in floriculture. Although much attention has been paid to the agricultural sector regarding climate change impacts, there is a relative paucity of research focusing specifically on ornamental horticulture. This review aims to bridge this gap by evaluating how various climatic factors-such as temperature fluctuations, altered precipitation, increased atmospheric CO<sub>2</sub>, and extreme weather events-affect the phenology and productivity of floricultural crops (Saqib et al. 2022).

The scope of this review encompasses a wide of floricultural species, includina economically significant annuals, perennials, and cut flowers. The focus be on understanding the physiological ecological mechanisms driving phenological changes and how these changes translate to shifts in productivity, flower quality, marketability. Furthermore, the review highlight adaptive strategies, such as breeding climate-resilient cultivars and implementing controlled environment agriculture, to mitigate the adverse effects of climate change (Raza et al. 2019).

By providing a comprehensive synthesis of existing research, this review seeks to inform breeders, growers, and policymakers on the potential challenges and opportunities presented by a changing climate in the floriculture industry. Ultimately, it aims to contribute to the development of sustainable management practices that can help secure the future of this economically and culturally valuable sector.

# 2. FLOWERING PATTERNS IN FLORICULTURAL CROPS

### 2.1 Factors Influencing Flowering

The flowering process in floricultural crops is governed by a complex interplay of genetic, environmental, and physiological factors, making it highly variable among species (Proietti et al. 2022). Genetic predispositions determine the plant's inherent response to environmental triggers, such as photoperiod and temperature, physiological signals and balances further fine-tune the flowering process. For example, the genetic basis for flowering in model systems like Arabidopsis thaliana has been well studied, with key flowering time genes such as FLOWERING LOCUS T (FT) and CONSTANS (CO) identified as central regulators.

Environmental factors, such as photoperiod and temperature, play a crucial role in the timing of floral induction. Many floricultural species are categorized as short-day, long-day, or dayneutral plants, which dictates their response to the length of day and night (Table 1) (Park and Jeong 2018). For instance, chrysanthemums (Chrysanthemum morifolium) are classic shortday plants, initiating flowering when day length shortens, while petunias (Petunia hybrida) are long-day plants that require longer daylight exposure to flower. Temperature, on the other hand, acts both independently and in conjunction with photoperiod, with processes such as vernalization in species like tulips and hyacinths requiring a prolonged period of cold to trigger flowering.

Physiological factors include hormonal signals such as gibberellins (GA), cytokinins, and ethylene, which modulate floral induction and development (Chandler 2011). For example, in Rosa hybrida, increased levels of gibberellins induce can flowering, whereas ethylene exposure often causes premature senescence in many cut flowers. Similarly, nutrient availability, particularly nitrogen and phosphorus levels, can significantly influence the onset and quality of flowering.

# 2.2 Physiological and Environmental Triggers of Flowering

Flowering in floricultural crops is the result of intricate physiological processes that are sensitive to external environmental cues. The integration of these signals is mediated by molecular pathways that respond to photoperiod, temperature, and other environmental factors (Table 2) (Krasensky and Kangasjärvi 2018). Key among these are photoreceptors like phytochromes and cryptochromes, which detect changes in light quality and duration, influencing flowering through the activation of the *FT* and *CO* genes.

The thermosensory pathway is another critical trigger for flowering, particularly in temperate species. For example, in floricultural species such as *Dianthus caryophyllus* (carnations), high

temperatures promote early flowering, while low temperatures are essential for floral initiation in cold-requiring species like lilies (Lilium spp.) and daffodils (Narcissus spp.). Similarly, water availability can act as a stress cue that modulates flowering time, with drought often delaying or inhibiting flowering in sensitive crops like marigolds (Tagetes spp.) (van Doorn and Kamdee 2014). In controlled environments, manipulating these physiological triggers can optimize flowering. For instance, by altering day length or providing supplemental lighting, growers can induce flowering at desired times, making crops like poinsettias (Euphorbia pulcherrima) and chrysanthemums bloom out of their natural season. Similarly, the use of chemical treatments like growth regulators allows precise control over flowering time and floral morphology.

Table 1. Climate Change Effects on Plant Phenology (Sources-Park and Jeong 2018)

| Aspect of Phenology | Observed Changes                                          | Consequences                                       | Region Noted                    |
|---------------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------|
| Flowering           | Earlier flowering in many                                 | Potential mismatch with                            | North America,                  |
| Time                | species due to increased temperatures                     | pollinators, affecting reproduction                | Europe, Asia                    |
| Leaf Unfolding      | Advancement in leaf unfolding as spring temperatures rise | Changes in photosynthesis timing and growth cycles | Europe, North<br>America        |
| Fruit Ripening      | Shift in fruit ripening period, often occurring earlier   | Altered harvest times and potential yield changes  | Mediterranean,<br>North America |
| Growing             | Extension of growing season                               | Impacts on agricultural                            | Temperate regions               |
| Season              | in temperate regions due to                               | practices and ecosystem                            | globally                        |
| Length              | warmer conditions                                         | balance                                            |                                 |

Table 2. Physiological and Environmental Triggers of Flowering (Source: Krasensky and Kangasjärvi 2018)

| Trigger Type             | Description                                                                          | Examples                                             | Impact on Flowering                                       |
|--------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| Photoperiod              | Day length influences                                                                | Wheat (long-day),                                    | Determines the timing                                     |
|                          | flowering time, critical in long-<br>day and short-day plants                        | Chrysanthemum (short-day)                            | and success of flowering                                  |
| Temperature              | Temperature fluctuations, especially warm temperatures, promote or inhibit flowering | Fruit trees requiring chilling hours, tropical crops | Can accelerate or delay flowering depending on the crop   |
| Hormonal                 | Plant hormones like                                                                  | Gibberellin in cereals,                              | Regulates the                                             |
| Signals                  | gibberellins and florigen play<br>key roles in initiating<br>flowering               | florigen in Arabidopsis                              | developmental phase transition to flowering               |
| Vernalization            | Exposure to prolonged cold periods is necessary for some species to flower           | Winter wheat, biennial crops like carrot             | Ensures synchronization with favorable growing conditions |
| Nutrient<br>Availability | Adequate nutrient levels, especially nitrogen, are essential for proper flowering    | Legumes, cereals                                     | Supports optimal flower development and yield             |

## 2.3 Methods of Monitoring Flowering Patterns

Accurate monitoring of flowering patterns is essential for understanding the phenological responses of floricultural crops to environmental changes and for optimizing production. Traditional methods include visual observation and recording of key phenological stages, such as bud formation, floral opening, and senescence (Crimmins and Crimmins 2008). However, these methods can be labor-intensive and prone to observer bias, particularly when dealing with large-scale plantings.

Modern approaches employ digital imaging and phenotyping tools to quantify flowering traits more precisely. High-resolution cameras and automated image analysis software can track the onset, duration, and synchrony of flowering across multiple plants simultaneously. Timelapse photography is increasingly used in research and commercial settings to monitor flower development stages, allowing detailed studies of flowering kinetics in species like roses (Rosa hybrida) and lilies (Lilium spp.) (Clark et al. 2020).

Remote sensing technologies, including satellite imagery and unmanned aerial vehicles (UAVs), are being adapted to assess flowering patterns in large-scale floricultural fields. These technologies enable the detection of phenological shifts due to climate change or stress conditions over broad areas, providing valuable insights into crop performance and health. Thermal imaging and chlorophyll fluorescence measurements are also utilized to assess the physiological status of flowering plants, detecting stress responses that may affect flowering quality and yield (Arief et al. 2023).

Another promising development is the use of genetic markers and molecular assays to monitor the expression of flowering-related genes in response to environmental changes. Such molecular techniques provide early indicators of flowering transitions, enabling more precise management of flowering time and improving the predictability of flowering outcomes in various floricultural species.

# 3. IMPACT OF CLIMATE CHANGE ON FLOWERING PATTERNS

#### 3.1 Temperature Variations

Temperature is a key environmental factor that regulates the timing and quality of flowering in

floricultural crops, and even small changes can lead to significant shifts in phenology (Chandel et al. 2023). As global temperatures rise due to climate change, flowering patterns in numerous species are being disrupted. Studies show that in temperate regions, an increase of just 1°C can advance the flowering time of spring-flowering plants by up to 6 days. This phenomenon has been observed in several floricultural crops, including tulips (*Tulipa spp.*) and daffodils (*Narcissus spp.*), where warming temperatures have led to earlier flowering and shortened flowering duration.

Higher temperatures also affect flowering quality and floral morphology. In heat-sensitive crops like snapdragons (*Antirrhinum majus*) and chrysanthemums (*Chrysanthemum morifolium*), elevated temperatures can cause flower bud abortion, reduced petal size, and discolored blooms. Furthermore, temperature variations can disrupt the physiological processes required for synchronized flowering, leading to irregular blooming patterns and reduced aesthetic appeal (Franken 2013).

Heat stress can also negatively impact the reproductive success of floricultural species by reducing pollen viability and stigmatic receptivity, as observed in petunias (*Petunia hybrida*) and lilies (*Lilium spp.*). In contrast, cold-sensitive species such as geraniums (*Pelargonium spp.*) may experience frost damage during unexpected cold spells, leading to significant yield losses. Thus, temperature variability, both in the form of heatwaves and unseasonal frosts, poses a major challenge for maintaining consistent flowering patterns and quality in the floriculture industry (Swain et al. 2023).

# 3.2 Changes in Photoperiod and CO<sub>2</sub> Levels

Photoperiod is a critical determinant of flowering time in many floricultural species, influencing the switch from vegetative to reproductive growth based on day length. While photoperiod itself is not directly altered by climate change, shifts in regional climates may push crops to new latitudes, exposing them unfamiliar to photoperiod regimes. For example, in crops like chrysanthemums and poinsettias (Euphorbia pulcherrima), changes in day length can disrupt the timing of flowering and affect market scheduling (Proietti et al. 2022). As such, shifts in regions may necessitate management practices to synchronize flowering with traditional market windows.

In addition to photoperiod, rising atmospheric CO<sub>2</sub> levels, which are projected to reach 550 ppm by 2050, have direct and indirect effects on flowering phenology. Elevated CO2 generally promotes earlier flowering by accelerating vegetative growth and reducing the time to floral induction in several species. Studies on marigolds (Tagetes spp.) and petunias show that increased CO2 levels can enhance flower number and size, thereby improving market However, CO<sub>2</sub>-induced changes flowering time are often coupled with shifts in resource allocation, potentially reducing stem strength and overall plant stability in some crops (Wittwer 1995).

The interaction between elevated CO<sub>2</sub> and temperature can lead to unpredictable outcomes. For instance, while higher CO<sub>2</sub> can mitigate some of the negative effects of heat stress by improving water-use efficiency, it may also exacerbate the impact of drought on flowering by accelerating water depletion. These complex interactions underscore the need for species-specific studies to fully understand how combined environmental changes will affect flowering patterns in diverse floricultural crops.

## 3.3 Precipitation Changes and Extreme Weather Events

Climate change is expected to alter global precipitation patterns, leading to increased frequency and intensity of droughts, heavy rainfall, and extreme weather events (Trenberth 2005). These changes have significant implications for the flowering patterns of floricultural species, particularly those sensitive to water availability.

Drought stress can delay flowering, reduce flower size, and decrease the number of blooms in many floricultural crops, such as marigolds (Tagetes spp.) and zinnias (Zinnia spp.). This effect is primarily due to the disruption of hormone levels (e.g., abscisic acid and aibberellins) that are crucial for floral development. Moreover, prolonged drought conditions can lead to the cessation of flowering altogether, as seen in impatiens (Impatiens walleriana), where severe water stress can prevent floral bud formation.

Conversely, excessive rainfall and waterlogging can be equally detrimental, causing root hypoxia and nutrient leaching, which negatively affect flowering and overall plant health (Aslam et al. 2023). In species like roses (*Rosa spp.*) and

carnations (*Dianthus caryophyllus*), waterlogged conditions have been linked to increased bud drop, poor flower quality, and heightened vulnerability to root pathogens. Flooding events can result in complete crop failure, especially in low-lying floricultural fields, where extended periods of soil saturation lead to root death and reduced plant vigor.

Extreme weather events, such as storms, hail, and unseasonal frosts, pose an additional threat to floricultural crops by causing physical damage to flowers and disrupting normal flowering cycles. Hailstorms, for example, can destroy delicate petals and stems, rendering cut flowers unsellable, while high winds can break flower stalks and reduce overall yield (Glenny 1860). Heatwaves, on the other hand, can lead to thermal stress, resulting in flower bud abortion and poor bloom quality in sensitive crops like snapdragons and gerberas (*Gerbera jamesonii*).

## 4. IMPACT OF CLIMATE CHANGE ON PRODUCTIVITY IN FLORICULTURE

The productivity of floricultural crops is highly dependent on environmental conditions, making the industry particularly vulnerable to the impacts of climate change. Rising temperatures, altered precipitation patterns, and increased atmospheric CO<sub>2</sub> concentrations are altering the growth, quality, and yield of ornamental plants in various ways (Bisbis et al. 2018). These changes have significant implications not only for crop performance but also for the economic viability of floriculture, which relies heavily on maintaining consistent quality and market schedules. This section discusses how climate change is affecting flower quality and yield, growth dynamics and resource allocation, and the economic stability of the floriculture industry.

#### 4.1 Effects on Flower Quality and Yield

Flower quality is one of the most critical attributes in floriculture, as it directly influences market value and consumer preferences. Climate change is affecting various aspects of flower quality, including size, shape, color, fragrance, and post-harvest longevity, which are highly sensitive to environmental conditions (Muchie and Assefa 2021). For instance, elevated temperatures during the flowering period can lead to reduced flower size and altered pigmentation in heat-sensitive crops like roses (Rosa hybrida) and carnations (Dianthus caryophyllus). In roses, heat stress has been

associated with a reduction in petal number and increased susceptibility to petal scorching, both of which diminish visual appeal.

Temperature extremes also affect flower yield by disrupting normal developmental processes. In chrysanthemums (Chrysanthemum morifolium), elevated temperatures during bud initiation can result in premature floral differentiation, leading to incomplete or deformed blooms. Similarly, in lilies (Lilium spp.), high temperatures during early growth stages can induce stem elongation and flower bud formation. negatively reduce impacting yield and stem strength (Bhattacharya 2022). Additionally, prolonged exposure to suboptimal temperatures can increase the incidence of physiological disorders, such as leaf and flower discoloration, bud blasting, and tip burn, as observed in poinsettias (Euphorbia pulcherrima) and snapdragons (Antirrhinum majus).

Changes in precipitation patterns also influence flower yield and quality by affecting soil moisture availability and plant water status. Drought stress during critical growth stages can reduce flower size, decrease the number of flower buds, and shorten the blooming period in marigolds (Tagetes spp.) and zinnias (Zinnia spp.). On the other hand, excessive rainfall can lead to water logging, which negatively affects root health and nutrient uptake, resulting in poor-quality flowers and reduced yield in roses and carnations (Wolf1999). These changes highlight sensitivity of floricultural crops to even slight deviations in moisture availability, making water management a crucial aspect of climate adaptation in floriculture.

# 4.2 Shifts in Growth Dynamics and Resource Allocation

Climate change is also altering the growth dynamics and resource allocation patterns in floricultural crops, with implications for both vegetative and reproductive development. Elevated atmospheric CO<sub>2</sub>, for instance, increased generally promotes biomass production due to enhanced photosynthetic rates and improved water-use efficiency. However, this increase in vegetative growth does necessarily translate to improved floral yields, as resource allocation between vegetative and reproductive organs may be skewed (Delph et al. 1993).

In some floricultural species, such as petunias (Petunia hybrida) and geraniums (Pelargonium

spp.), elevated CO<sub>2</sub> has been shown to increase vegetative growth at the expense of reproductive output, leading to delayed flowering and reduced flower number. This shift in resource allocation can reduce the aesthetic quality of potted plants and cut flowers, which rely on a balanced display of foliage and blooms for maximum visual impact. Similarly, in carnations, increased CO<sub>2</sub> levels can enhance stem elongation and leaf area, but this growth response often results in thinner stems and lower bud formation, compromising both yield and structural integrity (Razali 2012).

Temperature also influences growth dynamics by affecting the partitioning of assimilates between leaves, stems, and flowers. In heat-sensitive crops like snapdragons, elevated temperatures promote excessive vegetative growth and lead to a reduction in flower bud initiation, causing a shift in the plant's growth strategy that favors leaf production over flowering. Conversely, in species that require vernalization, such as tulips and hyacinths, insufficient chilling results in stunted bud development, arowth and poor carbohydrates are not adequately translocated to the floral meristems (Okubo 2012).

Water availability further modulates growth dynamics and resource allocation, with drought stress leading to a reduction in shoot biomass and a reallocation of resources to root development in many floricultural crops. This shift is a survival strategy to enhance water uptake under limited moisture conditions, but it comes at the cost of reduced flowering and lower aesthetic value. Thus, climate-induced changes in growth patterns and resource distribution can have profound effects on both the productivity and market quality of floricultural species.

# 4.3 Economic Consequences for the Floriculture Industry

The economic consequences of climate change for the floriculture industry are substantial, as changes in productivity, quality, and market timing directly impact profitability (Bisbis et al. 2018). Reduced flower yields and inconsistent quality can lead to lower prices and diminished consumer confidence, especially in high-value crops like orchids (*Orchidaceae*) and roses. For instance, a study on rose production in the Netherlands estimated that heat stress during the flowering period could reduce marketable yield by up to 20%, resulting in significant financial losses.

Climate variability also affects the timing of flowering, leading to mismatches between production and peak market demand, particularly seasonal crops like poinsettias chrysanthemums, which are highly sensitive to day length and temperature. Such mismatches can disrupt supply chains and reduce the profitability of growers, as unsold flowers have limited shelf life and cannot be stored for long periods (Karaesmen et al. 2011). The increased costs associated with implementing climate adaptation strategies. such as controlled environment agriculture and improved irrigation systems, further strain the financial stability of small-scale and resource-poor floricultural producers.

The floriculture industry is vulnerable to the impact of extreme weather events, which can cause sudden and severe damage to crops, infrastructure, and distribution networks. For example, hailstorms, floods, and heatwaves can destroy entire fields of cut flowers, resulting in catastrophic losses that are often not covered by crop insurance schemes. traditional increased risk necessitates the development of more resilient cultivars and the adoption of risk management practices safeguard the economic sustainability of the floriculture sector (Wani et al. 2018).

# 5. ADAPTATION STRATEGIES FOR SUSTAINABLE FLORICULTURE

Climate change poses significant challenges to the floriculture industry, impacting flowering dynamics, growth and patterns, productivity. To sustain floriculture in the face of these challenges, adaptation strategies need to be implemented to enhance the resilience of crops and optimize production systems. Key strategies include breeding climate-resilient varieties, adopting improved agronomic practices and controlled environment technologies, and using climate models for effective planning and decision-making. Each of these approaches plays a crucial role in mitigating the adverse effects of climate change and ensuring the sustainable development of the floriculture (Wani et al. 2018).

## 5.1 Breeding Climate-Resilient Varieties

Breeding climate-resilient floricultural varieties is one of the most effective long-term strategies to cope with the impacts of climate change. Conventional breeding, as well as modern molecular techniques, are being employed to develop cultivars that can tolerate abiotic stresses such as heat, drought, and salinity, which are becoming increasingly common under changing climate conditions. For example, marker-assisted selection (MAS) and genomic selection have been successfully used in developing heat-tolerant cultivars of petunias (*Petunia hybrida*) and drought-resistant varieties of marigolds (*Tagetes spp.*) (Chowdhury et al. 2020).

Heat tolerance is a critical trait in floricultural breeding programs, as rising temperatures can lead to reduced floral quality and altered flowering schedules. In roses (Rosa hybrida). breeding for heat tolerance has focused on selecting genotypes that maintain flower size, and scent under high-temperature conditions. Recent advances in transcriptomics have identified heat-shock proteins (HSPs) and other stress-responsive genes that can be targeted for genetic improvement (Mondal et al. 2023). For chrysanthemums (Chrysanthemum morifolium), transgenic approaches have been used to enhance heat and drought tolerance by overexpressing stress-inducible genes such as DREB1A and HSP70, resulting in cultivars that exhibit stable flowering under fluctuating temperatures.

Drought tolerance is another key focus, given that water scarcity is expected to become a more pressing issue in many floriculture-growing regions. Conventional breeding methods, such as hybridization and selection, have been used to introduce drought-resistant traits in species like geraniums (Pelargonium spp.) and zinnias (Zinnia addition, spp.). In biotechnology approaches, such as the use of CRISPR/Cas9 gene editing, have enabled precise modifications to improve water-use efficiency and root architecture in floricultural crops.

Salinity tolerance is another trait of interest, especially for coastal regions where saltwater intrusion is a concern (Rachid et al. 2017). Breeding efforts in floricultural species like lilies (*Lilium spp.*) and gladioli (*Gladiolus spp.*) have focused on enhancing ion transport and osmotic adjustment mechanisms to maintain growth and flowering under saline conditions. These climateresilient varieties can help stabilize production and reduce the economic losses associated with salinity stress.

## 5.2 Agronomic Practices and Controlled Environments

Optimizina agronomic practices and implementing controlled environment technologies are essential for mitigating the impacts of climate variability on floricultural crops. Precision agriculture techniques, such as site-specific irrigation, nutrient management, and stress monitoring, can enhance crop resilience and reduce resource use (Adeyemi et al. 2017). For example, the adoption of drip irrigation and subsurface watering systems has been shown to improve water-use efficiency in floricultural crops like carnations (Dianthus caryophyllus) and marigolds (Tagetes spp.) under drought conditions

Mulching and shading are effective agronomic strategies for moderating soil temperature and moisture levels, thereby protecting plants from heat and drought stress. In roses, the use of organic mulches has been associated with reduced soil evaporation and improved flower quality under high-temperature conditions. Similarly, shading nets can reduce leaf temperature and prevent sunscald in sensitive species like gerberas (*Gerbera jamesonii*), enhancing both aesthetic quality and yield (Da Silva 2015).

Controlled environment agriculture (CEA), which includes greenhouses, polyhouses, and indoor farming systems, provides a more stable environment for floriculture by regulating temperature, light, humidity, and CO2 levels. Greenhouses equipped with automated climate control systems can mitigate the impact of extreme weather events and ensure year-round production. In poinsettia production, for instance, CEA has been used to optimize flowering time and color development, resulting in higher market value during the holiday season. Similarly, hydroponic and aeroponic systems are being explored to reduce water and nutrient use, while maintaining high flower quality in crops like orchids (Orchidaceae) and chrysanthemums (Chandel et al. 2024).

The use of supplemental lighting is another important strategy in controlled environments, particularly for photoperiod-sensitive crops like chrysanthemums and snapdragons (*Antirrhinum majus*). Light-emitting diode (LED) technology allows precise manipulation of light spectra and intensity, which can be used to optimize flowering time, improve color intensity, and reduce energy

costs. For example, studies have shown that red and blue LED lights can enhance the flowering of petunias and geraniums while maintaining compact plant morphology.

#### 5.3 Use of Climate Models for Planning

Climate models are increasingly being used in floriculture to predict the potential impacts of climate change and to develop adaptive strategies (Zhao et al. 2013). These models incorporate data on temperature, precipitation,  $CO_2$  levels, and extreme weather events to forecast changes in crop phenology, growth, and productivity. For floricultural crops, which are highly sensitive to environmental cues, climate models can help in scheduling planting dates, adjusting production timelines, and planning for potential risks.

Phenological models are particularly useful for predicting flowering times under different climate scenarios. In crops like tulips and hyacinths, where precise flowering timing is critical for market success, phenological models have been used to forecast bloom periods and adjust production practices accordingly. These models can also help identify regions that are likely to become unsuitable for traditional floriculture due to shifts in temperature and precipitation patterns, allowing growers to make informed decisions about relocation or crop diversification (Glenn et al. 2013).

Decision support systems (DSS), which integrate climate models with real-time environmental data, are being developed to assist growers in making proactive management decisions. For example, DSS tools that incorporate weather forecasts and crop-specific growth models can optimize irrigation scheduling, pest management, and nutrient application, reducing the risk of yield loss under variable climate conditions. In greenhouse production, DSS can automate climate control, ensuring that temperature and humidity levels remain within optimal ranges for specific crops.

The use of regional climate projections and risk assessment models is also crucial for understanding the long-term impacts of climate change on floriculture at both local and global scales (Zhao et al. 2013). These models can help policymakers and industry stakeholders develop targeted adaptation strategies, such as breeding programs, infrastructure investments, and economic policies, to support the sustainable

development of the floriculture sector in the face of climate change.

#### 6. FUTURE RESEARCH

Climate change presents unprecedented challenges for the floriculture industry, impacting plant phenology, growth, and market value. While current research has identified broad trends and physiological responses, there remains a critical need for more targeted studies that address species-specific sensitivities. assess combined effects of multiple stressors, and explore the genetic and phenotypic mechanisms of adaptation (Baumann 2019). Future research must take a more nuanced approach to understanding how diverse floricultural species will respond to evolving climatic conditions to ensure the sustainability and economic viability of this important industry. This section outlines key areas where further research is needed.

## 6.1 Need for Species-Specific and Long-Term Studies

Despite the economic importance and ecological value of many floricultural crops, the majority of climate change studies have focused on a limited number of model species, leaving significant gaps in our understanding of climate sensitivity across the diverse array of ornamental plants (Zhao et al. 2013). Each species has unique physiological traits and genetic makeups that influence its response to environmental changes, making species-specific research essential for developing targeted adaptation strategies. For instance, while the responses of common bedding plants like petunias (Petunia hybrida) and marigolds (Tagetes spp.) to heat and drought have been relatively well studied, there is a lack of comparable data for other economically significant crops, such as orchids (Orchidaceae) and tropical foliage plants (Hew and Yong 2004).

Species-specific studies should include detailed phenological observations under controlled and field conditions to capture how each plant species responds to variations in temperature, photoperiod, CO<sub>2</sub> levels, and precipitation patterns. For example, long-term monitoring of phenological changes in roses (Rosa hybrida) chrysanthemums (Chrysanthemum morifolium) could help predict how shifts in flowering time will impact market dynamics and crop scheduling. Similarly, studies on less ornamental species, such anthuriums (Anthurium spp.) and heliconias

(*Heliconia spp.*), which are often grown in tropical and subtropical regions, are needed to understand their responses to increasing temperatures and altered humidity patterns (Zelazowski et al. 2011).

Long-term studies are crucial for capturing the cumulative effects of climate change, which may not be apparent in short-term experiments. Climate impacts on floricultural crops often involve subtle changes in growth rates, resource allocation, and reproductive success that unfold over multiple growing seasons. For example, long-term experiments tracking the flowering patterns of tulips (Tulipa spp.) in response to warming trends have revealed that even minor increases in temperature over several years can significantly alter bloom timing and reduce flower quality. Therefore, future research should prioritize establishing long-term field trials and phenological databases to better understand and anticipate the impacts of climate change on a wide range of floricultural species.

#### **6.2 Multi-Stressor Impact Assessment**

While most studies have focused on the effects of individual stressors, such as temperature or water availability, plants in natural and managed ecosystems are often exposed to multiple concurrent stressors that can have synergistic or antagonistic effects (Brown et al. 2013). For floricultural crops, interactions between heat, drought, elevated CO<sub>2</sub>, and other stress factors can produce complex responses that are difficult to predict based on single-stressor experiments. Therefore, there is an urgent need for multistressor studies that investigate the combined impact of multiple environmental factors on plant growth, flowering patterns, and quality attributes.

Multi-stressor impact assessments address how simultaneous changes in temperature, water availability, and CO<sub>2</sub> affect physiological processes, such photosynthesis, nutrient uptake, and hormone regulation, which are critical for flowering and biomass production (Roy and Mathur 2021). For example, research has shown that while elevated CO<sub>2</sub> can enhance photosynthetic rates and water-use efficiency, these benefits are often offset by heat stress, which impairs pollen viability and reduces flower yield in heat-sensitive species like snapdragons (Antirrhinum majus). Similarly, drought and salinity can interact to exacerbate osmotic stress, leading to increased floral bud abortion and poor-quality blooms in carnations (*Dianthus caryophyllus*) and geraniums (*Pelargonium spp.*).

The complexity of multi-stressor interactions underscores the need for experimental designs that incorporate multiple environmental variables and use realistic climate scenarios (Posthuma et al. 2016). This approach can help identify critical thresholds and tipping points beyond which plant performance declines sharply, providing valuable insights for breeders and growers. Moreover, integrating multi-stressor studies physiological and molecular analyses can reveal the underlying mechanisms of stress tolerance and resilience, facilitating the development of withstand cultivars that can complex environmental conditions.

# 6.3 Exploring Phenotypic Plasticity and Genetic Adaptation

Phenotypic plasticity-the ability of a single genotype to produce different phenotypes under environmental conditions-is а plants mechanism which bν cope with environmental variability (Ceccarelli et al. 1991). In the context of climate change, phenotypic plasticity allows floricultural crops to maintain stable growth and flowering patterns despite fluctuations in temperature, water availability, and other climatic factors. However, the extent and limits of phenotypic plasticity vary widely among species, and understanding these differences is critical for predicting which crops are most vulnerable to climate change and which are likely to adapt.

Research should focus on quantifying phenotypic plasticity in key traits, such as flowering time, floral morphology, and resource allocation, across a range of environmental conditions. For example. studies on day-neutral and photoperiod-sensitive varieties of petunias and chrysanthemums could help elucidate how plasticity in flowering responses contributes to resilience under shifting photoperiods temperature regimes. Furthermore, experiments using reciprocal transplant designs—where plants are grown in different environments-can reveal the degree to which phenotypic changes are driven by genetic adaptation versus plastic responses (Potvin and Tousignant 1996).

In addition to phenotypic plasticity, genetic adaptation through natural or artificial selection will be essential for long-term resilience to climate change. Advances in genomics and

biotechnology offer new tools for accelerating the development of climate-resilient floricultural crops. Genomic selection, CRISPR/Cas9-based gene editing, and transcriptome profiling can be used to identify and manipulate key genes involved in stress tolerance, flowering regulation, and resource use efficiency (Sathee et al. 2022). For example, targeted editing of genes related to heat-shock response and flowering time in roses and snapdragons could produce cultivars that maintain flower quality and timing under fluctuating temperatures.

Future research should also explore the potential for epigenetic modifications-heritable changes in gene expression that do not involve alterations in DNA sequence-to enhance climate adaptation. Epigenetic mechanisms, such as methylation and histone modifications, can regulate flowering time and stress responses in floricultural species, offering an additional layer of phenotypic plasticity that can be harnessed for crop improvement. Understanding the role of epigenetics in climate adaptation could lead to novel strategies for breeding resilient floricultural crops capable of thriving in a rapidly changing environment (Jin et al. 2024)

#### 7. CONCLUSION

Climate change presents multifaceted challenges to the floriculture industry, impacting flowering patterns, productivity, and market stability. As floricultural crops are highly sensitive to environmental changes, targeted adaptation strategies are essential for ensuring their sustainability. Breeding climate-resilient varieties, optimizing agronomic practices, and employing controlled environment technologies will help mitigate these impacts. Additionally, integrating climate models and decision support systems can enhance planning and risk management. Future research should focus on species-specific responses, multi-stressor interactions, and the role of phenotypic plasticity and genetic adaptation in resilience. Addressing these research gaps will be crucial for developing innovative solutions and safeguarding the economic viability of floriculture in the face of ongoing climatic changes, ultimately supporting both growers and the broader horticultural industry.

#### **DISCLAIMER (ARTIFICIAL INTELLIGENCE)**

Author(s) hereby declare that NO generative Al technologies such as Large Language Models

(ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

#### **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

#### REFERENCES

- Adeyemi, O., Grove, I., Peets, S., & Norton, T. (2017). Advanced monitoring and management systems for improving sustainability in precision irrigation. *Sustainability*, *9*(3), 353.
- Arief, M. A. A., Kim, H., Kurniawan, H., Nugroho, A. P., Kim, T., & Cho, B. K. (2023). Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants. *Plants*, *12*(6), 1387.
- Aslam, A., Mahmood, A., Ur-Rehman, H., Li, C., Liang, X., Shao, J., & Hassan, M. U. (2023). Plant adaptation to flooding stress under changing Climate conditions: Ongoing breakthroughs and Future challenges. *Plants*, 12(22), 3824.
- Baumann, H. (2019). Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come?. *Canadian Journal of Zoology*, *97*(5), 399-408.
- Bhattacharya, A. (2022). Plant growth hormones in plants under low-temperature stress: a review. *Physiological processes in plants under low temperature stress*, 517-627.
- Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality—A review. *Journal of Cleaner Production*, 170, 1602-1620.
- Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality—A review. *Journal of Cleaner Production*, 170, 1602-1620.
- Brown, C. J., Saunders, M. I., Possingham, H. P., & Richardson, A. J. (2013). Managing for interactions between local and global stressors of ecosystems. *PloS one*, 8(6), e65765.
- Ceccarelli, S., Acevedo, E., & Grando, S. (1991).

  Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. *Euphytica*, *56*, 169-185.

- Chandel, A., Thakur, M., Singh, G., Dogra, R., Bajad, A., Soni, V., & Bhargava, B. (2023). Flower regulation in floriculture: an agronomic concept and commercial use. *Journal of Plant Growth Regulation*, *42*(4), 2136-2161.
- Chandel, A., Ujala, D. T., Sharma, D., Partap, M., Soni, V., & Bhargava, B (2024). Recent Developments in Soilless Cultivation and Their Implications. Ornamental Horticulture: Latest Cultivation Practices and Breeding Technologies, 85.
- Chandler, J. W. (2011). The hormonal regulation of flower development. *Journal of Plant Growth Regulation*, 30(2), 242-254.
- Chowdhury, M. F. N., Yusop, M. R., Ismail, S. I., Ramlee, S. I., Oladosu, Y., Hosen, M., & Miah, G. (2020). Development of anthracnose disease resistance and heat tolerance chili through conventional breeding and molecular approaches: a review. *Biocell*, 44(3), 269.
- Clark, N. M., Van den Broeck, L., Guichard, M., Stager, A., Tanner, H. G., Blilou, I., ... & Sozzani, R. (2020). Novel imaging modalities shedding light on plant biology: start small and grow big. *Annual review of plant biology*, 71(1), 789-816.
- Crimmins, M. A., & Crimmins, T. M. (2008). Monitoring plant phenology using digital repeat photography. *Environmental management*, 41, 949-958.
- Da Silva, J. A. T. (2015). Ornamental cut flowers: physiology in practice. *Floriculture Ornamental Biotech*, 124-140.
- Delph, L. F., Lu, Y., & Jayne, L. D. (1993). Patterns of resource allocation in a dioecious Carex (Cyperaceae). *American Journal of Botany*, 80(6), 607-615.
- Forrest, J., & Miller-Rushing, A. J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *365*(1555), 3101-3112.
- Franken, E. (2013). Flowering physiology of selected disa hybrids in cultivation (Doctoral dissertation, Stellenbosch: Stellenbosch University).
- Glenn, D. M., Kim, S. H., Ramirez-Villegas, J., & Läderach, P. (2013). Response of perennial horticultural crops to climate change. *Horticultural Reviews Volume 41*, 47-130.
- Glenny, G. (1860). *The culture of flowers and plants*. Houlston and Wright.

- Haggblade, S., Hazell, P. B., & Reardon, T. (2002). Strategies for stimulating poverty-alleviating growth in the rural nonfarm economy in developing countries.
- Hew, C. S., & Yong, J. W. (2004). The physiology of tropical orchids in relation to the industry. World Scientific.
- Jin, Q., Chachar, M., Ali, A., Chachar, Z., Zhang, P., Riaz, A., & Chachar, S. (2024). Epigenetic Regulation for Heat Stress Adaptation in Plants: New Horizons for Crop Improvement under Climate Change. *Agronomy*, 14(9), 2105.
- Karaesmen, I. Z., Scheller–Wolf, A., & Deniz, B. (2011). Managing perishable and aging inventories: review and future research directions. *Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook, Volume 1*, 393-436.
- Krasensky-Wrzaczek, J., & Kangasjärvi, J. (2018). The role of reactive oxygen species in the integration of temperature and light signals. *Journal of experimental botany*, 69(14), 3347-3358.
- Mondal, S., Karmakar, S., Panda, D., Pramanik, K., Bose, B., & Singhal, R. K. (2023). Crucial plant processes under heat stress and tolerance through heat shock proteins. *Plant Stress*, 100227.
- Muchie, A., & Assefa, F. (2021). Impact of climate change on horticultural crops production and quality: A review. *Amer. J. Biosci. Bioeng*, *9*(6), 156-161.
- Okubo, H. (2012). 9 dormancy. Ornamental Geophytes: from Basic Science to Sustainable Production, 233.
- Orton, T. J. (2019). *Horticultural plant breeding*. Academic Press.
- Park, Y. G., & Jeong, B. R. (2018). The Quality and Quality Shifting of the Night Interruption Light Affect the Morphogenesis and Flowering in Floricultural Plants. Smart Plant Factory: The Next Generation Indoor Vertical Farms, 223-238.
- Pearson, K. D. (2019). Spring-and fall-flowering species show diverging phenological responses to climate in the Southeast USA. *International Journal of Biometeorology*, 63(4), 481-492.
- Posthuma, L., Dyer, S. D., de Zwart, D., Kapo, K., Holmes, C. M., & Burton Jr, G. A. (2016). Eco-epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors. *Science of the Total Environment*, *573*, 1303-1319.

- Potvin, C., & Tousignant, D. (1996). Evolutionary consequences of simulated global change: genetic adaptation or adaptive phenotypic plasticity. *Oecologia*, 108, 683-693.
- Proietti, S., Scariot, V., De Pascale, S., & Paradiso, R. (2022). Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. *Plants*, 11(3), 432.
- Proietti, S., Scariot, V., De Pascale, S., & Paradiso, R. (2022). Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. *Plants*, *11*(3), 432.
- Proietti, S., Scariot, V., De Pascale, S., & Paradiso, R. (2022). Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. *Plants*, 11(3), 432.
- Rachid, G., El-Fadel, M., Abou Najm, M., & Alameddine, I. (2017). Towards a framework for the assessment of saltwater intrusion in coastal aquifers. *Environmental Impact Assessment Review*, 67, 10-22.
- Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. *Plants*, 8(2), 34.
- Razali, Z. (2012). Postharvest physiology and molecular characterization of ethylene related genes in pollinated Dendrobium pompadour (Doctoral dissertation, University of Malaya).
- Roy, S., & Mathur, P. (2021). Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants. *Plant Cell Reports*, *40*(8), 1345-1365.
- Saqib, M., Anjum, M. A., Ali, M., Ahmad, R., Sohail, M., Zakir, I., & Hussain, S. (2022). Horticultural crops as affected by climate change. *Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective*, 95-109.
- Sathee, L., Jagadhesan, B., Pandesha, P. H., Barman, D., Adavi B, S., Nagar, S., & Chinnusamy, V. (2022). Genome editing targets for improving nutrient use efficiency and nutrient stress adaptation. *Frontiers in Genetics*, *13*, 900897.
- Swain, R., Praveena, J., & Rout, G. R. (2023). Mitigation Strategies of the Impact of

- Global Climate Change on Fruit Crops. In *Cultivation for Climate Change Resilience, Volume 1* (pp. 28-56). CRC Press.
- Trenberth, K. E. (2005). The impact of climate change and variability on heavy precipitation, floods, and droughts. *Encyclopedia of hydrological sciences*, *17*, 1-11.
- van Doorn, W. G., & Kamdee, C. (2014). Flower opening and closure: an update. *Journal of experimental botany*, 65(20), 5749-5757.
- Wani, M. A., Nazki, I. T., Din, A., Iqbal, S., Wani, S. A., Khan, F. U., & Neelofar. (2018). Floriculture sustainability initiative: The dawn of new era. Sustainable agriculture reviews 27, 91-127.
- Wittwer, S. H. (1995). Food, climate, and carbon dioxide: the global environment and world food production. CRC press.
- Wolf, B. (1999). The fertile triangle: The interrelationship of air, water, and nutrients in maximizing soil productivity. CRC Press.
- Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S., & Fisher, J. B. (2011). Changes in the

- potential distribution of humid tropical forests on a warmer planet. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 369(1934), 137-160.
- Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., & Zhao, Z. (2013). Plant phenological modeling and its application in global climate change research: overview and future challenges. *Environmental Reviews*, 21(1), 1-14.
- Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., & Zhao, Z. (2013). Plant phenological modeling and its application in global climate change research: overview and future challenges. *Environmental Reviews*, 21(1), 1-14.
- Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., & Zhao, Z. (2013). Plant phenological modeling and its application in global climate change research: overview and future challenges. *Environmental Reviews*, 21(1), 1-14.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/125403