

Journal of Scientific Research and Reports

Volume 30, Issue 9, Page 75-83, 2024; Article no.JSRR.121476 ISSN: 2320-0227

Litchi Waste: An Important Sources of Health Benefit

Vinod Kumar ^a, Ganesh Maske ^b, Uday Pratap Singh ^c, Yashvardhan Srivatstava ^d, Govind Balasaheb Shiurkar ^{e*} and Narayan Lal ^f

^a Bhavdiya Group of Institutions, Sibar, Sohawal, Ayodhya, Uttar Pradesh, India.
 ^b Institute of Agriculture Science, SAGE University, Indore, Madhya Pradesh, India.
 ^c ABBS PG College, Pura Bazar, Ayodhya, Uttar Pradesh, India.
 ^d Bhavdiya Institute of Pharmaceutical Science and Research, Ayodhya, Uttar Pradesh, India.
 ^e Bharti Vidyapeeths, College of Horticulture, Kadegoan, Sangali, Maharastra, India.
 ^f ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/jsrr/2024/v30i92332

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/121476

Review Article

Received: 18/06/2024 Accepted: 20/08/2024 Published: 24/08/2024

ABSTRACT

Litchi (*Litchi chinensis* Sonn) is a tropical fruit belongs to family sapindaceae. It is prized for their nutritional value and sweet flavour. However, litchi consumption generates significant waste, mostly peel, and seeds after consumption of sweet aril. The potential health advantages of these waste materials, which are abundant in bioactive chemicals including polyphenols, flavonoids, and vitamins, have been brought to light by recent studies. This review investigates the nutritional makeup of litchi waste and its possible uses for improving human health. Litchi waste contains

*Corresponding author: E-mail: govindjnkvv2016@gmail.com;

Cite as: Kumar, Vinod, Ganesh Maske, Uday Pratap Singh, Yashvardhan Srivatstava, Govind Balasaheb Shiurkar, and Narayan Lal. 2024. "Litchi Waste: An Important Sources of Health Benefit". Journal of Scientific Research and Reports 30 (9):75-83. https://doi.org/10.9734/jsrr/2024/v30i92332.

bioactive chemicals with anti-inflammatory, antibacterial, antioxidant, and anticancer effects that have been extracted using various techniques. Besides, using litchi waste in pharmaceuticals, nutraceuticals, and functional meals offers a sustainable way to lower food waste and improve nutritional value. Prospective study avenues encompass refining extraction methodologies, assessing bioavailability, and executing clinical trials to authenticate the ameliorative impacts of litchi waste-derived compounds. To sum up, litchi trash is a valuable and underutilized resource that has the potential to improve health and the environment while also enhancing human well-being.

Keywords: Litchi; bioactive compounds; nutraceuticals; pharmaceuticals; health benefit.

1. INTRODUCTION

Litchi (Litchi chinensis Sonn.) ia an important member of the Sapindaceae family, which has a strong mycorrhizal relationship [1-2]. Litchis are rich in nutrients and have therapeutic properties. The edible portion of litchi is called aril, whereas the waste materials-seed, bark, blossom, and leaves are valuable sources of nutrients. Litchi is good source of phenolics [3] and vitamin C [4-5]. The by-product litchi has notable concentrations of flavonoids and phenol, both of which have been linked to a range of biological functions. The total by-product in litchi fruit varied from 19.85% to 59.54% [6]. The nutritional value of litchi fruits is well-balanced, with roughly 60-80 calories per 100 g fruit and good levels of vitamins, antioxidants, and dietary fiber. Fruits are low in saturated fats and cholesterol, and for a very long time, people have used decoctions of tree bark, flowers, and roots to treat tumors, gland enlargements, coughing, and throat problems [7]. Its anti-oxidants, dietary fiber, and vitamins, litchi comes in many forms and can be used to treat a wide range of illnesses, including immune modulation. oxidative stress. hyperuricemia, fatigue, analgesics, visceral fat, viral diseases, cancer, neurodegenerative disorders, cataracts, and cardiovascular and brain diseases [8-10]. Consumption of phenolicrich food reduces the risk of degenerative illnesses such cancer, heart disease. inflammation, arthritis, brain damage, cataracts [11]. Because litchi contains a variety of nutritious substances, including vitamins, dietary fiber, linoleic acid, amino acids, trace minerals, and additional unsaturated fatty acids, it can be used to benefit human health in a variety of ways [12].

Ayurvedic evidence suggests that different portions of the litchi like fruit, leaf, and inflorescence have been utilized to cure a variety of illnesses, with digestive, excretory, and reproductive system issues being the most common conditions treated [13-14]. China has

been using litchi fruit as an alternative medicine for more than a millennium. The seed of litchi is used to treat hernias and stomach troubles; the pericarp is used to treat dysentery, metrorrhagia, and eczema. Litchi seeds and pericarp have been used to treat a variety of ailments, such as cough, flatulence, stomach ulcers, diabetes, obesity, testicular swelling, hernia-like conditions, epigastric and neuralgic pains, and anti-cancer, antibacterial. antihyperlipidemic, antiplatelet. antitussive, analgesic, anti-pyretic, hemostatic, diuretic, and antiviral properties [15]. The primary constituents of litchi fruit include flavonoids, phenolic acids, anthocyanins, coumarin, lignans, chromanes, sesquiterpenes, fatty acids, sterols, triterpenes. One significant class secondary metabolites found in plants are phenols, which have several beneficial qualities for human health. Traditional medicine has employed litchi fruit and its secondary metabolites as anti-diabetic, anti-cancer, antiinflammatory, antifungal, antiviral, antiplatelet, and anticoagulant agents. In addition, the plant includes some organic acids, including fumaric, succinic, phosphoric, levulinic, malic, lactic, and glutaric acids. Flowering is also controlled by variations in the phenolic content of litchi leaves [16]. The sunburn and fruit cracking are serious issues in litchi [17-19] and these conditions are being made worse by climate change [20-22]. Fruit with cracks and sunburn are a waste product of litchi since the fruit is unfit for consumption. This information will be helpful to the people to use various parts of litchi for various treatments of diseases. The following lists several waste products' significant health benefits:

2. PERICARP

The total by-product (pericarp and seed) in litchi fruit ranged from 19.85 to 59.54% [6]. The phenolic compounds (51–102 g kg⁻¹ DW) have been found in pericarp [23]. These compounds have been shown to have bioactivities such as high ferric reducing anti-oxidant power

(FRAP), 1, 1-diphenyl-2-picryhydrazyl (DPPH) scavenging, inhibition of lipid peroxidation, and protection against oxidative DNA damage. Tannins. epicatechin. anthocvanidin A2. anthocyanin, quercetin 3-rutinoside, and quercetin glucoside are the primary phenolics [24]. Kaempferol, isolariciresinol, stigmasterol, butylated hydroxytoluene, 3,4-dihydroxyl benzoate, methyl and ethyl shikimate, and a new phenolic. 2-(2-hydroxyl-5-(methoxycarbonyl) phenoxy) benzoic acid were separated from litchi [25]. Litchi pericarp pericarp considerable amount of polysaccharides with strong antioxidant properties [26]. The pericarp contains polyphenolic chemicals and polysaccharides that have a high degree of free radical scavenging properties [27-28]. preventing cancer cells from proliferating uncontrollably and triggering the signaling pathways associated with apoptosis, several extraction methods of the pericarp of the litchi fruit have also been shown to have anti-cancer effects against human embryonic lung fibroblast and breast cancer [29]. The aqueous extract of the pericarp of the litchi fruit also shown hepatoprotective properties gradually bγ reducing the number of apoptotic cells with morphological alterations [30]. Flavonoids found in the pericarp have been shown to have antiinflammatory properties [31].

In addition to one magnificent macrocyclic analogue, macrolitchtocotrienol A, and one new meroditerpenechromane, cyclolitchtocotrienol A, seven new δ-tocotrienols, called litchtocotrienols A-G (1-7) have been discovered with anticancer activity against gastric adenocarcinoma and hepatoma carcinoma cell line [32]. The antioxidant properties of epicatechin from litchi and bis (8-epicatechinyl) methane have been documented [33]. It has been observed that cyclins were suppressed, the Bax/Bcl-2 ratio was raised, and caspase-3 activity was increased in a dose-dependent way to induce apoptosis, cell death, and cell cycle arrest in colorectal cancer cells [34]. Following bioconversion by Aspergillus wamori, it has been demonstrated increased antioxidant activity and DNA protective impact of litchi pericarp extract [35]. According to studies conducted on the phytochemical analysis of litchi pericarp, benzoic acid which has recognized compounds is a new molecule that has strong antioxidant action [36]. Numerous researchers have thoroughly characterized the anti-oxidant activity of litchi skin [37-40]. Ascorbic acid, glutathione, carotenoids, polysaccharides, and other free-radical scavenging components are present [41-42]. It also includes rich phenolic substances, such as flavonoids (flavonols and anthocyanins) and phenolic acids. In the epidermis of litchi, epicatechin, procyanidin B2, epigallocatechin, and procyanidin B4 have been discovered [43]. Procyanidins, or polymerized tannins, were found to be the most prevalent in 'Guiwei' skin (0.4% fresh weight), followed by epicatechin (0.17%), procyanidin A2 (0.07%), anthocyanins (0.04%), and flavanols (0.04%) [24].

The majority of the anti-oxidant activity of litchi skin is attributed to two flavonoids, specifically anthocyanins and procyanidins [44]. Procyanidin B2 was discovered to be more effective than procyanidin B4 [28] and epicatechin in hydroxyl radicals scavenging free and superoxide anion, whereas epicatechin was shown to be more active in eliminating DPPH. Changes in phenolic compounds and other chemical compositions occur development of litchi fruits [41]. As a result, the skin's antioxidant activity varies depending on skin maturity. Fruit's skin exhibited a significantly higher level of antioxidant activity when it was still young [45].

Litchi skin contains 40% dry weight of insoluble fiber, which helps prevent diabetes, hemorrhoids, and rectum cancer. Human hepatoma cell growth was greatly reduced in vitro by a water soluble alcohol extract from litchi skin [46]. The litchi skin extract is also useful in suppressing breast cancer [47]. They discovered that litchi skin extract altered the pattern of gene expression, produced programmed cell death, and inhibited the growth of cancer cells [46-47]. It makes up about 15% of the weight of the entire fresh fruit and has a significant phenolic content. Although the pericarp is typically thrown away as waste [28], that is the source of bioactive phenolics and flavonoids. In dried litchi pericarp, the total phenolic content varied between 51 and 102 g kg⁻¹. The procyanidin content is high in litchi pericarp [48]. During storage at 25 °C, the quantities of procyanidin-A2 and (-)-epicatechin in the pericarp of postharvest litchi fruit declined as the skin browning index increased [49]. Ten cultivars of litchi that were gathered for two production seasons have also shown seasonal fluctuations in the phenolic contents of their pericarp [13].

The total amounts of flavonoids and phenolics in fresh weight (FW) varied from 7.12 to 23.46 mg of catechin equivalents/g FW and 9.39 to 30.16

mg of gallic acid equivalents g^{-1} , respectively. Between 1.77 to 20.94 mg cyanidin-3-glucoside equivalents/100 g FW were the overall anthocyanin levels. The three anthocyanins that were identified were cyanidin-3-rutinoside, cyanidin-3-glucoside, and malvidin-3-glucoside. Of these, cyanidin-3-rutinoside was the most abundant, accounting for 68.8% to 100% of the total anthocyanins. The total procyanidin levels were 4.35 to 11.82 mg epicatechin equivalents g^{-1} FW [48].

3. SEED

Litchi seeds have demonstrated a number of pharmacological actions, including the ability to relieve pain and dissipate cold. Seed has been used to treat epigastric pain, liver stagnation, hernia pain, blood stasis in women, testicular swelling, blood glucose and lipid modulation. and liver injury [50] as well as anti-oxidant, anti-virus, and antitumor properties [51]. Additionally, studies on the CNE-2Z of the nasopharynx [52], cancer have cervical. and lung demonstrated the anti-tumor efficacy of litchi seeds [53]. Litchi seeds contain minerals like Mg (0.28%), Ca (0.21%), and P (0.11%), as well as starch (40.7%), crude fiber (24.5%), and proteins (4.93%). The twenty-one amino acids were identified of which four were unknown [54]. The detection of volatile chemicals in litchi seeds, such as ketones, aldehydes, esters, alcohols, enes, and terpenoids, some of which had unclear activities [55]. The amount of crude saponin in litchi seeds were assessed [56].

Traditional Chinese medicine describes dried litchi seed as mildly bitter, warming, cold-driving, pain-relieving, and tonifying of the kidneys and liver [57]. Flavonoids found in litchi seeds enhance the seed's antioxidant properties. Water and ethanol extracts from litchi seeds were discovered [58] to decrease free radical damage and increase SOD activity in mice treated with alloxan monohydrate (ALX). The litchi seed pellets or water extract were useful in suppressing tumor and hepatoma growth [59-60]. Litchi seed extract prevented hepatoma cells from forming telomeres and, consequently, from dividing [59,60].

According to research, litchi seeds can lower blood sugar and cholesterol while also improving liver function [37-38]. The litchi seed water extracts lowered blood sugar levels in rats with ALX-induced diabetes [61]. The litchi seed extract was safer than biguanides and that its

effects persisted for more than a week [62]. Litchi seed extract decreased blood sugar levels by promoting glucose uptake in surrounding tissues while inhibiting blood capillary glucose uptake [58]. Litchi seed's ability to lower blood lipid levels is due to its high content of unsaturated fatty acids [63]. The litchi seeds' α -methylenecyclopropylglycine effectively reduced blood sugar and glycogen levels in the liver of mice treated with ALX [64]. Saponins had a role in the antidiabetes activity of litchi seeds [65].

Many studies have documented the antiviral properties of litchi seed extracts against a variety of viruses, including the hepatitis B virus [66-67], the influenza virus [68], the respiratory syncytial virus (RSV) [69] and the SARS coronavirus [70]. Of the 1000 herbal remedies studied, litchi seed was determined [71] to be the second most efficient in controlling hepatitis B. The beneficial ingredient in litchi seeds was their saponins [66.68.70] ascribe the anti-virus action of litchi seed extracts to their flavonoids. Powdered litchi seed is used to ease discomfort and treat cold stagnation. Litchi seeds are used to treat postpartum and premenstrual stomach pain [72]. Litchi seeds are also helpful in treating digestive problems, ulcers, hernias, lumbago, neurological diseases, and arthritis.

Chinese tribal communities utilize a mixture of litchi seeds, cumin, and peels to relieve the pain associated with hernias or swelling in the testicles [14]. Litchi fruit and seed parts have been utilized as medicinal tablets to treat many forms of diabetes, especially pregnancy-related diabetes. In Taiwan, the floral mixture is consumed as a cheery or refreshing beverage. Litchi is used by a sizable population in Vietnam to relieve small intestine and stomach pain [73]. In India, people drink tea made from powdered litchi seeds to relieve digestive problems, as well as to lessen nerve irritation and neuralgic pain [29]. In Indian and Chinese traditions, the seeds macerated in alcohol are used to heal digestive disorders. Malays utilize bark for severe tongue illnesses and root decoction for fever. In Palau, a combination of seeds is used to treat coughs.

4. BARK

Bark of litchi contains 42.0% fatty acids, including cyclopropanoic, 27.0% oleic, 12.0% palmitic, and 11.0% linoleic, as well as organic acids, fatty acids, amino acids, saponins, flavonoids, and sugar [74]. In addition to its possible medical benefits, it is utilized in the cosmetics sector and

as biopesticides, or fertilizers made from the leftover peels, seeds, and extraction process wastes [75]. The peel and bark of the fruit are boiled and consumed as tea to treat diarrhea and eruptions of the pox [76].

5. LEAVES

Leaf paste and extract are used for the treatment of ulcer, heat stroke, stomachache, flatulence, and detoxification [51]. Litchi leaves can be used to prepare moisturizing gel for the treatment of skin disorders. Poisonous insect attacks have been treated with the outer layer of litchi fruit and leaves [77]. Litchi leaves possess potent antimicrobial properties. The components of litchi that were separated into methanol. 1-butanol. aqueous, and ethyl acetate fractions all shown high DPPH and peroxyl radical scavenging activity. The study's findings showed that every component under investigation can provide natural antioxidants [50]. By enhancing natural antioxidant defense mechanisms, the methanol and chloroform extracts of litchi leaf may provide hepatoprotection against paracetamol-induced restore liver damage and biochemical parameters in rats in a way that makes sense According to the extracts' phytochemical study, terpenoids, flavonoids, phenols, tannins, and saponins were present. Rats' paw edema model caused by carrageenan was used to assess the anti-inflammatory activity, while mice's writhing test and hot plate method were used to assess the analgesic effect. Significant anti-inflammatory efficacy was shown by oral HLCL treatment, with the greatest effect occurring four hours after carrageenan administration. According to the antimicrobial activity tests. luteolin was found to have the most antibacterial activity against Salmonella, Bacillus thuringiensis, Shigella dysenteriae, Escherichia Staphylococcus and aureus. epicatechin, procyanidin A2, and rutin exhibited comparatively poor antibacterial properties [51].

6. FLOWERS

Phenols, flavonoids, and tannins are present in litchi flower water extract (LFWE). Phenolic acids, flavonoids, condensed tannins, anthocyanins, and proanthocyanidins are only a few of the phytochemicals found in the aqueous extracted of litchi flowers [79]. Owing to the presence of phenolic components, the acetone extract of floral extract demonstrated DPPH radical scavenging action and inhibited low density lipoprotein (LDL) oxidation. Evaluations

were conducted on the effects of flower extract on hepatocyte toxicity induced by cadmium (Cd) and lead (Pb), as well as on the activation of hepatic stellate cells (HSCs) mediated by transforming growth factor b1. The main flavonoids are proanthocyanidin A2, gentisic acid, and epicatechin, in that order. Phenolic acid is the primary flavonoid. The addition of LFAE may, in a dose-dependent manner, reduce the DNA fragmentation and lipid peroxidation caused by Pb and Cd while increasing cell viability. LFAE can inhibit TGFb1-induced HSC activation, as evidenced by the down regulation of smooth muscle aactin (aSMA) expression. These findings ultimately proved the litchi flower's potent antioxidant potential [10].

7. CONCLUSION

Litchi waste, which includes peels, seeds, and other by-products, represents a valuable resource with significant potential for health benefits. Traditionally, these components have been discarded, contributing to environmental waste. However, recent studies and research have highlighted their rich content of bioactive compounds, which offer numerous healthpromoting properties. Litchi waste, overlooked, is an important source of healthbeneficial compounds. Its potential applications in various fields make it a promising area for future research and development. By converting waste into valuable products, we can promote health, support sustainable practices, contribute to economic growth.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of manuscripts.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Lal N, Gupta AK, Kushwah NS, Nath V. Sapindaceous Fruits: In: Peter KV, Editor. Horticultural Crops of High Nutritive Values. Brillion Publishing, New Delhi; 2017a.
- 2. Lal N, Nath V. Effect of plant age and stress on flowering in litchi (*Litchi*

- chinensis). Current Horticulture. 2020a; 8(1):24-27.
- Lal N, Pandey SK, Nath V, Gontia AS, Sharma HL. Evaluation of litchi (*Litchi chinenesis* Sonn.) genotypes for fruit quality attributes. International Journal of Chemical Studies. 2018a;6(3):2556-2560.
- 4. Lal N. Genetic studies of litchi germplasm. Ph.D. Thesis, submitted to JNKVV, Jabalpur, MP; 2018.
- Lal N, Nath V. Phenolics and its relation with flowering in litchi (*Litchi chinensis* Sonn). Souvenir: International conference on global research initiatives for sustainable agriculture & allied sciences during 28-30 October 2018 at Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India, 2018b;313.
- 6. Lal N, Pandey SK, Nath V, Agrawal V, Gontia AS, Sharma HL. Total phenol and flavonoids in by-product of Indian litchi: Difference among genotypes. Journal of Pharmacognosy and Phytochemistry. 2018c;7(3):2891–2894.
- Cohen A, Dubois LJ. Raw food for everyone: essential techniques and 300 simple to-sophisticated recipes. Penguin group (USA) Inc., New York; 2010.
- 8. Chang YY, Yang DJ, Chiu CH, Lin YL, Chen JW, Chen YC. Antioxidative and anti-inflammatory effects of polyphenol-rich litchi (*Litchi chinensis*Sonn)-flower-water extract on livers of high-fat-diet fed hamsters. J Funct Foods. 2013;5:44–52.
- 9. Chauhan S, Kaur N, Kishore L, Singh R. Pharmacological evaluation of antiinflammatory and analgesic potential of *Litchi chinensis Gaertn* (Sonn). Int J Pharm Pharm Sci. 2014;6:116–119.
- 10. Hwang JY, Lin JT, Liu SC, Hu CC, Shyu YS, Yan DJ. Protective role of litchi (*Litchi chinensis* Sonn.) flower extract against cadmium and lead induced cytotoxicity and transforming growth factor b1stimulated expression of smooth muscle aactin estimated with rat liver cell lines. J Funct Foods. 2013;5:698–705.
- Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71–88.
- 12. U.S. Department of Agriculture, Agricultural Research Service USDA national nutrient database for standard reference; 2012.

- Available:http://www.ars.usda.gov/ba/bhnr c/ndl
- 13. Wang L, Lou G, Ma Z, Liu X. Chemical constituents with anti-oxidant activities from litchi (*Litchi chinensis*Sonn.) seeds. Food Chem. 2011;126:1081–1087.
- Lin CC, Chung YC, Hsu CP. Anti-cancer potential of Litchi seed extract. World J Exp Med. 2013;3:56–6.
- 15. Ibrahim SR, Mohamed GA. *Litchi chinensis*: Medicinal uses, phytochemistry, and pharmacology. J Ethnopharmacol. 2015;174:492–513.
- Lal N, Marboh ES, Gupta AK, Kumar A, Dubedi Anal AK, Nath V. Variation in leaf phenol content during flowering in litchi (*Litchi chinensis* Sonn.). Journal of Experimental Biology and Agricultural Sciences. 2019a;7(6):569–573.
- 17. Lal N, Nath V. Studies on sun burn and fruit cracking in litchi cultivars under Bihar condition. Indian Journal of Arid Horticulture. 2020;20(1&2):62-66.
- 18. Lal N, Sahu N. Screening of litchi (*Litchi chinensis* Sonn.) genotypes against sun burn. Bangladesh Journal of Botany. 2022;51(1):37-43
- Lal N, Kumar A, Pandey SD, Nath V. Screening of litchi genotypes for fruit cracking and the relationship of cracking to fruit and leaf traits. Erwerbs-Obstbau. 2023a;65:479–485.
- Lal N, Sahu, N, Kumar A, Pandey, SD. Effect of rainfall and temperature on sun burn and fruit cracking in litchi. Journal of Agrometeorology. 2022a;24(2):169-171.
- 21. Lal N, Singh AP, Tiwari DK, Mishra PK, Swaroop J, Lakra J, Sahu K. Fruit cracking in litchi: Big challenges under changing climatic condition. Scientist. 2022b;1(3): 5080-5094.
- 22. Lal N, Singh A, Pandey SD. Sunburn and fruit cracking in Litchi (*Litchi chinensis* Sonn.) cv. 'Rose Scented. Emergent Life Sciences Research. 2023b;9(2):260-264.
- 23. Wang L, Lou G, Ma Z, Liu X. Chemical constituents with anti-oxidant activities from litchi (*Litchi chinensis*Sonn.) seeds. Food Chem. 2011;126:1081–1087
- 24. Sarni-Manchado P, Roux EL, Guerneve CL, Lozano Y, Cheynier V. Phenolic composition of litchi fruit pericarp. J Agric Food Chem. 2000;48:5995–6002.
- 25. Jiang G, Lin S, Wen L. Identification of anovel phenolic compound in litchi (*Litchi chinensis*Sonn) pericarp and bioactivity

- evaluation. Food Chem. 2013;136:563–568.
- 26. Kong F, Zhang M, Kuang R, Yu S, Chi J, Wei Z. Anti-oxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (*Litchi chinensis* Sonn.). Carbohydr Polym. 2010;81:612–616.
- 27. Liu L, Xie B, Cao S, Yang E, Xu X, Guo S. A-type procyanidins from *Litchi chinensis*pericarpwith anti-oxidant activity. Food Chem. 2007;105:1446–145.
- 28. Zhao MM, Yang B, Wang JS, Li BZ, Jiang YM. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their anti-oxidant activities. Food Chem. 2006;98:539–544.
- 29. Li J, Jiang Y. Litchi flavonoids: isolation identification and biological activity. Molecules. 2007;12:745–758.
- Srichairatanakool 30. Bhoopat L, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T. Hepatoprotective effects of lvchee (Litchi chinensis Sonn): combination of anti-oxidant andantiapoptotic activities. Journal Ethnopharmacol. 2011;136:55-66.
- 31. Nishizawa M, Hara T, Miura T, Fujita S, Yoshigai E, Ue H, Hayashi Y, Kwon AH, Okumura T, Isaka T. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatorystatus of young athletes. Phytother Res. 2011;25:1486–1493.
- 32. Lin YC, Chang JC, Cheng SY, Wang CM, Jhan YL, Lo IW, Hsu YM, Liaw CC, Hwang CC, Chou CH. New bioactive chromanes from *Litchi chinensis*. J Agric Food Chem. 2015;63:2472–2478.
- 33. Ma Q, Xie H, Li S, Zhang R, Zhang M, Wei X. Flavonoids from the pericarps of *Litchi chinensis*. J Agric Food Chem. 2014; 62:1073–1078.
- 34. Hsu CP, Lin CC, Huang CC. Induction of apoptosis and cell cycle arrest in human colorectalcarcinoma by litchi seed extract. J Biomed Biotechnol; 2012. Article ID: 341479.
- 35. Lin S, Yang B, Chen F, Jiang G, Li Q, Duan X, Jiang Y. Enhanced DPPH radical scavengingactivity and DNA protection effect of litchi pericarp extract by Aspergillus awamori bioconversion. Chem Cent. 2012;J 6:108
- 36. Yang B, Zhao MM, Shi J, Jiang YM, Yang N. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging

- activity of polysaccharides from longan fruit pericarp. Food Chem. 2008;106:685–690.
- Guo JW, Pan JQ, Qiu GQ, Li AH, Xiao LY, Han C. Effects of Lychee seed on enhancing insulin sensitivity in type 2 diabetic-insulin resistant rats. Chin J New Drug. 2003a;12(7):536–539.
- 38. Guo CJ, Yang JJ, Wei JY, Li YF, Xu J, Jiang YG. Anti-oxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res. 2003b;23(12):1719–1726.
- Surinut P, Kaewsutthi S, Surakarnkul R. Radical scavenging activity in fruit extracts. Acta Hortic. 2005;679:201–203.
- Lal N, Pongener A, Kumar A, Pandey SD. Studies on bioactive compounds and antioxidant activity of litchi (*Litchi Chinensis* Sonn.) fruit cultivars under field conditions. Natl. Acad. Sci. Lett. 2023c; 46(1):7–10.
- 41. Huang XM, Wu ZX. Maturation and senescence of Lychee fruit and their regulations. In: Nouredddine B, Norio S (eds) Advances in postharvest technologies for horticultural crops. Research Sunpost, Kerala, 2006;315–340.
- 42. Yang B, Wang J, Zhao M, Liu Y, Wang W, Jiang Y. Identification of polysaccharides frompericarp tissues of litchi (*Litchi chinensis* Sonn) fruit in relation to their anti-oxidant activities. Carbohydr Res. 2006;341:634–638.
- 43. Zhang DL, Quantick PC, Grigor JM. Changes in phenolic compounds in Lychee (*Litchi chinensis* Sonn.) fruit during postharvest storage. Postharvest BiolTechnol. 2000;19(2):165–172.
- 44. Luximon-Ramma A, Bahorun T, Crozier A. Anti-oxidant actions and phenolic and vitaminC contents of common Mauritian exotic fruits. J Sci Food Agric. 2003;83: 496–502.
- 45. Zheng GM, Yi ZZ, Zhang JB, Zhong DH. Studies on the antioxidative effect of extract from mature and premature Lychee pericarp. Nat Prod Res Dev. 2003;15(4): 341–344.
- 46. Wang X, Wei Y, Yuan S, Liu G, Zhang YL, Wang W. Potential anti-cancer activity of litchifruit pericarp extract against hepatocellular carcinoma *In vitro* and *In vivo*. Cancer Lett. 2006a;239:144–150.
- Wang X, Yuan S, Wang J. Anti-cancer activity of litchi fruit pericarp extract against humanbreast cancer in vitro and in vivo.

- Toxicol Appl Pharmacol. 2006b;215:168–178.
- 48. Li W, Liang H, Zhang MW, Zhang RF, Deng YY, Wei ZC, Zhang Y, Tang XJ. Phenolic profiles and anti-oxidant activity of litchi (*Litchi chinensis* Sonn) fruit pericarp from different commercially available cultivars. Molecules. 2012;17: 14954–14967.
- 49. Sun J, Jiang Y, Shi J, Wei X, Xue SJ, Shi J, Yi C. Anti-oxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem. 2010;119:753–757.
- 50. Castellain RC, Gesser M, Tonini F. Chemical composition anti-oxidant and antinociceptive properties of *Litchi chinensis* leaves. J Pharm Pharmacol. 2014:6:1796–1807.
- 51. Wen L, Wu D, Jiang Y. Identification of flavonoids in Litchi (*Litchi chinensis*Sonn) leaf andevaluation of anti-cancer activities. J Funct Foods. 2014;6:555–563.
- 52. Zhang N, Zhou Z, Feng X. Comparison and elevation on anti-tumor activity *In vitro* of the litchi seeds and Longan seeds water extract hunan. J Tradit Chin Med. 2012; 28:133–135.
- 53. Lv Q, Si M, Yan Y. Effects of phenolic-rich Litchi (*Litchi chinensis* Sonn) pulp extracts onglucose consumption in human HepG2 cells. J Funct Foods. 2014;7:621–629.
- 54. Huang XS, Chen J. Determination of free amino acids in Litchi Stone [J]. Amino Acid Biotic Resour. 2007;2:003.
- Guo JW, Pan JQ. Chemical compositions, biological activities and pharmacological effects of Lychee or Lychee seeds. Chin J New Drugs. 2006;15(8):585–588
- 56. Yang Y, Luo ZH, Yan Q. Estimation of content on total saponins from semen Lychee.ChemIndu Times. 2004;18(1):45–46.
- 57. Tian J. Progress in research of antidiabetes herbal medicines. J Hang Teach Coll. 2005;4(6):470–472.
- 58. Pan JQ, Liu HC, Liu GN, Hu YL, Chen LX, Qiu ZQ. A study in blood sugar reducing, bloodlipid controlling and anti-oxidant activities in Lychee seed. Guangdong Pharm J. 1999;9(1):47–50.
- 59. Xiao LY, Hong HJ, Pan JQ, Lu JH, Zhang SP. Anti-tumor effect of semen Lychee and its effect on telomerase activation of hepatoma tissue. Chin Pharm. 2007; 18(18):1366–1368.

- 60. Wang X, Xiao L, Pan J. Experimental studies of effects of anti-tumor of Litchi seed Ke Li and the activity of in the tissue-end of EAC S180 and hepatic carcinoma of rats. Chin Healthcare Innovation. 2007;2:54–56.
- Wu QH, Liang SM, Li YJ, Zhao SH, Jian ZH, Chen SY. Screening study of TCM simple and proved recipes on diabetes. J Guangzhou UnivTradit Chin Med. 1991; Z1:218–223.
- 62. Zheng LY, Han C, Pan JQ. Chemical, pharmacological and clinical studies of Lychee seed. Acta Chin Med Pharmacol. 1998;5:51–53.
- 63. Ning ZX, Peng KW, Qing Y, Wang JX, Tan XH. Effects of the kernel oil from *Litchi chinensis* Sonn. seed on the level of serum lipids in rats. Acta Nutrimenta Sinica. 1996;18(2):159–162.
- 64. Huang TK. Handbook for component analysis and pharmacology of common chinese traditional medicine. Chinese Medical Science and Technology Press 1292; 1994.
- 65. Yang YJ, Liang BM. Determination of antidiabetesaponins from *Litchi chinensis*Sonn. Guangdong Pharm J. 2004;14(6):12–15.
- 66. Xiao LY, Zeng WT, Ma PQ, Zhu KL, Liang JX, Huang YH, Yang HH, Ou YY. Clinical study on the effect of lychee seed pellet on chronic hepatitis B. Chin J Tradit Chin Med Pharm. 2005;20(7):444–445.
- 67. Jiang WF, Chen JZ, Zhang J, Peng J. Inhibitory effects of total saponin extracted from the semen Lychee against hepatitis B virus *In vitro*. J Four Military Med Univ. 2008;29(2):100–103.
- 68. Luo WS, Gong SJ, Liang RG, Xu Q. A study of the action of flavonoids from Lychee seed against influenza virus. Chi J Chin Materia Medica. 2006;31(6):1379–1380.
- 69. Liang RG, Liu WB, Tang ZN, Xu Q. Inhibition on respiratory syncytial virus *In vitro* by flavonoids extracted from the core of *Lychee chinensis*. J Four Military Med Univ. 2006;27(20):1881–1883.
- 70. Gong SJ, Su XJ, Wu HP, Li J, Qin YJ, Xu Q, Luo WS. A study on anti-SARS-CoV 3CL protein of flavonoids from *Litchi chinensis* sonn core. Chin Pharma Bull. 2008;24(5):699–700.
- 71. Zheng MS, Zheng YF. Experimental studies on the inhibition effects of 1000 Chinese medicinal herbs on the surface

- antigen of hepatitis B virus. J Tradit Chin Med. 1992;12(3):193.
- 72. Yan X, Zhou J, Xie G, Milne GWA. Traditional Chinese medicines: molecular structures, natural sources, and applications. Ashgate Publishing Company, Hampshire. 1999;730.
- 73. Yang D, Chang Y, Lin H, Chen Y, Hsu S, Lin J. Inhibitory effect of Litchi (*Litchi chinensis* Sonn.) flower on lipopolysaccharide-induced expression of proinflammatory mediators in RAW264.7 cells through NF-κB, ERK, and JAK2/STAT3 inactivation. J Agric Food Chem. 2014;62:3458–3465.
- 74. Khare CP. Indian medicinal plants- an illustrated dictionary. Springer, New York. 2007;379.
- 75. Deerasamee O, Chaisawadi S. Clean production of freeze-dried lychee powder

- for medicinalherb and nutritional health benefits. ActaHortic. 2014;1023:59–62.
- 76. Lim TK. Edible medicinal and non-medicinal plants: Fruits. Springer, Dordrecht. 2013;6:45–58.
- Vardhana V. Direct uses of medicinal plants and their identification, 1st edn. Prabhat Kumar Sharma for Sarup & Sons, Delhi. 2008;211.
- 78. Basu S, Haldar N, Bhattacharya S, Biswas S, Biswas M. Hepatoprotective activity of *litchi chinensis*leaves against paracetamol induced liver damage in rats. Am Euras J Sci Res. 2012;7:77–81.
- 79. Kilari EK, Putta S. Biological and phytopharmacological descriptions of *Litchi Chinensis*. Pharmacogn Rev. 2016;10(19): 60–65.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/121476