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Abstract
Historically, the algebra of random variables has been a discipline of interest to statisticians.
On the other hand, in the last five decades special functions and numerical tools have become
largely available, implying other scientists to apply results regarding this area of knowledge. In
special, while studying the capacity of wireless networks, electrical and network engineers rely on
evaluating the probability density function of the ratio of random variables. In the present paper, the
probability distribution function of α–µ random variables is derived in terms of the H-function and
used to evaluate the outage, delay-limited and ergodic capacities, generalizing earlier results in the
literature. The results are evaluated by means of an original Mathematica routine and shown to be
in accordance with established theoretical results.

Keywords: α – µ random variables; Mellin transform; outage capacity; delay-limited capacity; ergodic
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1 Introduction
In applied sciences, the study of performance measures are related to functions of random variables.
Civil and mechanical engineers, for example, are interested in the study of safety factors, which can
be treated as the product or the ratio of two random variables in most of the cases. Electrical and
network engineers, on the other hand, while studying the capacity of wireless networks, are interested
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in the outage, delay-limited and ergodic capacities of the spectrum sharing systems, which ultimately
can be related to the ratio of two random variables (see, for example, [1],[2]).

In the present paper, the probability density and cummulative distribution functions of the product
and the ratio of an arbitrary number of α–µ random variables [3] is derived in terms of the H-function,
generalizing earlier results available in the literature. In order to numerically validate the expressions,
a Mathematica routine is developed and used. It is worth noticing that α–µ random variables are
generalized gamma random variables with three parameters, as will be discussed subsequently.

2 The H-Funtion
The H - function (see [4],[5] and [6]), represented as a contour complex integral which contains
gamma functions in integrand, is defined as:

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]

=
1

2πi

∫
L

m∏
j=1

Γ(bj +Bjs)
n∏

j=1

Γ(1− aj −Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj +Ajs)

z−sds, (2.1)

where Aj and Bj are assumed to be positive quantities and all the aj and bj may be complex. The
contour L runs from c− i∞ to c+ i∞ such that the poles of Γ(bj + Bjs), j = 1, . . . ,m lie to the left
of L and the poles of Γ(1− aj −Ajs), j = 1, . . . , n lie to the right of L.

The Mellin transform of the H-function is

∫ ∞

0

xs−1Hm,n
p,q

[
cx

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
dx =

c−s
m∏

j=1

Γ(bj +Bjs)

n∏
j=1

Γ(1− aj −Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj +Ajs)

. (2.2)

Given these, one shall proceed to the study of the algebra of α – µ random variables.

3 The Product and the Ratio of α-µ Random Variables
A random variable G is called an α – µ random variable if its probability density function is given as
[2]:

fG (g) =
αµµg

α
2
µ−1

2ĝ
α
2
µΓ (µ)

exp

[
−µg

ĝ

α
2

]
, g > 0; α, µ, ĝ > 0. (3.1)

One may notice that, in (3.1), α is a nonlinearity parameter, µ is related to the number of

multipath clusters, ĝ =
α
2

√
E(G

α
2 ) where E(.) denotes the expectation. It may be noticed that the

α – µ random variable is a generalized gamma random variable GG with 3 parameters, namely
GG(αµ/2, µ/ĝ, α/2).

In order to obtain the distributions of the product and the quotient of α – µ random variables, their
Mellin transform is of interest.

Theorem 1. The Mellin transform of a α – µ random variable is given as:
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M [fG (g)](s) =

(
ĝ

µ
2
α

)s−1 Γ
[
2(s−1)+αµ

α

]
Γ [µ]

. (3.2)

Proof. Consider the Mellin transform of the probability density function of a α – µ distribution. By
means of (3.1), one gets:

M [fG (g)](s) =
∫∞
0
gs−1fG(g)dg

= αµµ

2ĝ
α
2

µ
Γ(µ)

∫∞
0
gs−2+α

2
µ exp

[
−µ g

ĝ

α
2

]
dg.

(3.3)

Consider the integral: ∫ ∞

0

xa−1e−bxc

dx =
Γ
(
a
c

)
cb

a
c
, a, b, c > 0. (3.4)

By means of (3.4), it is easy to express (3.3) as (3.2).

Corollary 1. Consider the random variable X =
N∏

j=1

Xj in which Xj are independent α – µ random

variables, i.e., generalized gamma RVs GG(αjµj/2, µj/ĝj , αj/2), j = 1, .., N . Then, the probability
density function of X is given by:

fX(x) =

N∏
j=1

µ
2
αj

j

ĝjΓ (µj)
HN,0

0,N

 N∏
j=1

µ
2
αj

j

ĝj
x

∣∣∣∣ −
(µ1 − 2

α1
, 2
α1

), ..., (µN − 2
αN

, 2
αN

)

 . (3.5)

Proof. It is known that the Mellin transform of the distribution of the product of independent random
variables is the product of the Mellin transforms of each variable [4]. Thus, the Mellin transform of the
distribution of the product of N independent α – µ random variables is easily given by means of (3.2)
as:

M [fX(x)](s) =

N∏
j=1

 ĝj

µ
2
αj

j


s−1

Γ
[
2(s−1)+αjµj

αj

]
Γ [µj ]

. (3.6)

By means of (2.1) and (3.6), the representation in (3.5) easily follows.

Theorem 2. Consider the random variable X̂ =
N1∏
w=1

Yw

N2∏
j=1

X−1
j in which Yw andXj , w = 1, .., N1 and

j = 1, .., N2, are independent α – µ random variables, i. e., generalized gamma RVsGG(αwµw/2, µw/ĝw, αw/2),
w = 1, .., N1 and GG(αjµj/2, µj/ĝj , αj/2), j = 1, .., N2, respectively. Thus, the probability density
function of X̂ is given by:

fX̂(x) = Λ(X,Y )∏N1
j=1 Γ(µY,j)

∏N2
j=1 Γ(µX,j)

×

×HN1,N2
N2,N1

[
Λ (X,Y )x

∣∣∣∣ (
αX,1(1−µX,1)−2

αX,1
, 2
αX,1

), (
αX,2(1−µX,2)−2

αX,2
, 2
αX,2

), ..., (
αX,N2

(1−µX,N2
)−2

αX,N2
, 2
αX,N2

)

(µY,1 − 2
αY,1

, 2
αY,1

), (µY,2 − 2
αY,2

, 2
αY,2

), ..., (µY,N1 − 2
αY,N1

, 2
αY,N1

)

]
,

(3.7)
where Λ(X,Y ) is given as:
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Λ (X,Y ) =

N1∏
j=1

µ
2

αY,j

Y,j

ĝY,j


N2∏

j=1

ĝX,j

µ
2

αX,j

X,j

 . (3.8)

One may notice that Theorem 2 reduces to Corollary 1 when N2 = 0.

Proof. It is also known that the Mellin transform of the distribution of the quotients of α – µ random
variables can be easily obtained by making the substitution s = 2− s in (3.2) for the random variable
which is in the denominator of the ratio [4]. This way, by taking the random variables in the numerator
as Y and the ones in the denominator as X, (3.2) easily implies (3.7).

Theorem 3. Consider the random variable X̂ =
N1∏
w=1

Yw

N2∏
j=1

X−1
j in which Yw and Xj , w = 1, .., N1

and j = 1, .., N2, are independent α – µ random variables as defined in Theorem 2. Thus, the
cummulative distribution function of X̂ is given by:

FX̂(x) = Λ(X,Y )x∏N1
j=1 Γ(µY,j)

∏N2
j=1 Γ(µX,j)

×

×HN1,N2+1
N2+1,N1+1

[
Λ (X,Y )x

∣∣∣∣ (
αX,1(1−µX,1)−2

αX,1
, 2
αX,1

), ..., (
αX,N2

(1−µX,N2
)−2

αX,N2
, 2
αX,N2

), (0, 1)

(µY,1 − 2
αY,1

, 2
αY,1

), ..., (µY,N1 − 2
αY,N1

, 2
αY,N1

), (−1, 1)

]
,

(3.9)
where Λ(X,Y ) is given in (3.8). Also, one may notice that when N2 = 0, the results from Theorem 3
can be applied to Corollary 1.

Proof. The result in (3.9) is easily demonstrated by means of the following relation for the integral of
the H-function:

∫ c

0

Hm,n
p,q

[
wz

∣∣∣∣ (a1, A1), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]
dz

= cHm,n+1
p+1,q+1

[
wc

∣∣∣∣ (a1, A1), . . . , (an, An), (0, 1), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq), (−1, 1)

]
. (3.10)

Thus, by means of (3.7) and (3.10), the result (3.9) is obtained.

Being the mathematical background described, one shall proceed to the application of the ratio
of α–µ random variables to the study of three capacities of spectrum sharing systems.

4 Capacity Analysis of Spectrum Sharing Systems

In the present section, a direct application of the results developed in the last section is shown. In
order to numerically evaluate the H-function used, an algorithm in Wolfram Language (Mathematica)
is used.
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4.1 Outage Capacity

In the slow fading channel, the key event of interest is outage: this is the situation when the channel
is so poor that no scheme can communicate reliably at a certain fixed data rate. The largest rate of
reliable communication at a certain outage probability is called the outage capacity [7]. In the case of
a spectrum sharing system with only primary (PU) and secondary (SU) users, the outage probability
can be mathematically described as [2]:

Pout = Pr

{
G1

G0
<
N0(2

R0 − 1)

Qpk

}
, (4.1)

in which Pout is the outage probability; G0 and G1 are the instantaneous channel power gains from
the SU transmitter to the PU receiver and SU receiver, respectively; N0 is the power spectral density;
R0 is the transmission rate and Qpk is the peak interference power constraint [2].

In the case where the instantaneous channel power gains are assumed to be α–µ random
variables, the application of (3.9) is straightforward with N1 = 1 and N2 = 1. Thus, by means of
(3.9) and (4.1), the outage probability can be given as:

Pout =
Λ(G0, G1)N0(2

R0 − 1)

Γ (µG0) Γ (µG1)Qpk
H1,2

2,2

[
Λ (G0, G1)

N0(2
R0 − 1)

Qpk

∣∣∣∣ (
αG0

(1−µG0
)−2

αG0
, 2
αG0

), (0, 1)

(µG1 − 2
αG1

, 2
αG1

), (−1, 1)

]
,

(4.2)
with

Λ (G0, G1) =
µ

2
αG1
G1

ĝG0

ĝG1µ
2

αG0
G0

. (4.3)

Being the outage probability expressed in terms of the H-function, one shall proceed to the
evaluation of the expressions.

4.1.1 Application of the Equations Developed

In order to evaluate (4.2) and show its behavior, a set of parameters is considered.
At first, one may note that in [2] an evaluation procedure has been proposed, where the ratio

αG1/αG0 was considered to be a rational number. In the present paper, on the other hand, such
constraint is not present, thus the value of αG1/αG0 can be an arbitrary positive number. Figure 1
shows the behavior for the set of parameters shown in Table 1.

Table 1: Parameters Used in The Simulations
Set αG1 µG1 αG0 µG0 N0 R0

1
√
23

√
15

√
5

√
3 0.5 1

2
√
40

√
7

√
8

√
5 0.5 1

3
√
10

√
5

√
3

√
2 0.5 1

4
√
31

√
10

√
2

√
1.5 0.5 1

The simulations in Figure 1 show good agreement with the theoretical predictions, as discussed
in [2].
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0.01 0.1 1 10
Qpk
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0.001

0.01

0.1

1

Pout

Figure 1: Behavior of the Outage Probability for Different Parameters (1 - Dashed; 2 -
Dotted; 3 - Full and 4 - Dot-Dashed).

4.2 Delay-Limited Capacity
The delay-limited capacity can be defined as the maximum constant transmission rate achievable
over each of the fading blocks in a spectrum sharing system [2]. Mathematically, the delay-limited
capacity Cd can be defined as [2]:

Cd = log2

[
1 +

Qavg

E[G0/G1]N0

]
, (4.4)

in which Qavg is the average interference power constraint [2].
In the case where the instantaneous channel power gains are assumed to be α–µ random

variables, the application of (3.7) is straightforward with N1 = 1 and N2 = 1. Thus, by means of
(3.7) and (4.4), the delay-limited capacity can be given as:

Cd = log2

1 + QavgΓ(µG0)Γ(µG1)µ
2

αG0
G0

ĝG1

N0Γ
(
µG0 + 2

αG0

)
Γ
(
µG1 − 2

αG1

)
ĝG0µ

2
αG1
G1

 . (4.5)

The expression (4.5) has been obtained by noticing that the expectation of a given random
variable is its Mellin transform with s = 2. Thus, by means of (2.2) and (3.7), (4.5) easily follows.
Since (4.5) is expressed in terms of gamma functions and the latter are widely used in engineering,
the results will not be numerically evaluated.

4.3 Ergodic Capacity
The ergodic capacity can be defined as the maximum achievable rate averaged over all the fading
blocks (long-term average) in a spectrum sharing system [2]. Mathematically, the ergodic capacity
C

(a)
e can be defined as [2]:
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C(a)
e =

∞∫
1
γ0

B log2 (γ0x) fG1
G0

(x)dx, (4.6)

in which B is the total available bandwidth, γ0 = 1/(ψ0N0B) and ψ0 is calculated so that the average
interference power in (4.6) equals Qavg [2].

Again, in the case where the instantaneous channel power gains are assumed to be α–µ random
variables, the application of (3.7) is straightforward with N1 = 1 and N2 = 1. Thus, by means of (3.7)
and (4.6), the ergodic capacity can be given as:

C
(a)
e = B

∫∞
1
γ0

log2 (γ0x) fG1
G0

(x)dx

= Λ(G0,G1)B

Γ(µG0)Γ(µG1)

∫∞
1
γ0

log2 (γ0x)H
1,1
1,1

[
Λ (G0, G1)x

∣∣∣∣ (
αG0

(1−µG0
)−2

αG0
, 2
αG0

)

(µG1 − 2
αG1

, 2
αG1

)

]
dx

= Λ(G0,G1)B

Γ(µG0)Γ(µG1)
1

2πi

∫
L
Λ (G0, G1)

−s Γ
(
µG1 − 2(1−s)

αG1

)
Γ
(
µG0 − 2(s−1)

αG0

) ∫∞
1
γ0

log2 (γ0x)x
−sdxds

= Λ(G0,G1)B

Γ(µG0)Γ(µG1)ln(2)γ0

1
2πi

∫
L
(Λ (G0, G1) /γ0)

−s
Γ

(
µG1

− 2(1−s)
αG1

)
Γ

(
µG0

− 2(s−1)
αG0

)
Γ(s−1)2

Γ(s)2
ds

= Λ(G0,G1)B

Γ(µG0)Γ(µG1)ln(2)γ0
H3,1

3,1

[
Λ (G0, G1) /γ0

∣∣∣∣ (
αG0

(1−µG0
)−2

αG0
, 2
αG0

), (0, 1), (0, 1)

(µG1 − 2
αG1

, 2
αG1

), (−1, 1), (−1, 1)

]
.

(4.7)
The result in (4.7) generalizes an earlier result [2] derived as a series for rational values of the

parameters.
Since the ergodic capacity is given in terms of the H-function, it is of interest to numerically

evaluate the expressions obtained.

4.3.1 Application of the Equations Developed

The same set of data used in the simulation of outage capacity and presented in Table 1 is used in
the evaluation of the ergodic capacity. For every case below, B = 1 bps. Also, the graphics plotted
are the ergodic capacity in bits/s/Hz versus the parameter γ0, differently from [2] in which the plotted
graphics were the ergodic capacity in bits/s/Hz versus Qavg. Figure 2 decipts a plot of the results.

5 Conclusions

The algebra of random variables has shown to be a discipline of interest not only to statisticians, but
also to applied scientists. In special, the capacity evaluation of spectrum sharing systems is of great
interest to electrical and network engineers.

In the present paper the probability density function of the product and the ratio of an arbitrary
number of α–µ random variables has been derived in terms of the H-function. In order to evaluate
the expressions hereby developed, a Mathematica code has been mounted and used.

Numerical simulations of the outage probability have been carried out. The simulations performed
show good agreement to the theoretical results and generalize the ones previously given in the
literature. In addition, delay-limited and ergodic capacities have been obtained and expressed in
terms of the H-function in a general set-up.
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0.001
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Ce
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Figure 2: Behavior of the ergodic Capacity for Different Parameters (1 - Dashed; 2 - Dotted;
3 - Full and 4 - Dot-Dashed).
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