
American Journal of Computational Mathematics, 2017, 7, 1-20 
http://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

DOI: 10.4236/acjm.2017.71001  March 23, 2017 

 
 
 

Peristaltic Transport of Magnetohydrodynamic 
Carreau Nanofluid with Heat and Mass Transfer 
inside Asymmetric Channel 

Nabil T. M. Eldabe1, Osama M. Abo-Seida2, Adel A. S. Abo-Seliem3, A. A. ElShekhipy4,5,  
Nada Hegazy3* 

1Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt 
2Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt 
3Mathematics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt 
4Mathematics Department, Faculty of Science, Minia University, El-Minia, Egypt 
5Mathematics Department, Faculty of science, Imam Abdulrahman Bin Faisal University, Al-Dammam, KSA 

  
 
 

Abstract 
In this work, the peristaltic motion of a nano non-Newtonian fluid which ob-
eys Carreau model through a porous medium inside an asymmetric channel is 
investigated. The hall current effects with Joule heating and viscous dissipa-
tion are considered. The problem is modulated mathematically by a set of 
nonlinear partial differential equations which describe the conservation of 
mass, momentum, energy and concentration of nanoparticles. The non-di- 
mensional form of these equations is simplified under the assumption of long 
wavelength and low Reynolds number, and then resulting equations of coupled 
nonlinear differential equations are tackled numerically with appropriate 
boundary conditions. Graphical results are presented for dimensionless veloc-
ity, temperature, concentration and pressure gradient in order to illustrate the 
variations of various parameters of this problem on these obtained solutions. 
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1. Introduction 

Nowadays, the study of nanofluids flow has the interest of researches because of 
its applications in medicine, biochemistry and industrial engineering. Nanoflu-
ids are moderately new category of fluids which consist of a base-fluid with na-
no-sized particles (1 - 100 nm) suspended within them. Choi [1] may be the first 
author to use the term “nanofluid”, where it was reported that one of the prom-
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ising nanofluids applications in heat could transfer enhancement. In [2], Choi et 
al. showed that the addition of a small amount (less than 1% by volume) of na-
noparticles to conventional heat transfer liquids increase the thermal conductiv-
ity of the fluid up to approximately two times. An analysis of nanofluids ex-
amined by Buongiorno [3] was induced that this massive increase in the thermal 
conductivity occurs due to the presence of the Brownian diffusion and the 
thermophoretic diffusion of the nanoparticles. Recent articles on the nanofluid 
are cited in ReFS [4] [5] [6] [7] [8]. 

Peristaltic motion in a channel or tube is considered as a type of flow that has 
great value in several physiological processes and industries. Peristalsis is a me-
chanism for mixing and transporting fluids through expansion and contraction of 
the wave propagation along the channel walls. This mechanism is seen in many 
biological system such as urine transport from kidney to bladder through the ure-
ter, transport of lymph in the lymphatic vessels, swallowing food through the eso-
phagus, the movement of chime in the gastrointestinal track, ovum movement in 
the fallopian tube, transport of spermatozoa vasomotion of small blood vessels 
such as venules and capillaries and blood flow in arteries, transport of corrosive 
fluids, sanitary fluid transport and blood pumps in heart lung machine etc. This 
analysis was first investigated by Latham [9]. He presented fluid motion in peris-
taltic pump and also discussed the characteristic of pressure rise verus flow rate. 
After the work of Latham [9], Jaffrin and Shapiro [10] investigated the peristaltic 
pumping. They made the study under the assumption of long wavelength and low 
Reynolds number approximation. This work was further extended for Newtonian 
and non-Newtonian fluids with different flow geometries and boundary condi-
tions as elaborated in the references [11]-[17]. 

Recently, Eldabe et al. [18] have discussed peristaltic transport of a magneto 
non-Newtonian fluid through a porous medium in a horizontal finite channel. Sa-
fia Akram [19] has investigated the effects of nanofluid on peristaltic flow of a 
Carreau fluid model in an inclined magnetic field. Arshad et al. [20] have ana-
lyzed the peristaltic transport of a Carreau fluid in a compliant rectangular duct. 
Khalid Nowar [21] has studied peristaltic flow of a nanofluid under the effect of 
Hall current and porous medium. Noreen et al. [22] have examined numerical 
simulation of peristaltic flow of a Carreau naofluid in an asymmetric channel. 
Tasawar et al. [23] have discussed the radiative peristaltic flow of Jeffery nanof-
luid with slip conditions and joule heating. 

Few attempts have been devoted to peristaltic flows in presence of heat and 
mass transfer; such investigations are of great importance, which is due to their 
extensive applications in medical and bio-engineering sciences, as it may be re-
levant in many processes in human body like oxygenation in lungs, hemodialysis 
and nutrients diffuse out of blood. Sohail and nadeem [24] have examined the 
effects of heat and mass transfer on peristaltic flow of Carreau fluid in a vertical 
annulus. Eldabe et al. [25] have studied the magneto-hydrodynamic flow and 
heat transfer for a peristaltic motion of Carreau fluid through a porous medium. 
Eldabe et al. [26] have studied the peristaltic motion of non-Newtonian fluid 
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with heat and mass transfer through a porous medium in channel under uni-
form magnetic field. Sohail et al. [27] have discussed the effects of heat and mass 
transfer on peristaltic flow of a nanofluid between eccentric cylinders. Eldabe et 
al. [28] have discussed the peristaltic pumping of a conduction Sisko fluid 
through porous medium with heat and mass transfer. Ramesh and Devaker [29] 
have studied the effects of heat and mass transfer on the peristaltic transport of 
MHD couple stress fluid through porous medium in a vertical asymmetric 
channel. 

The main aim of this work is to study the peristaltic motion of a Carreau na-
nofluid with heat and mass transfer through a porous medium in an asymmetric 
channel under the effects of Hall current, viscous dissipation and Joule heating. 
The analysis is performed under the well-established long wavelength and low 
Reynolds number approximations. A detailed mathematical formulation is pre-
sented and numerical solution graphically for velocity, temperature, nanopar-
ticle phenomena and pressure gradient have been presented. 

2. Mathematical Formulation of the Problem 

Consider the peristaltic flow of an incompressible viscous electrically conducting 
nanofluid which obeys Carreau model inside a two dimensional vertical asym-
metric channel of width 1 2d d+  through a porous medium. Asymmetry in the 
channel is produced by propagation of waves along the channel walls traveling 
with different amplitudes, phases but with constant speed. In the Cartesian 
coordinates system (X, Y), the right-hand side wall 1Y H=  and the left-hand 
side wall 2Y H=  are given by  

( ) ( )1 1 1
2π, cosY H X t d a X ct
λ

 = = + − 
 

              (1) 

( ) ( )2 2 1
2π, cosY H X t d b X ct φ
λ

 = = − − − + 
 

            (2) 

where, 1a  and 1b  are the amplitudes of right and left walls respectively, λ  is 
the wavelength, t is the time, and φ  is the phase which varies in the range 
0 πφ≤ ≤ . When 0φ =  then symmetric channel with waves out of the phase 
can be described (i.e. both walls move outward or inward simultaneously), and 
for πφ = , the waves are in phase. Further 1 2 1 1, , ,d d a b  and φ  satisfy the con-
dition:  

( )22 2
1 1 1 1 1 22 cos ,a b a b d dφ+ + ≤ +                  (3) 

 so that the walls will not intersect with each other. 
A strong uniform magnetic field with magnetic flux density ( )00,0, B=B  is 

applied and the Hall effects are taken into account. The induced magnetic field is 
neglected by assuming a very small magnetic Reynolds number ( )1mRe <<< , 
also it is assumed that there is no applied polarization voltage so that the total 
electric field = 0E . The expression for the current density J  including the 
Hall effect and neglecting ion-slip and thermoelectric effects [The generalized 
Ohm’s law] is given by [30]: 
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( )1

een
σ
 

= + × − × 
 

J E V B J B                    (4) 

where σ  is the electrical conductivity of the fluid, V  is the velocity vector, e is 
the electric charge of electrons, en  is the number density of electrons. Equation 
(1) can be solved in J  to yield the Lorentz force vector in the form: 

( ) ( )
2

0
2

ˆ ˆ
1

B
U mV i mU V j

m
σ−  × = − + + +

J B              (5) 

where U and V are the X and Y components of the velocity vector, 0

e

B
m

en
σ

=  is  

the hall parameter. The heat transfer and nanopatricle processes are maintained by 
considering temperature 0 1,T T  and nanoparticle phenomena 0 1,C C  to the right 
and left sides wall, respectively. 

The constitutive equation for a carreau fluid is given by [24]: 

( )
1

2 2

0

,1
nη η

γ
η η

−
∞

∞

−  = + −
Γ                     (6) 

( )2
0

11 ,
2ij ij

nη γ γ− = +  
Γ  τ                   (7) 

in which ijτ  is the extra stress tensor, η∞  is the infinite shear rate viscosity, 

0η  is the zero shear rate viscosity, Γ  is the time constant, n is the power law 
index, and γ  is defined as: 

1 1 
2 2ij ji

i j
γ γ γ= =∑∑ Π                     (8) 

where ( )( )2Ttrac grad grad= +Π V V  is the second invariant strain tensor. 
The governing equations for the present problem are described as: 
Continuity equation 

0U V
X Y
∂ ∂

+ =
∂ ∂

                      (9) 

Equations of motion 

( ) ( ) ( )
2

0 0
0 02

1 1

f

XX XY
f f

U U UU V
t X Y

BP U mV U g T T g C C
X X Y k m

ρ

η στ τ
ρ α ρ α

∂ ∂ ∂ + + ∂ ∂ ∂ 
∂ ∂∂

= − + + − + − + − + + −
∂ ∂ ∂ +

(10) 

( )
2

0 0
2

1 1
YX YY

f
BV V V PU V V mU V

t X Y Y X Y k m
η στ τ

ρ
∂ ∂∂ ∂ ∂ ∂ + + = − + + − + + ∂ ∂ ∂ ∂ ∂ ∂ + 

 (11) 

Energy equation 

( )

( ) ( )
22 2

2 20
2 22 2 2

0

1

f

B
XX XY

p
T

YX YY

T T Tc U V
t X Y

C T C TU U D
X X Y YBT T X YK U V c

V VX Y m D T T
X Y T X Y

ρ

τ τ σ
ρ

τ τ

∂ ∂ ∂ + + ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂  ∂ ∂  +  + ∂ ∂ ∂ ∂    ∂ ∂  ∂ ∂= + + + + +      ∂ ∂∂ ∂ + ∂ ∂       + + + +       ∂ ∂  ∂ ∂      

(12) 
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Concentration equation 
2 2 2 2

2 2 2 2
0

T
B

DC C C C C T TU V D
t X Y TX Y X Y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

      (13) 

where fρ  is the density of the fluid, P  is the pressure, 1k  is the permeability 
of the porous medium, g  is the acceleration due to gravity, α  is the volume 
expansion coefficient, T  is the temperature of the fluid, C  is the nanoprticle 
concentration, ( ) fcρ  is the heat capacity of the fluid, K  is the thermal con-
ductivity, ( ) pcρ  is the effective heat capacity of the nanoparticle material, BD  
is the Brownian diffusion coefficient and TD  is the thermophoretic diffusion. 

Introducing a wave frame ( ),x y  moving with the velocity c away from the 
fixed frame ( ),X Y  by the transformation  

( ) ( ),  ,  ,  ,x X ct y Y u U c p x P X t= − = = − =            (14) 

in which ( ) ( ), , ,x y u v  and P are the coordinates, velocity components and 
pressure in the wave frame. 

Defining the following non-dimensional quantities  

1 2 1

1 1 1

2
11 1 2 1

1 2
1 1 2 0 0 1

1 1 1

0 0 0 1

01
0 12

0 1 01

,  ,  ,  ,  ,  ,  ,  ,

,  ,  ,  ,  Re ,  ,

Γ,  ,  ,  ,  ,

,  ,  

f

xx xx xy xy yy yy

d d ax y u v tx y u v t d a
d c c d d

cdb H H d pb h h p
d d d c cd

d d dcWe
c c c d c

T Tks M B d
T Td

δ
λ λ λ

ρ ψψ
η λ η

γλτ τ τ τ τ τ γ
η η η

σ θ
η

= = = = = = = =

= = = = = =

= = = = =

−
= = =

−





( ) ( )
( )

( ) ( )

( )
( )
( )

0

1 0

2 2 2
1 1 0 1 1 0 1

0 0 1 0

1 0 1 0

,  Ω ,  Pr ,

,  ,  ,

,  ,  ,  

,  .

f

f f
c

f

B B
c b t

f B

p

f f

C C
C C

g d T T g d C C cGr Br E
c c c T T

D C C D T T
S N N

D

cK
c c

µ
ρ α

ρ α ρ α
η η

τ τµ
ρ α α

ρ
α τ

ρ ρ

−
= =

−

− −
= = =

−

− −
= = =

= =

  (15) 

where δ  is the dimensionless wave number, Re  is the Reynolds number, 
We  is the Weissenberg number, s  is the porosity parameter, M  is the 
magnetic parameter, Gr  is the local temperature Grashof number, Br  is the 
local nanoparticle Grashof number, Pr  is the Prandtl number, cE  is the 
Eckert number, cS  is the Schmidt number, Nb  is the Brownain motion pa-
rameter and   tN  is the thermophoresis parameter. 

Using Equation (14) and the above set of non-dimensional quantities (15) into 
Equations (10)-(13), the resulting equations in terms of stream function  

 ,  u v
x y
ψ ψψ δ

 ∂ ∂
= = − ∂ ∂ 

 can be written after dropping bars in the following  

Non-dimensionless form as: 
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( ) ( )
2 2

2
2 2

Re

11 1 Ω
1 1xx xy

y x x y y

p mM M Gr Br
x x y x y s ym m

ψ ψ ψδ

ψ ψ ψδ τ τ δ θ

  ∂ ∂ ∂ ∂ ∂
−  ∂ ∂ ∂ ∂ ∂  

   ∂ ∂ ∂ ∂ ∂ ∂ = − + + − − + − + + +    ∂ ∂ ∂ ∂ ∂ ∂+ +     

(16) 

( ) ( )

3

2 2
2 2

2 2

Re

11 1
1 1yx yy

y x x y x

p mM M
y x y y y s xm m

ψ ψ ψδ

ψ ψ ψδ τ δ τ δ δ δ

  ∂ ∂ ∂ ∂ ∂
− +  ∂ ∂ ∂ ∂ ∂  

   ∂ ∂ ∂ ∂ ∂ ∂ = − + + − − − + −     ∂ ∂ ∂ ∂ ∂ ∂+ +     

(17) 

2 2
2

22 2
2

2 2 2 2
2

2

2 2
2 2

2 2

22 2

1Re

ψ ψ

1 1
1

xx xy

c
r

yx yy

c c

x y y
E

y x x y P y x
y xx

x xM ME E
m m

y

ψ ψδ τ τ
ψ θ ψ θ θ θδ δ

ψ ψδ τ δτ

δ δ

ψ

  ∂ ∂
+  ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂   − = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      − − ∂ ∂∂   

 ∂ ∂   + +    ∂ ∂    +  + + ∂ +  ∂  

22
2

2 Pr
1

tN
x y

y

θ θδ
ψ

 
    ∂ ∂   +  +     ∂ ∂    ∂   +  ∂  

(18) 

2 2 2 2
2 2

2 2 2 2

Ω Ω Ω ΩRe t
c

b

N
S

y x x y Ny x y x
ψ ψ θ θδ δ δ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    (19) 

where 
2

2 212 1 ,
2xx

n We
x y
ψτ γ− ∂ = +  ∂ ∂ 

                   (20) 

2 2
2 2 2

2 2

11 ,
2xy yx

n We
y x
ψ ψτ γ δ τ

 − ∂ ∂ = + − =   ∂ ∂   
            (21) 

2
2 212 1 ,

2yy
n We

x y
ψτ δ γ− ∂ = +  ∂ ∂ 

                  (22) 

and,  
1

2 2 2 22 2 2 2
2 2 2

2 22 2
x y y xy x
ψ ψ ψ ψγ δ δ δ

      ∂ ∂ ∂ ∂ = + − +     ∂ ∂ ∂ ∂∂ ∂       
         (23) 

Under the assumption of long wavelength 1δ   and low Reynolds number, 
Equations (16)-(19) become  

22 2 2
2

2 2 2

1 10 1 1
2 1

p n MWe Gr Br
x y s yy y m

ψ ψ ψ θ
      ∂ ∂ − ∂ ∂ ∂ = − + + − + + + + Ω     ∂ ∂ ∂∂ ∂ +       

(24) 

0 p
y
∂

= −
∂

                       (25) 

2 4 2 22 2 2 2
2

2 2 2 2

1 10 1
Pr 2 Pr Pr1

b t
c c

N Nn ME We E
y y y yy y y m

θ ψ ψ ψ θ θ          ∂ ∂ − ∂ ∂ ∂Ω ∂ ∂ = + + + + + +         ∂ ∂ ∂ ∂∂ ∂ ∂ +           
(26) 
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2 2

2 20 t

b

N
Ny y

θ∂ Ω ∂
= +
∂ ∂

                       (27) 

Eliminating the pressure from Equations (24) and (25) yields  
22 2 2 2

2
2 2 2 2

1 11 0
2 1

n MWe Gr Br
s y yy y y m

ψ ψ θψ
     ∂ − ∂ ∂ ∂ ∂Ω  + − + + + =     ∂ ∂∂ ∂ ∂ +      

  (28) 

The non-dimensional boundaries will take the form  

( ) ( )1 21 cos 2π ,   cos 2πh a x h d b x φ= + = − − +            (29) 

where , , ,a b dφ  satisfies the relation  

( )22 2 2 cos 1a b ab dφ+ + ≤ +                    (30) 

The corresponding boundary conditions are  

1

2

,  1,  0,  Ω 0,  at 
2

,  1,  1,  Ω 1,  at 
2

F y h
y

F y h
y

ψψ θ

ψψ θ

∂
= = − = = =

∂
∂

= − = − = = =
∂

            (31) 

where F is the dimensionless average flux in the wave frame defined by  

( )

( )1

2

d
h x

h x

F y
y
ψ∂

=
∂∫                         (32) 

The time mean Q  in the wave frame is defined by  

1Q F d= + +                         (33) 

3. Results and Discussion 

In this work, a program was designed by Mathematica Software (version 10) si-
mulate the application of parametric ND Solve package to find the numerical 
behaviors of our dimensionless system. Graphical results to the velocity u, the 
temperature θ , the nano particle concentration Ω  and the pressure gradient  
d
d
p
x

 are obtained under the impact of emerging parameters at moving boundaries  

of the fluid. 

3.1. Velocity Profile 

Figures 1-5 represent the impact of the Weissenberg number we, the power law 
index n, the magnetic parameter M, the thermophoresis parameter nt and flow 
rate Q on the velocity profile. Figure 1 and Figure 2 depict that the behaviour of 
the velocity near the channel walls and at the center is not similar in view of we 
and n. The velocity field increases with the increase of we and n near the channel 
walls, however it decreases at the center of the channel. Figure 3 and Figure 4 
show that the effect of M and nt on the velocity profile is the same and opposite 
to that of we and n, as by increasing M and nt the velocity decreases near the 
channel walls and increases at the center of the channel, but a reduction in u 
occurs and variation in u becomes narrow in some sections of the  
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Figure 1. The velocity profile u is plotted against y for several values of We at 0.7a = , 

0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 1m = , 1.2M = , 0.7tN = , 0.7Nb = , 

3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = −0.2, (d) x = 
0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 2. The velocity profile u is plotted against y for several values of n at 0.7a = , 

0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 0.7tN = , 

0.7Nb = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = −0.2, 
(d) x = 0.2, (e) x = 0.6, (f) x = 1. 
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Figure 3. The velocity profile u is plotted against y for several values of M at 0.7a = , 

0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 0.7Nb = , 

3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = −0.2, (d) x = 
0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 4. The velocity profile u is plotted against y for several values of Nt at 0.7a = , 

0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 0.7Nb = , 

3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = −0.2, (d) x = 
0.2, (e) x = 0.6, (f) x = 1. 
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Figure 5. The velocity profile u is plotted against y for several values of Q for 0.7a = , 

0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , when (a) x = −1, (b) x = −0.6, (c) x = −0.2, 
(d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 
fluid motion see (Figure 3(b), Figure 3(d) and Figure 3(e)), and Figure 4(b), 
Figure 4(d) and Figure 4(e). It is noticed through Figure 5 that the velocity 
profile increases with increasing Q. 

3.2. Temperature Profile 

The variation of temperature profile for different values of the magnetic para-
meter M, the Brownain motion parameter Nb, the Prandtl number Pr the local 
nanoparticle Grashof number br and the thermophoresis parameter nt are plotted 
in Figures 6-10. It is clear that the temperature profile increases when there is an 
increase in M, Nb and Pr, however it decreases with the increase in br and nt. 

3.3. Concentration Profile 

Figures 11-15 describe the variation of the concentration profile for several val-
ues of the magnetic parameter M, the prandtl number Pr, the thermophoresis 
parameter nt, the Brownain motion parameter Nb and the local nanoparticle 
Grashof number br. From Figures 11-13 it is clear that by increasing M, Pr, and 
nt, the concentration profile desreases, while from Figure 14 and Figure 15 we 
observe that the concentration profile increases with the increase in Nb and nt. 
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Figure 6. The temperature profile θ  is plotted against y for several values of M at 

0.7a = , 0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 7. The temperature profile θ  is plotted against y for several values of Nb at 

0.7a = , 0.9b = , 3d = , π
3

φ = , 3Pr = , 0.2Ec = , 0.5We = , 1m = , 0.5M = , 

0.7tN = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 



N. T. M. Eldabe et al. 
 

12 

 
Figure 8. The temperature profile θ  isplotted against y for several values of Pr at 

0.7a = , 0.9b = , 3d = , π
3

φ = , 0.2Ec = , 0.5We = , 1m = , 0.5M = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 9. The temperature profile θ  is plotted against y for several values of Br at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7tN = , 0.7Nb = , 3n = , 1Gr = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
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Figure 10. The temperature profile θ  is plotted against y for several values of Nt at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 11. The concentration profile Ω  is plotted against y for several values of M at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
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Figure 12. The concentration profile Ω  is plotted against y for several values of Pr at 

0.7a = , 0.9b = , 3d = , π
3

φ = , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 1.2M = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 13. The concentration profile Ω  is plotted against y for several values of Nt at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7Nb = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
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Figure 14. The concentration profile Ω  is plotted against y for several values of Nb at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 0.5M = , 

0.7tN = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
 

 
Figure 15. The concentration profile Ω  is plotted against y for several values of Br at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 

1.2M = , 0.7Nb = , 3n = , 1Gr = , 2s = , 1F = , when (a) x = −1, (b) x = −0.6, (c) x = 
−0.2, (d) x = 0.2, (e) x = 0.6, (f) x = 1. 
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3.4. Pressure Gradient Profile 

Figures 16-21 examine the influence of the magnetic parameter M, the power 
law index n, the Weissenberg number we, the local nanoparticle Grashof  
 

 

Figure 16. The pressure gradient d
d
p
x

 isplotted against x for several values of M at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = ,   2Br = , 2s = , 1F = , 0y = . 
 

 

Figure 17. The pressure gradient d
d
p
x

 isplotted against x for several values of n at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = ,   2Br = , 2s = , 1F = , 0y = . 
 

 

Figure 18. The pressure gradient d
d
p
x

 isplotted against x for several values of We at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 1m = , 1.2M = , 0.7tN = , 

0.7Nb = , 3n = , 1Gr = ,   2Br = , 2s = , 1F = , 0y = . 
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Figure 19. The pressure gradient d
d
p
x

 isplotted against x for several values of Br at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7tN = , 0.7Nb = , 3n = , 1Gr = , 2s = , 1F = , 0y = . 

 

 

Figure 20. The pressure gradient d
d
p
x

 isplotted against x for several values of Gr at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7tN = , 0.7Nb = , 3n = , 2Br = , 2s = , 1F = , 0y = . 

 

 

Figure 21. The pressure gradient d
d
p
x

 isplotted against x for several values of Nb at 

0.7a = , 0.9b = , 3d = , π
3

φ = , Pr 3= , 0.2Ec = , 0.5We = , 1m = , 1.2M = , 

0.7tN = , 3n = , 1Gr = , 2Br = , 2s = , 1F = , 0y = . 

 
number br, the local temperature Grashof number gr and the Brownian motion 
parameter Nb on the pressure gradient. It has been observed that because of 
successive contraction and relaxation of peristaltic walls the pressure gradient 
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shows oscillatory behavior. It is clear from Figures 16-19, that the magnitude of 
the pressure gradient decreases in view of an increase in M, n, we and br. The 
situation is reversed in Figure 20 and Figure 21, the magnitude of the pressure 
gradient increases with an increase in gr and Nb. It is also noticed that the pres-
sure gradient has its minimum values at the narrow parts of the channel and 
achieve its maximum values at the wider parts. 

4. Conclusions 

The peristaltic flow of a Carreau nanofluid through a porous medium with heat 
and mass transfer in the presence of Hall current, Joule heating and viscous dis-
sipation is studied under assumption of long wavelength and low Reynolds 
number. The main results are summarized as follow: 
• The velocity of Carraeu nanofluid increases at the neighborhood of the 

channel walls and decreases near the center of the channel by increasing the 
Weissenber number We and the power law index n. 

• It is observed that the magnetic parameter M and the thermophoresis para-
meter nt have opposite effects on the velocity to that of we and n. 

• The temperature profile increases with an increase in the Brownian motion 
parameter Nb and decreases with an increase in the thermophoresis parame-
ter nt. 

• The concetration profile decreases with an increase in the Brownian motion 
parameter Nb and increases with an increase in the thermophoresis parame-
ter nt. 

• The pressure gradient decreases with the increase of the magnetic parameter 
M, the power law index n, the Weissenber number we and the local nanopar-
ticle Grashof number br, while it increases with the increase of the local 
temperature Grashof number gr and the thermophoresis parameter nt. 
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