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ABSTRACT 
 
Aims: This paper demonstrates a method for calculating electrodynamics stress in single-phase 
and three-phase isolated conductors. Conductors are coated with a cylindrical shield made out of 
the material containing a magnetic parameter. Special emphasis is placed on induced eddy current 
of a shield and its effect on reduction of electrodynamics stress of three-phase conductors. 
Methodology:  The paper starts with the assumption that the cylindrical structure of the conductor 
shield is infinitely long σ=0. Inside and outside the shield applies Laplace differential equation for the 
magnetic vector potential [1,3]. Short circuit currents flow through the three eccentric positioned 
conductors and create magnetic induction or fluxes in a cylindrical shield. AC power corresponds to 
the time-varying resulting flux that induces eddy currents in the cylinder. Needed values of induction 
and fluxes relevant to eddy currents and electrodynamics forces can be determined by a method 
which is based on the calculation of the magnetic vector potentials and Poisson differential equation, 
A=µJ [2,4,5]. This procedure requires the establishment of a large number of boundary conditions 
and taking into account the superposition of multiphase conductive structure values. The impact 
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measure of eddy currents in such an eccentric three-phase structure can be determined by using a 
similar simple procedure which one of the authors applied in the [6-17]. 
Conclusion:  Electrodynamics forces, according to relationship (32), are significantly lower in 
shields which encompass only one phase of a conductor due to a protective effect of a shield. Eddy 
currents, as is demonstrated in this paper, significantly reduce magnetic field intensity produced by 
currents in conductors. Due to this effect, main electrodynamics forces in one-phase structures with 
shields, don`t affect the conductor but only affect the shield.  
 

 
Keywords: Magnetic flux; eddy currents; conductor; electro-dynamic forces; enclosure. 
 
1. INTRODUCTION  
 
Magnetic screen application in form of a 
cylindrical shield creates a condition for 
controlling magnetic flux losses. Flux losses 
could be directed to areas where they would 
have a reduced value or would be used for other 
purposes. In other words, in this way a possibility 
is created for influencing some physical sizes 
such as reduction of electrodynamics forces in 
extremely disturbed conditions (for example, in a 
case of a short circuit in transformer winding) [1-
3]. Beside this, under normal conditions, winding 
reactance values can be reduced hence reducing 
heating of certain parts in transformers and 
engines [11,13,15-17]. Magnetic shield is made 
out of electrical steel sheets. Depending on 
position in relation to the magnetic field line 
direction they are divided into horizontal and 
vertical cylindrical shields. This paper discusses 
vertical cylindrical shields made out of a material 
with a good magnetic conductivity which are 
cross placed in relation to the magnetic field lines 
[4-7]. 
 
2. THE METODOLOGY ON INVESTI-

GATING THE FLUENCE OF EDDY 
CURRENT IN THE CONDUCTOR 

 
In a case of alternating current, magnetic flux in a 
shield suppresses eddy current distributed in a 
magnetic shield layer at a certain depth which 
defines its electric and magnetic properties. 
Electrodynamics action is followed by a 
simultaneous increase of strength loss and shield 
heating. 

 
Magnetic field created by a current through a 
conductor eq. (1), i1 affects the second conductor 
with a current i2 and depending on current 
direction results in attracting or repelling 
electrodynamic forces (see Fig.1.c.). Magnetic 
field strength is determined using Biot-Savart law 
[1]: 

3
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Electrodynamic force is determined by Laplace 
formula, that is   
 

 122 BldiFd
rrr

×⋅=                                        (2) 
 

and after replacing eq. (1) with eq. (2) we get a 
relationship 
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If we neglect the influence of a restrained 
component of a short circuit transient current, it 
can be demonstrated in a relationship [2] :   

)cos1(0 tIi cirsh ω−=−                                  (4) 
 

.cirshcircuitshort ii −− =  - current value of a short 

circuit current, 
−0I  -initial value of direct short circuit current, 

−t  time from the moment of emergence of a 
short circuit current, 

−= fπω 2  cyclic frequency of  network 
voltage. 
Magnetic field around a conductor with a short 
circuit current is calculated according to 
equation 

 

)cos1(0 tBb ω−=                                       (5) 
 
Electrodynamic force per unit length of the 
conductor with a short circuit current in a 
magnetic field close to a second parallel 
conductor is calculated in a relationship eq. (2): 
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Fig. 1. Position in a single-pole shield conductor (a), in a three-pole shield (b) and electrodynamic 
force between two conductors with a current i 1 i i2 

 
The relationship eq. (6) we can write as: 
 

...)2cos
3

1
cos

3

4
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2

3
00 ttIBf ωω +−⋅=     (7) 

 
The magnetic induction at a distance  from a  
second line conductor is according to Ampere 
law: 
 

a

I
B

π2
0=                                                      (8) 

 
If eq. (8) is replaced by eq. (7) and 

``
0 2 cirshII −⋅=  [2], in a first half-cycle of a short 

circuit current, then: 
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I
f cirsh ωω

   
(9) 

 

``
cirshI −  - effective value of short circuit current in 

a sub-transient period, a – distance between 
parallel conductors. 
 
From the relationship eq. (9) it is apparent that 
beside electrodynamic force which emerged as a 
result of a direct current component, there exist 
two forces created by alternating current 
frequency of (50 Hz), and alternating current 
frequency of (100 Hz). With firmly positioned 
conductors the highest value emerges when 
condition to add all three components together is 
created, that is, at the moment for 

.37)31341(),( =++= πωtza
 

 
In case of a strongest disturbance – three phase 
short circuit, the maximum force is exerted on the 
middle conductor, in line conductors` 
arrangement [2], and calculation is reformed 

under the assumption that currents in phases B 
and C have the same direction, and then:  

7``
..

``
``

.
3 10)(2 −

−−
− ⋅−= cirshCcirshB

cirshA ii
a

i
f        (10) 

 

A conductor of circular cross section lies on a 
cylinder axis with a magnetic parameter µ, 
placed in a homogeneous magnetic field (H0), 
Fig. 2. With dimensions of: Inside and outside 
diameter of the cylindrical shell (D=2 R0, Di=2 Ri), 
thickness of cylindrical shell (d) Fig. 2a.  
 
The first assumption is that the structure of the 
cylindrical shell is infinitely long, that a shield 
doesn`t contain a conductor – space without a 
current (σ=0). For inside and outside shield 
Laplace differential equation for magnetic vector 

potential is applied ),0( =∆A
r

[3]: In the region 
where the current density equals zero, a simple 
method for determining the scalar potential 

function can be applied. )0( ≠Hrot
r

 only in the 
current occupied area which is why it is called 
eddy current space. Outside eddy current space 

),0( =Hrot
r

 and the vector field H is considered 
as a potential. In this area we have 

),( mgradH ϕ−=
r

 where ),( mϕ  is a scalar function 

called the scalar potential [1-3]. 
 
A cylinder with a magnetic parameter µ  

subdued to magnetic polarisation creates its own 
magnetic field, and an arbitrary point field 
(M(r,θ)) of cylindric coordinates in the 
neighbouring space, outside the shield 
determines the magnetic scalar potential (φm0) 
that is:   

),( 0
00 y

gradH m
m ∂

∂−=−= ϕϕ  where is scalar 

potential: .00 Intm CyH +−=ϕ  
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Under the assumption that on the cylinder axis 
(y=0) the potential is (φm0=0) and by inserting 
(y=r cosθ) the potential is (φm0=-H0r cosθ). 
Further more, the scalar potential, the potential of 
the fictive magnetic dipole with positive and 
negative magnetic load line at a distance d, 
which substitutes the influence of homogeneous 
magnetic cylinder, in exterior point M result 
potential, is derived (second coefficient is 
proportional to r/1  according to [3] ), where: r - 
distance from the shield axis, θ - rotation angle 
(polar coordinates) 
 

θθϕ coscos 1.
0 r

C
rH Int

my +⋅−=                (11) 

 
and CInt1 is an integration constant proportional to 
the moment of the fictive magnetic dipole in 
relation to the exterior surface area of a cylinder 
eq. (3). Interior field of a cylinder which is placed 
in an unknown homogeneous magnetic field is 
also the homogeneous. In a shield, a field 

consists of unknown homogeneous field 
component and a fictive dipole field placed on 
the cylinder axis.The potential of points in the 
very shield is determined in a relationship: 
 

θθϕ coscos 2.

r

C
rH Int

FemFe +⋅−=            (11a) 

 
Here (HFe)  is an unknown homogeneous field 
value in a shield in case unknown field doesn`t 
exist (H0), (CInt2) is an integration constant 
proportional to the moment of fictive magnetic 
dipole in relation to the interior surface area of a 
cylinder [1,3]. And finally, the field (Hi) between 
the axis and interior surface area of a cylinder is 
also homogeneous and emerges as a result of 
field presence attained through polarisation in 
relation to both surface areas of a cylinder: 
exterior and interior. The potential point inside 
the screen space equals 
 

θϕ cos. ⋅−= rH iim                                   (11b) 

 

  
Fig. 2. Current through a conductor and returning c urrent distribution in a shield with outstanding 

magnetic characteristics 
 

The constants in prior relationships, for ),0( =Hrot
r

are determined based on tangent vector 

component equation principle )(H
r

and normal vector components )(B
r

, on bordering surface areas of a 
cylinder: 
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The constants (HFe)  and (CInt2) are determined based on two conditions eq. 12 and eq. 12.a (interior 
surface area of a cylinder):  
 

3
)2( 0 i

Fe
H

H
µ
µ+=  and 

3
)1( 02

2.
i

iInt
H

RC
µ
µ−−=                                                                (13.b) 

 
When these two relationships are substituted into two conditions (eq. 13 and eq. 13a) an equation for 
calculating magnetic field inside a cylinder screen is derived. The cylindric shield results from a cross-
section of two concentric cylinders witha radius of (r=R0) and (r=Ri). After substitution and sorting it 
out, an equation for magnetic field strength is derived (Hi) inside a cylinder screen which is placed in 
(H0) unknown homogeneous magnetic field: 
 

0
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An approximate value refers to ).( 00 µµµµ >>= r  
From eq. (14) the needed cylinder shield thickness can be determined (d), depending on the given 

radius value Ri
 
and equation (per unit) values of reduced field influence %100

0
.. H

H
h i

pui =
 

. The 

approximate value of shield thickness refers to ).( 0µµ >>  
 

..

..1004
1

1

pui

pui

r

i

h

hR

d

−
−

=

µ

                                                                                                       (15) 

 

 
 

Fig. 3. Needed cylinder shield thicknesss  in relation to the expected loss of exterior 
magnetic field influence 

Fig. 3. presents geometric dimensions of a magnetic cylinder shield and position of fictive (centric) and three-
phase (eccentric) conductors with a current iA, iB, iC  which at points M(r,(ρ),θ) create adequate induction                  

fields Bn,ρ
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Based on relationship (15), Fig. 3 shows 
dependability of the expected shield thickness(d) 
with diameter (D1) and needed protection 
efficiency from the external field influence ).( 0H

r
 

As weakening of field by a few percent is noted, 
cylindric shield thickness of several milimeters is 
needed. As inside cylinder diameter is bigger  the 
thicker shield is needed. For reducing unknown 
field influence on interior cylinder field to 

).%5( 0HH i

rr
= in a steel cylinder with a diameter of 

),1( 1 mD =  shield thickness of )5.4( cmd =  is 
needed. The chosen example demonstrates how 
difficult and costly is to attain protection using 
cylindric magnetic shields positioned horizontally 
in relation to the unknown field line ).( 0H

r

 
 
Eddy current effect: if inside the very cylinder, 
eddy current is induced on its surface area, then 

),0( ≠Hrot
r

 that is ),( JHrot
rr

=  and this value in a 
cylindrical coordinate system amounts to: 

 

J
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θ
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θ

ϕσ 11rr

                                                                                       (16) 

 
Induced voltage in contour of a shell which passes through arbitrary point (M(r,θ)), Fig.2.b : 
 

 ∫ ∂
∂−=⋅

l t
ldE

φrr

,    t

H
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Further, electric field strength jwt
meHH =

r
( , )jwt

mejwH
t

H =
∂
∂
r

, due to alternating current influence in a 

conductor on cylinder axis,instead of with a large letter H , is denoted with a small letter 
)2sin( ftHh m π= . 

 
θϕ cos⋅⋅−= rhim

 -  potential ),( mϕ  and field strength ),( ih inside shield screen, 

r

C
rh Int

m

θθϕ cos
cos0

⋅
+⋅⋅−= - potential mϕ and field strength )( 0h outside a shield. 

The magnet induction vector ),(B
r

 can be expressed through magnetic field strength vector ),(H
r

 and 
after replacing by (17) in a cylindrical coordinate system amounts to: 
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By differentiating a relationship (18) EldE
l l

rrr

∫ =⋅
∂
∂  we get.  

θµ sin
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t
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E ir
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Ohm`s low in its elementary form is ),
1

( EEJ
rrr

ρ
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So the equation for eddy current density on external surface area of a cylindrical shield is  
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If we apply conditions for eq. (12) and eq. (13) in combination with eq. (20) and eq. (20.a.) the 
integration constant is determined CInti. 
 

2
00. )( RhhC iInt ⋅−=                                                                                                             (21) 

 

)11(

1

0 δ⋅−+
=

m

im

H

H
 ]1)];2/([ jdDf &=−⋅⋅⋅= ρµπδ

                                                   
(22) 

 
Here the maximum magnetic field strength values amount to: Him- inside a shield and H0m 

- outside a 
shield. 
 
From bordering conditions eq. (16) and eq. (11), eq. (11.a) and eq. (22) the current density value is 
derived: 
 

θ
δ

δ
sin

1

2
2

0

+

⋅= H
j                                                                                                                    (23) 

 
By definition, the protection index by applying a shield with a magnetic parameter is a relation of 
induction Bi which exists on a shield and the magnetic induction value B0 which would act in a point if 
there were no shields: 
 

220 )2(1

1

1

1

a

i
a

TB

B
k

πδ +
=

+
==                                                                                          (24) 

 

−⋅=
4

dD
Te ρ

µ is a time constant which indicates eddy current weakening in a shield.  

 

Now we can analyse an example where unknown field H0 in a space around a cylinder is created by a 
conductor placed on cylinder axis, Fig. 2, with a short circuit current 

.cirshi −  Taking a restrained 

component into consideration in the first few periods, short circuit transient current can be 
demontrated in a relationship [2] :   

)cos(0 teeIi Ta

t

Td

t

cirsh ω
−−

− −=                                                                                                 (25) 
 

.cirshi −  - current value of a short circuit current, 

−dT  time constant of direct current component,  

−aT  time constant of a weakening component of alternating eddy current,  

−0I  -initial value of direct short circuit current,  

−t  time from the moment of emergence of short circuit current,  
−= fπω 2  cyclical frequency of network voltage,  

 
Time changes of the magnetic induction component and the magnetic field strength component which 
emerged due to a change in direct current component, can be described in an equation: 
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t

eBb
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= 00
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t

eHh
−

= 00
                                                                                  (26)  

 

Based on a relationship eq. (11), eq. (16), eq. (20), eq. (21) value derived is: 
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Differential equation solution: 00 =−+
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The maximum value of a field component which 
emerged under the influence of direct current 
component is attained when a first extraction of 
function eq. (27) is equated to zero and occuring 
in a moment of: 
 

e

d

ed

ed
m T

T

TT

TT
t ln⋅

−
⋅=                                   

(28) 

 
If the value eq. (28) is replaced by eq. (24) we 
get protection index of a field component which 
was created under direct current influence: 
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                        (29) 

 
The resultant protection effect of a ferromagnetic 
shield is determined by determining protective 
factors-for every current component individually 
after a time tm. The maximum value of the 
electrodynamic force created in a moment when 
direct current component attains its maximum 

value. Alternating current has a value eq. (30) 
and direct current eq. (31): 
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−upaI ..
 unit value of short circuit alternating 

current component, 
−pudI .

 unit value of short circuit direct 

current component. 
 

The alternating current induction is reduced to 
)( 0Bkb aa = and direct current to )( 0Bkb dd = . The 

short circuit current has two components: 
)cos( ..0. wtIIIiii puapudadcirsh −=−=    (4’). 

 
The magnetic field emerged due to these 
currents is calculated based on equation: 
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2.1 The Force at the Three-pole (Three-phase) Condu ctors Neglecting the Eddy 
Current Influence  

 
In a normal operating regime, Fig. 1b. when a three-phase conductor in a three-phase system 
encompasses one magnetic cylindric shield resultant field of a system is very small. The magnetic flux 
in a shield closes, not allowing emergence of any significant eddy current values. In the case of 
extreme transient disturbances, three-phase short circuit, aperiodic components, that is, direct current 
components, receive big eddy current values in certain phases  A, B, C,  [2]: 
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−

−−        (33’) 
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−
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1
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When these relationships develop, each one 
follows individually as,  

)cos(2 `` teIi Ta

t

cirshcirAsh ω−⋅=
−

−−        (34’) 

 

]sin3[cos
2

2 `` Ta

t

cirshcirBsh ewtwtIi
−

−− −−⋅=       (34’’) 

 

]sin3[cos
2

2 `` Ta

t

cirshcirCsh ewtwtIi
−

−− −+⋅=   (34’’) 

 

The total force per unit length on phase 
conductor A, created due to currents B,C, is: 
 

ACABA fff
rrr

+=                                        (35) 

 
The force per unit length between two parallel 
conductors at distance 12a  is calculated  

according to relationship 
 

12

210

2 a

ii
f

⋅=
π

µ                                            (35`)  

 
based on Fig. 2b. and relationship (35) the 
following equations are derived 
 

AB

BcirshcirAsh
AB a

ii
f .0

2
−− ⋅=

π
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ii
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−− ⋅=

π
µ                     (35’’) 

 
The force per unit length affecting phase A 
conductor in a direction of axis (x) and (y) is 
calculated according to 

)(
22

3 ..
.

0
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Ccirsh
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AcirshAX a

i

a

i
if −−
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π
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22
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.

0

AC

Ccirsh
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i

a

i
if −−

− +=
π

µ                                                                           (35IV) 

 
The total unit length affecting a phase A conductor is calculated according to eq. (35’’’) and eq. (35IV) 
is: 
 

)(
2

..
.

022

AC

Ccirsh

AB

Bcirsh
AcirshAYAXA a

i

a

i
ifff −−

− +=+=
π

µ                                                            (36) 

 
2.2 Electrodynamic Forces of Three-pole Cylinder Sh ell Conductors with Eddy Current 

Influence  
 
Short circuit currents flow through three eccentrically positioned conductors in Fig.3. and create 
magnetic induction,that is, fluxes in a cylindric shield.  

 
The resultant flux susceptible to time changes which indicates eddy current in a cylinder agrees with 
alternating currents. The needed values of induction and fluxes, of significant importance for eddy 
current and electrodynamic forces,can be determined using a method based on magnetic vector 
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potential calculations and Poisson differential equation, JA
rr

⋅−=∆ µ  [1,3]. This operation is very 

complex because it requires identification of a large number of bordering conditions and acceptance 
of value superposition of multi-phase conducting structures. The extent of eddy current influence in 
this type of three-phase eccentric structures can be determined through a simpler operation which is 
published in  [6,8].  
 
The geometric structures in Fig. 3. correspond to the following relationships: 
  

,
2...,
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θ
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4 22
0
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The influence of currents in phases B and C can 
be determined in a similar way, that is, through 
their fluxes in a cylinder. 
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The eddy current in a magnetic cylinder creates 
a resultant magnetic flux through elementary 
cross section to whom points M(r,(ρ),θ) belong 
to, according to relationship: 
 

CMBMAM φφφφ ++=Σ                             (39) 
 
Following this, adequate electrdynamic forces 
can be determined. 
 
3. CONCLUSION 
 
All conductors placed in a cylindrical metal 
magnetic shield must, due to developed 
electrodynamics force influence, be dimensioned 
in such a way as to be able to withstand short 
circuit currents in a short time span without 

deforming or being permanently damaged When 
short circuits appear in shields which encompass 
three-phase conductors, very big 
electrodynamics force a can be produced due to 
the short distance between the conductors. 
 
The electrodynamics forces (eddy current 
emergence), according to relationship eq. (32), 
are significantly lower in shields which 
encompass only one phase of a conductor due to 
a protective effect of a shield. The eddy currents, 
as is demonstrated in this paper, significantly 
reduce magnetic field intensity produced by 
currents in conductors. Due to this effect, main 
electrodynamics forces in one-phase structures 
with shields, don`t affect the conductor, but only 
affect the shield. 
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